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Abstract: GPCRs arguably represent the most effective current therapeutic targets for a plethora of
diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between
healthy and pathological conditions; thus, their importance in systems biology cannot be underesti-
mated. The molecular diversity of GPCR signaling systems is likely to be closely associated with
disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling
a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level.
GPCRs have been long considered as controllers of communication between tissues and cells. This
communication involves the ligand-mediated control of cell surface receptors that then direct their
stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets,
considerable focus has been placed on the ability of these therapeutics to modulate diseases by
acting at cell surface receptors. In the past decade, however, attention has focused upon how stable
multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and
in the intracellular domain dictate and condition long-term GPCR activities associated with the
regulation of protein expression patterns, cellular stress responses and DNA integrity management.
The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control
complex cellular activities implicates them as key controllers of the functional balance between health
and disease. A greater understanding of this function of GPCRs is likely to significantly augment our
ability to further employ these proteins in a multitude of diseases.

Keywords: dimensionality; G protein-coupled receptor; network; pharmacology; precision; quantita-
tive; therapeutic; DNA damage; allostasis; systems biology

1. Introduction
1.1. G Protein-Coupled Receptors

It is reasonable to contend that the most therapeutically important molecular targets at
the present time are the transmembrane heptahelical G protein-coupled receptors (GPCR).
GPCRs are the largest family of transmembrane receptors in humans and many other
species and represent the most diverse family of targets for current therapeutics [1–4].
GPCRs facilitate communication between cells in tissues across long distances in the body,
thereby enabling the capacity for system-level therapy [5–8]. Therapeutics effectively
exploited GPCR systems many years even before the discovery of GPCRs themselves [9,10].
Controllers of these receptors were originally designed to exert either a simple positive
effect (increasing the activity of downstream signaling systems, e.g., adenylate cyclase) or
by inhibiting this activity by occupying the receptor and antagonizing the positive actions
of stimulatory ligands. Therapeutic agents were classified as simple agonists or antagonists
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based on the concept that receptors could exist predominantly in two distinct states, i.e.,
inactive and active.

Work from multiple talented laboratories nearly three decades later largely confirmed
this two-state model for GPCRs [11–17]. With the introduction of molecular alterations to
GPCRs [18], it was demonstrated that GPCRs indeed exist in a spontaneous equilibrium
between two conformations, i.e., active (R*) and inactive (R). The active conformation
is stabilized by agonist binding or by mutagenesis that can relieve intramolecular con-
straints [18–23]. In this model, GPCRs transmit signals through their capacity to act as
guanine nucleotide exchange factors for the heterotrimeric guanine nucleotide-binding
proteins (G proteins) in response to stimulatory ligand binding. G protein activation is
initiated through conformational rearrangement of the GPCR transmembrane core and
juxtamembrane loop regions, eventually catalyzing the exchange of GDP for GTP on the
receptor-associated Gα subunit [24–28]. A guanine nucleotide exchange (GDP for GTP)
then initiates the dissociation of the heterotrimeric G protein from the GPCR, followed
by the break-up of the G protein heterotrimer releasing free GTP-bound α and βγ sub-
complexes. These two signaling components can stimulate, inhibit or physically recruit
multiple downstream signal transduction effectors, e.g., adenylyl cyclase (AC), phospho-
lipase C (PLC), GPCR kinases (GRKs) or GRK-interacting proteins [29]. In this manner,
the heterotrimeric G protein can transmit information to the intracellular milieu about the
qualitative and quantitative nature of a specific extracellular stimuli [30,31].

1.2. Signaling Diversity in GPCRs
1.2.1. G Protein and Non-G Protein Signaling

Since their discovery, GPCRs have been considered to be primarily G protein-signaling
entities. This knowledge has been demonstrated to be exceptionally successful in allowing
the creation of a huge variety of effective pharmacotherapeutics. Hauser et al. evaluated
in 2017 that 475 FDA-approved drugs target GPCRs, which is 34% of all FDA-approved
drugs [32]. Even with this specific G protein focus, agents have been generated that
can control the bias amongst diverse forms of G protein-signaling output [23,33]. In
the last decade, our appreciation of GPCR-signaling complexity has been enhanced by
the demonstration of simultaneous signaling activities emanating from GPCRs that are
either G protein-based or controlled by non-G protein-signaling adaptors. Even with
just the primary consideration of G protein activation, it is evident that the receptor
conformations for G protein activation are different between specific G protein pools
and that synthetic and naturally occurring ligands can selectively facilitate the formation
of different receptor coupling conformations [23,34]. Multiple distinct forms of agonist
ligands for a single GPCR type have now been discovered to only activate a subset of G
proteins or a subset of downstream signaling effectors or induce G protein coupling without
initiating internalization and desensitization [23,35,36]. Given the successful exploitation
of the therapeutic intervention of GPCR-based G protein signaling, it is likely that it will be
possible to improve this index even further by exploiting the true complexity and diversity
of GPCR signaling [32,37]. Apart from the classical G protein signaling, multiple research
lines have pointed towards the presence of non-G protein-based signaling, mainly through
β-arrestins [38–40]. One of the first studied examples of this novel signaling activity was
the β-arrestin-dependent activation of extracellular signal-regulated kinases 1/2 (ERK
1/2) [29,41]. Compared to the rapid and transient manner of G protein signaling [39], β-
arrestin-linked pathway activation has a later onset but is sustained over a long period and
entrains long-term l cellular transcriptional and proteomic effects [42–45]. β-arrestin also
serves as a negative regulatory protein for signaling through G proteins and is responsible
for GPCR internalization [45–47]. However, there is still some dispute in the field with
respect to the interdependence of G protein and β-arrestin signaling; recently, complete G
protein independence could not be proven in a serum-starved in vitro G protein knockout
model [41]. Evidence has also been revealed recently that suggests that certain specific
forms of orphan receptors (D6R and C5aR2) appear to be able to functionally interact
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with β-arrestins but not with G proteins [48]. This data reinforces the posit that there are
likely a diverse range of receptorsome entities that are prewired to specific independent
downstream signaling pathways.

1.2.2. G Protein-Coupled Receptor Complexes

Since 1999, it has become clear that GPCR signaling is more complex, specific and di-
verse than initially considered in the two-state model [28,49]. One of the factors accounting
for this complexity is the ability of receptors to form multistate-signaling complexes or
so-called receptorsome structures. These receptorsome structures comprise the receptor
itself combined with multiple interacting proteins. These preassembled receptorsomes
demonstrate unique pharmacology, signaling, trafficking, desensitization and internal-
ization features [50–53]. This conditioning of GPCR activity is also influenced by the
relative variations of these adaptor proteins in distinct tissues, suggesting the presence of
tissue-specific GPCR activity [23,37,54]. Given this growth in GPCR-signaling complexity,
it is vital to recognize the unique properties of endogenous or cognate ligands for GPCRs.
The proposed cognate ligands of GPCRs attempt to impact every consequence of receptor
activation in the same manner, whether desensitization, internalization, trafficking or G
protein coupling [43,55]. Hence, these ligands strive to engender an omnipotent efficacy.
The ability of a ligand to achieve this at a systemic multi-tissue level is, however, highly
unlikely due to tissue-to-tissue variations in the receptor and signaling adaptor expression
under the influence of diverse cellular conditions [23,56–59]. Given the ability for multiple
ligands to stimulate the same GPCR, it may be prudent to redefine our conceptualization
of endogenous ligand cognation. Indeed, the most accurate definition of a cognate ligand
for a specific GPCR could be codified by its ability to most equally regulate the full GPCR-
signaling spectrum across a diverse series of tissue/cell settings. Hence, it is likely that
receptors and their cognate ligands coevolved to elicit the most physiologically adaptive
and effective responses in target cells. With respect to the concept of functional relation-
ships between cognate ligands and their preferred receptors, the aging/stress response
paradigm presents an important pathophysiological process that represents perhaps the
greatest systemic and coordinated perturbation of cellular signaling in human physiology.

This complexity and diversity of GPCR signaling also reveals the necessity to change
our definition of agonists and antagonists originally based on the two-state model [18–22].
Ligands, to varying degrees, likely stabilize these different active conformational states
and thereby initiate diverse signaling pathways. This concept is known as biased agonism.
Verifying and understanding this mechanism will likely help to develop functionally
selective drugs, which activate beneficial downstream pathways and suppress adverse side
effects [23,24].

It is evident that an in-depth understanding of the effective G protein-coupling capac-
ity of GPCRs has been effective for the development of GPCR-based therapeutics [60]. The
G protein-centric focus of GPCR signaling was expanded by the discovery that β-arrestins—
originally thought of just as terminators of G protein signaling [61,62]—can also act as
productive signaling effectors [49]. Further research has demonstrated that the realm of
GPCR signaling is far more complex and diverse than initially imagined [2,37,43]. This
signaling diversity arises from several factors associated with subcellular localization, spe-
cific post-translational modification states of the receptor and, perhaps most importantly,
the ability of the receptor to exist in multiple receptorsome-signaling states. In multistate
signaling GPCR models, specific agonists likely possess the ability to activate distinct active
receptorsomes by exposing different intracellular regions involved in coupling separate
G protein pools, initially demonstrated for the β2-adrenergic receptor antagonist ICI-118-
551 [63,64], and β-arrestin signaling [45,49]. It is becoming more evident each year that
agonist-selective receptor signaling, targeting a subset of the possible response profiles,
may represent an opportunity to develop drugs that are more precise and could also have
an increased efficacy.
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To assist the capacity to investigate these GPCR receptorsomes, there have been consid-
erable advances in the accuracy and selectivity of proteomics-focused mass spectrometers
that can investigate the specific protein stoichiometries in these complexes. This increase of
protein detection sensitivity has enabled the experimental transition from whole-tissue/cell
investigation to allow an analysis of protein–protein interactions at a subcellular level,
i.e., interactomics [65]. The dynamic investigation of how multiprotein complexes alter
in quantity and quality in response to drug exposure has enabled the examination of the
subcellular network functionality of therapeutic agents [66–69]. The importance of GPCR
interactomics lies in the posit that the local context of protein associations/interactions is
often more strongly linked to the biological activity of a certain form of signaling path-
way or disease process, as opposed to simple global cellular or tissue protein expression
levels [68,70].

1.2.3. G Protein Signaling, Endocytosis and Cellular Location

The canonical model of GPCR signaling, either through G proteins or non-G protein
adaptors, has been largely considered to emanate from the plasma membrane localized
receptors. One potential mechanism contributing to the diversity and specificity of GPCR
signaling is through membrane trafficking and alternative residential and signaling sites of
the receptor [71–73]. Until recently, the cell surface plasma membrane trafficking of GPCRs
was considered as a mechanism to control the sensitivity to an extracellular stimulus
by changing the receptor level through ligand-mediated endocytosis or reduced traffick-
ing to the plasma membrane of newly synthesized receptors [74]. It has recently been
demonstrated that GPCRs can signal from intracellular membranes such as endosomes,
mitochondria, the endoplasmic reticulum, the Golgi apparatus and the nucleus [75,76].
This shift in signaling location was first identified on Gαs-coupled receptors such as the
parathyroid receptor, thyroid-stimulating hormone receptor and the β2 adrenergic receptor,
where cyclic adenosine monophosphate production was still evident after endocytosis [77].
Given the subcellular variations of GPCR adaptor protein expression, it is highly likely that
the subcellular location of GPCR receptorsomes can assist in defining specific ensembles of
adaptor-directed specific signaling activity [43].

2. Complex Biological Systems

Complex systems, consisting of hundreds to millions of distinct entities, typically
possess underlying deterministic properties that can lead to unpredictable patterns [78].
At a rudimentary level, complex systems can be conceived as a network of multiple units
that interact with each other in a nonlinear manner [79]. The relationship(s) between the
different nodes can be modeled in the most basic manner by a graph. Graph theory is used
to describe mathematical structures in which vertices (i.e., nodes) are connected by edges
(i.e., lines) [80]. For many years, biological systems have been represented as complex sets
of binary interactions between biological entities [81]. In nonlinear systems, the dynamic
behavior can change dramatically when a certain parameter crosses the critical point at
so-called bifurcation points [82]. In a biological context, this could be related to specific
stress parameters or persistent alterations in signaling molecules. The behavior of the
network indicates an underlying order (with the goal of maintaining homeostatic health),
but it is difficult to predict the global behavior by knowing the input and the network
components. Having to contend with coordinated and coincidental interactions between
multiple nodes in a network is clearly problematical for standard research approaches,
hence the recent trend for the introduction of machine-assisted inference in biomedical
science [83,84]. In the field of machine learning (ML), complex systems can be compared
to the concept of a neuronal network, which is a so-called black box model. It may be
able to provide predictions of activity, but how the model comes to the results is often
not fully comprehensible. To contend with this deficiency, a recent development for the
ML-based interpretation of complex network data lies within the realm of artificial neural
network–based deep learning (DL) [85]. DL allows multilayered processing models to
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learn representations of data with multiple levels of abstraction. DL can uncover intricate
structures within large datasets by using a backpropagation algorithm [86]. Such algorithms
indicate how a machine should change its internal parameters, which are used to compute
the representation in each layer, from the representation in the previous layer to uncover
the subtle structural properties of the data. DL-based algorithms have demonstrated
superiority over most other techniques in diverse biomedical fields, such as predicting
the effects of mutations in noncoding DNA on gene expression and disease [87], image
recognition [88], reconstructing brain circuits [89], mass spectrometry-based proteomics [90]
and, most pertinently, drug molecule activity prediction [91].

The theory of complex systems has been applied effectively to the interpretation
of a wide variety of fields, such as economics, meteorology and the domain of systems
biology [92,93]. It has been considered that biological systems are among the most complex
to grasp and predict [94]. The equilibrium of a species within an ecosystem, the interaction
of neurons and crowd behavior have all been modeled as complex systems [78,95,96].
In pharmacology, therapeutic targets can range from single atomic structures, such as
metal ions controlling ion channels, to macromolecules such as proteins, whole metabolic
pathways, cells and organ systems that coordinate whole organisms from a systemic
signaling standpoint. Human physiology is a tightly regulated system that maintains
equilibrium throughout the individual’s lifetime. Multiple factors influence the daily
maintenance of the biological system and cooperate to achieve a state of equilibrium
despite the randomized presence of stressful factors that disrupt the system and can lead to
disease signature generation [67,83,84]. However, from a human physiological standpoint,
there is not only one state of equilibrium. Every physiological disruption/perturbation
can lead to a further shift towards a new equilibrium state, and eventually, the equilibrium
is shifted to the point where it allows the presentation and homeostatic preservation of
disease symptoms. To maintain system homeostasis, feedback loops are necessary to
actively maintain a systemic balance and enable a complex cellular life. For example,
the human organism possesses a precise regulation of ATP balance with the glucose-
dependent regulation of insulin secretion from beta cells [97–99]. For highly regulated
and physiologically critical systems, such as the insulinotropic system that manages the
balance between glucose and insulin levels, the organism has excellent tools in the form of
receptors to sense slight perturbations and to react to the changes immediately. A long-
term homeostatic balance sustains the lifespan control and is underpinned by dynamic
microscale feedback loops controlled by scale-adapted allostasis [100–103]. Here, we
contend that disease-free aging is strongly associated with the capacity of cells to most
efficiently sense random stressful perturbations and then ameliorate those effects to revert
the system back to a healthy homeostasis. To support this mechanism, we propose that a
coherent and dedicated network of intracellular GPCRs underpins a single-cell intrinsic
stress response network that, in turn, protects against age-related disease generation.

2.1. Functional Properties of Complex Systems

Most complex systems of various types share some common fundamental properties
of a network communication. Features such as randomness and order exert potent effects
upon the behavior of local small circuits within the overall network, as well as the whole
system itself [82]. In large networks, the connectivity of the nodes follows a scale-free
power–law distribution that arises from the fact that new nodes preferentially connect
to already well-connected locations [104]. Other properties of dynamic complex systems
include the small world property, which describes the phenomenon that networks are
highly clustered but, at the same time, have small characteristic path lengths, like random
graphs. This organizational system increases the signal-propagation speed, computational
power and synchronization [105]. Complex systems are often described as being on the
edge of chaos, a transition point between order and randomness [106]. Thus, complex
systems can exhibit predictable behaviors for a certain period and suddenly undergo major
changes after only minor perturbations to the system. This scenario, in fact, demonstrates
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a potentially important property needed for a cellular stress responsive system that can
rapidly readjust to the very first signs of cell stress to reduce the spread and functional
impact of deleterious perturbations.

In addition to these archetypical features, it has been demonstrated over recent decades
that, even though based on small and predictable events at the microscale, complex systems
often demonstrate the generation of emergent properties that initially appear unrelated
to the nature of the base entities forming the system. The emergent properties of a sys-
tem are most apparent when the interaction between the comprising units is observed in
the larger whole (e.g., at the systemic homeostatic level) and not just in their individual
parts (e.g., binary protein–protein interactions). Understanding the dynamic nature of a
complex network system is key to describing the physiological systems it monitors, regu-
lates and controls. Current technologies and methods in life science that can create high-
dimensionality datasets, e.g., in genomics, proteomics and transcriptomics [83,107,108],
make an effective appreciation of highly complex biological networks feasible for many
laboratories. These technologies unlock significant opportunities to appreciate a high
percentage of all the individual constituents of complex systems simultaneously [93]. Such
an in-depth understanding of systemwide alterations will probably lead to an augmented
view of biological complexity that will help reveal important new functional associations.
Approaching biology and disease pathology in the context of GPCR sensory systems, with
the concept of a network governed by universal laws, will likely augment our understand-
ing of these systems and help generate novel therapeutic intervention strategies [109].
Disease susceptibility (e.g., Alzheimer’s disease) is often not just the result of a single
gene mutation but rather a disruption in the network context of a gene and is often more
related to a subnetwork of factors linked to processes (e.g., metabolic disruption leading to
Alzheimer’s disease [110]) that may be perturbed in a persistent manner. To fully appreci-
ate the true nature of physiological functions, it has been suggested that network science
should become embraced earnestly as one of the most effective pillars of molecular biologi-
cal inference [111]. The network concept can be used to create a theoretical graphical model
of the structure and flow of functional information in biological systems [112]. Recently,
computational approaches have been applied to analyze systemwide signaling pathways
after a SARS-CoV-2 infection to determine the virus-host interactions and understand the
systemwide response following infection [113,114].

Human physiology is likely coordinated through a tightly regulated combination of
multiple emergent systems. The considerable average human life expectancy of about
80 years in industrialized countries is a definitive sign of this well-functioning systemic
homeostasis. This organismal stability has evolved over billions of years through nuanced
stress sensory mechanisms, compensatory feedback loops and potentially perturbagen
prediction systems based on GPCR-associated damage management networks [115]. Never-
theless, the random and rapid nature of stressful cellular perturbagens can often overwhelm
the stress responsive network, as the protein interactome-based sensory network may only
be able to respond at a slower rate due to the need to either generate ne novo proteins
or reassemble intricate protein complexes. If the stress responsive network cannot fully
prevent/repair the damage caused by a perturbation event, then the damage may be com-
pounded when successive damaging perturbations are experienced by the cell [76,116–119].
Hence, in a similar manner to the process of repetitive muscular calcium loading inducing
a tetanic contraction, unrepaired damage will accumulate and drive the feedforward aging
process. The specific initiation point of multiple diseases may therefore indeed be created
by a generic start point, i.e., the repetitive damage tetanic process, but then diversify with
time to create differential end-stage disease states and symptoms [83,120–122].

Allostatic adjustments, which are made to maintain global homeostasis after small
disruptions, are associated with a branching chain reaction or, more generally, a positive
feedback loop. Systems with positive feedback loops are known to initially amplify small
disturbances gradually to the point of instability and destruction of the system in the
absence of negative feedback loops. An important example of such an amplification of
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initial small disturbances through positive feedback loops (vicious cycles) leading to the
destruction of physiological systems is the pathological aging process [120]. Aging is likely
orchestrated by feedback loops and the counter cycling that repeatedly repairs damage.
The maintenance of homeostasis in this complex network has been demonstrated to be
an indicator of healthy aging [123–126]. Increasing attention has been paid to the disease
progression of patients with more than one disease to investigate the network dynamics on
a system biology level. Aging-associated comorbidities can reveal additional interactions
between molecular levels and external factors such as lifestyle and diet [127–129]. The
goal of understanding the complex networks that control physiological-to-pathological
trajectories is to steer them in a nonpathological direction. Structural controllability based
on graph theory makes it possible to identify a minimal number of key factors for the
optimal control of complex networks [130]. For effective therapeutic interventions that can
restore genomic, proteomic and endocrine homeostasis, a nuanced system pharmacology
approach will be needed that identifies both rational polypharmacological agents as well
as combination therapies [131]. In these scenarios, GPCRs are optimal targets due to
their ability to control diverse physiological functions and their ability to create stress-
sensitive signaling systems and complexes [132]. Understanding how to regulate, using
a multidimensional GPCR-based approach, and reverse the pathological loss of systemic
homeostasis across the lifespan is vital to the future design pipeline of therapeutics that
can act to suppress the generation of fully matured disease states [133].

2.1.1. Networks in Pharmacological Systems

From a traditional pharmacological standpoint, the therapeutic actions of drug activity
are believed to be a direct response due to the stimulation of a single index (e.g., cAMP
accumulation) or the activation of signal transduction pathways. Although these views
are quite limited, a single index analysis and basic enzyme pathway analysis facilitated
the creation of many currently used agents that are effective in controlling disease symp-
toms. However, disease progression is likely a combination of complex multidimensional
processes, and the therapeutic effects of certain drugs might, in fact, be collateral to the
observed changes in the symptoms [83,134]. Both drug responses and different disease
states can be multisystem entities, proving the need for extensive analytical assessments of
the qualitative multidimensional nature of pharmacological systems. Flexible systems must
be employed to allow a comprehensive understanding of how both single-index effects
and multiple signaling cascades overlap. This overlap will create potentially emergent
functions that bridge the diverse elements of the intricate response systems. In general, a
system is characterized as an entity that maintains its existence through the interactions
between its parts [135,136]. As we have previously outlined, physiological systems can be
effectively represented as a network of nodes (functional elements and vertices) connected
to each other through edges, which describes the functional interactions. These functional
network visualizations are referred to as graphs. While highly useful for network-based
investigations, this graph-based approach unfortunately often ignores the nature and mag-
nitude of the interactions within the network, as well as excludes potential temporal and
spatial information. This creates difficulties in understanding the network activity with all
its dynamic processes in different time intervals, which may be necessary for the prediction
of various drug effects in vivo [137,138]. To improve the data annotation of biological net-
works, additional layers of information can be used to enhance the interpretative power of
the node relationships. Such advancements can be seen in knowledge graphs, which depict
biomedical concepts and relationships as nodes and edges [139]. Multidimensional biomed-
ical graphs can now be constructed by integrating both human- (e.g., COSMIC [140]) and
machine-curated [141–143] text and biomedical databases. The use of knowledge graphs
can be facilitated through ML-based approaches, which will construct a low-dimensional
representation of graphs to support many different applications [144]. This approach will
likely preserve the graph’s local and/or global structure, while additional ML methods can
help make predictions within the genomic, pharmaceutical and clinical domains [145].
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While there are some clear deficiencies in the employment of graph theory to help
investigate complex physiological networks, it has, however, been successfully applied
in a wide variety of biomedical paradigms [146,147]. Combining graph theory from
cutting-edge informatic platforms with a biomedical high-dimensionality data (e.g., GPCR
receptorsome proteomics) systemic analysis will likely offer effective opportunities to ex-
plore system-level networks [148,149]. Biological changes can be set off by small variations
in individual molecules (e.g., pathology-related perturbagens such as reactive oxygen
species), but most frequently, they are the result of simultaneous changes in a myriad of
components (e.g., multiple age-related biochemical insults) and interactions within the
system [135,150,151]. It is unavoidable that human observations will miss certain cryptic
biologically relevant relationships that lie within huge collections of biomedical text and
data [152–154]. However, the discovery of cryptic relationships between drug responses
and disease data in unsupervised networks can reveal unique, new pathways and potential
novel drug signaling paradigms within the greater physiological network [155–158]. A
network-based pathway enrichment analysis uses graph theory to find advanced functional
interpretations by prioritizing topological interesting differential expression patterns in all
enriched pathways [159–161]. Complex physiological networks are beneficial for pathway
analyses of high-dimensionality datasets, since they do not follow the compartmentalized
biology-based rigid structures of human/machine-curated signaling cascades. Signaling
pathways, and biological pathways in general, both have a temporal and biochemical order
of interactions between their components, with an upstream-to-downstream organization.
Given the significant complexity of signaling cascades, it is likely that small microcircuits of
signaling factors are present to regulate a stepwise control over the cascade. Additionally,
interactions between multiple different cascades in the biological system can lead to overlap
at varying points within other cascades. Nuanced, unsupervised pharmacological network
models do not match the classically curated-signaling pathways perfectly but, however,
excel in capturing the true complexity and variability of signaling transduction pathways
across different levels. Such approaches therefore possess several aspects of investigation
that could be vital for the inference of the GPCR-signaling pathway variation in times of
temporally variant stressful perturbagen actions.

2.1.2. Modulation of Networks in Disease and Aging

Aging is a pathological process that develops progressively over the lifespan of an
organism. The molecular signatures of aging-related pathologies can be noted and defined
at time periods less than 50% of the total lifespan of human patients [162,163]. Thus, it is
likely that healthy and young individuals possess sub-disease levels of molecular pathology
that are induced to grow via the accumulation of stress-induced cellular degradation.
Differentiating between a state in which no overt medically observable symptoms are
present (nonpathological/healthy state) and a pathological state is effected through the
coordinated changes in systemic protein networks that either sense, protect or repair
stress-related cellular damage [67,83,139,164,165]. Changes in this protein network could
include several types of dysfunctions, e.g., both small-scale and large-scale quantitative
and qualitative alterations of the protein–protein interactions [166,167]. One of the perhaps
most important responsive network events is the potential change in the role of the factors
termed hubs or keystones. These critical nodes demonstrate a capacity to coordinate and
control a much greater number of associated factors in the network than many other nodes.
Thus, in the context of aging-related pathology, hubs or keystones such as GIT2 can be
changed to alter the trophic levels of network connectivity and, therefore, modulate the
impact of stressful perturbations [116,168–170]. The human GIT protein family, comprising
GIT1 and GIT2, acts as GTPase-activating proteins (GAPs) for ADP-ribosylation factor (Arf)
small GTP-binding proteins [116]. Both GIT proteins were originally identified as regulators
of GPCR internalization through the influence they exert on Arf GTP-binding proteins.
GIT proteins are primarily considered as signaling scaffolding proteins, with their multiple
domains binding to many protein partners. GIT proteins have been implicated in multiple
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cellular processes, including cell migration, dendritic spine formation, T-cell activation and
centrosome dynamics (for review, see Reference [116]). Our research demonstrated that
GIT2, compared to GIT1, possesses a potential multidimensional role in the pathological
aging process, as it has been demonstrated to coordinate interactions between signaling
systems that control the somatic metabolism, immune function, oxidative stress sensitivity
and DNA damage responses [66,116].

In addition to dynamic reactive changes in the network functionality, the global
structure of networks can be altered, as well as node connection dynamics [171]. In so
doing, the network can adjust to changes the properties of either small or large numbers
of factors to modulate their degree and/or betweenness status in a coordinated manner.
Changes in the network that are potential causes of disease can create a pathological
molecular subnetwork also called a disease module [164,165,172,173]. In addition to this
module that can possibly specify the eventual generation of a discrete disease, we propose
that there will likely also be stress response modules that represent sensory and reparative
protein networks that engender a regulatory system above those that then dictate specific
disease progression. A true system-level understanding of the formation and interplay
between these disease and stress response modules and subsequent drug responses will
require comprehensive classification at both the local and global levels of the topological
nature of physiological networks [166,174–176].

The dimensional complexity of networks can be reduced into a combination of certain
trophic regulatory factors. This small group of factors maintains the network integrity
and allows for adaptation to deleterious and stress-related perturbations within the net-
work [116]. The dimensional reduction of complex and intricate data is necessary to obtain
the most comprehensive overview of the connection between the initial small network per-
turbations to the generation and network reinforcement of complex diseases. Furthermore,
global structures can be remodeled into targetable therapeutic networks that are used for
more specific and thorough drug investigations to develop agents that can interdict the
stress-to-disease progression process that underpins pathological aging [44,45,177]. Hence,
a specific aging-associated network composition will hopefully facilitate the investigation
of the cause(s) and rate development of comorbidity conditions in both young and aged
individuals [133,178,179]. Combining these multiple factors within a specific targeted net-
work defines aging as a compelling risk factor for developing cardiovascular, metabolic and
neurological disorders [83,180,181]. Although each disease has its own distinct end-stage
clinical and pathological features, it is becoming ever clearer that many diseases likely
possess a common start point, i.e., poorly repaired stress-related damage.

Examining the disease similarity measurements with the help of differential co-
expression (DCE) instead of normal differential expression has been shown to improve
the definition of true common pathogenic trajectories in the network [182,183]. These
common stress-related subnetworks can then be prioritized for nodes that represent effec-
tive therapeutic receptor targets that may help regulate the balance between physiology
and pathophysiology [37,184]. The phrase diseasome has been codified to describe the
elaborate functional network of a disease [165,185–189]. Akin to the creation of diseasomes,
it would be facile to consider the construction of interconnected networks of proteins
specifically associated with a stress sensation and response as well. Well-characterized
diseasomes (either singular, comparative or multiple) have been constructed by using
network-driven approaches that link diseases based on common molecular or regula-
tory mechanisms, such as shared genetic associations, protein interactions [190,191] or
gene–disease interactions [192,193]. Similar techniques can therefore be readily applied
to construct complementary stress response networks. It has been noted that certain
diseases cluster together in multi-disorder diseasomes, which can contain local clusters
of very similar disorders but can also reveal surprising clusters of rather heterogeneous
diseases, including cardiovascular, oncological, musculoskeletal, renal and neurodegen-
erative conditions [5,176,191,194–198]. Common, underlying hidden pathomechanisms
(that could potentially be enriched for stress response factors) may indeed be the rea-
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son for the clustering of apparently very different diseases. The novel information that
is extracted out of the static or dynamic interacting stress–disease clusters can provide
unexplored molecular information about disease phenotypes, as well as reveal new tar-
gets for drug discovery and repurposing [67,116,118,179,199–204]. Hence, the in-depth
appreciation of the nuanced topological landscape features of both stress response and
disease networks will likely lead to novel insights into the etiology and pathogenesis of
multiple diseases [165,185,202,205,206]. The translational deconvolution of these interfaces
will also help prioritize the most important GPCR-targetable disease-related/causative
factors [207–213].

2.1.3. The Receptors Dilemma and Network Functionality

It is evident from our recent work that GPCRs can possess critical roles in stress
response networks [115,133,200], e.g., Relaxin family peptide receptor 3 (RXFP3) [76]. As
sensors of external tissue-to-tissue stimuli, it is therefore not surprising that an intracellular
communication/sensory network for stressful perturbations to cellular functions involves
these diverse and versatile signaling proteins. It is likely that this subcellular signaling net-
work involves receptor–adaptor systems tuned to detect (on a millisecond-to-millisecond
basis) harmful cellular stimuli, e.g., reactive oxygen species or high temperature stress or
even prevailing levels of vital nutrients, such as free fatty acids [97,214], and then deploy
responsive damage limitation and repair mechanisms. The receptor systems comprising
this network will likely represent an ensemble of subcellular receptorsomes that attempt to
maintain a flexible, yet optimal, range of sensitivities to a range of stressors that the cell
may potentially experience in a short temporal space. It is likely that the cells that can
sustain the deployment of a broad spectrum of stress-resistant complexes (Figure 1) are the
most likely to survive these deleterious perturbations over a long period of time. Therefore,
the cells have likely prioritized a capacity to generate efficient capacities to potentially
predict the arrival of rapid insults. In this respect, it is therefore critical that a cell maintains
a strong capacity to generate and coordinate the synthesis of proteins needed to construct
the most effective receptor ensembles that facilitate rapid and reversible responses to the
most likely range of insults a cell receives (Figure 2).

In this context, the dilemma for sensory receptor systems within a cell is how to
best deploy the resources it possesses. In this paradigm, there are several theoretical
considerations that a stress sensory network needs to adjust to: (i) which types of stressful
perturbations are most likely to occur to a specific cell, (ii) are there adaptor protein–GPCR
relationships that develop a more efficient spectrum of resistance capacities compared to
others and (iii) are there GPCR-interacting factors that can be employed to bridge multiple
stress response pathways? From these issues concerning stress network construction and
maintenance, it is important to consider that the stress prediction and flexibility of stressor-
type resistance are crucial factors in this equation. In this context, it is vital to appreciate
that the GPCR sensory network and the impinging stressors themselves exist in two distinct
temporal realms, i.e., the stressors may appear at a milli/microsecond timeframe, while
adjustments to the GPCR stress ensemble may take hours/days to respond to these insults.
Given this disparity, it is evident that an effective stressor prediction (potentially informed
by stress monitoring systems that identify the early features of failing energy metabolism)
would enable the cell to not waste precious resources by creating a receptor ensemble
that is not well-matched to the potential impinging stressors [215]. Coupled to this, if the
cell experiences a range of stressful inputs, prioritizing the factors that facilitate between
one stressor focus and the next, which may represent an important strategy for cells. Our
current work with the GPCR adaptor GIT2 potentially underlines this, as GIT2 appears to
possess a bridging capacity between diverse types of stress, e.g., metabolic [66,216], reactive
oxygen species [216] and DNA damage [76,217]. Hence cells may therefore prioritize the
creation of GIT2-associated receptorsomes in times of multiplexed stress input to ward off
the accumulated damage that likely leads to age-related disease signature generation and
maturation [116].
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protein compositions. Some receptorsomes (scarlet and red) may comprise a broad variety of adaptors and, therefore, 
confer cellular resilience to a wide range of stressful perturbagens. Other receptorsomes (purple and grey) may consist of 
a smaller range of adaptors, thus reducing their potential to sense or contend with a wide range of cellular stressors. It is 
also noteworthy that it is likely that some receptorsome components are near-ubiquitous for all receptorsomes (e.g., square 
and circle); thus, these factors possess a higher trophic role in controlling multiple dimensions of stress sensation and 
mitigation. The adaptor proteins that are found in all of the receptorsomes are denoted using a black hashed fill. The 
presence of these consistent factors demonstrates that some GPCR adaptors can also function as intra-network communi-
cation factors across the diverse receptorsomes. Hence, the expression of such factors will likely serve as a network regu-
lator function through common sensing of the receptorsome ensemble status. 

 

Figure 1. Diversity of the stress response receptorsome compositions. Here, we consider the presence of 12 hypothetical
intracellular stress responsive GPCR receptorsomes (color-coded). These receptorsomes can be classified by their adaptor
protein compositions. Some receptorsomes (scarlet and red) may comprise a broad variety of adaptors and, therefore,
confer cellular resilience to a wide range of stressful perturbagens. Other receptorsomes (purple and grey) may consist of a
smaller range of adaptors, thus reducing their potential to sense or contend with a wide range of cellular stressors. It is also
noteworthy that it is likely that some receptorsome components are near-ubiquitous for all receptorsomes (e.g., square and
circle); thus, these factors possess a higher trophic role in controlling multiple dimensions of stress sensation and mitigation.
The adaptor proteins that are found in all of the receptorsomes are denoted using a black hashed fill. The presence of these
consistent factors demonstrates that some GPCR adaptors can also function as intra-network communication factors across
the diverse receptorsomes. Hence, the expression of such factors will likely serve as a network regulator function through
common sensing of the receptorsome ensemble status.

It therefore appears that an ability to interpret disease, stress sensory and therapeutic
network effects may be invaluable for future system-based therapy development. Network
graph quantitation and complexity measures have been studied extensively from a mathe-
matical perspective [218–220]. Unfortunately, few of these specific quantitative indices deal
specifically with directed graphs, i.e., graph networks that possess quantitative/functional
node interactions that more closely represent the functional aspects of molecular signal-
ing cascades. Most biological networks are depicted as directed graphs whose edges
express critical interactions, flows and effective directionality [146,221–223]. While consid-
erable quantitative methodologies have been employed for undirected graph networks,
i.e., treewidth [220] and cycle rank [224], as well as topological indices [225], there are addi-
tional graph complexity indices such as the distance-based Wiener index [226–230], graph
entropy measurements [231] or the Szeged index [232] that can also be computed for the
more biologically relevant directed graphs. Measures for analyzing directed graphs include
DAG (directed acyclic graph)-width [233,234], directed treewidth [235] and girth [236],
with the latter two (treewidth and directed treewidth) being based on the game theory
applied to special graph decompositions.
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torsome types (perturbagen 1—blue, perturbagen 2—red and perturbagen 3—green), can attenuate 
the damage to all three stress types. (B) With a reduced number of available receptorsomes (loss of 
red), the cell is unable to mount an effective response to one of the perturbagens (#2—red), thus 
resulting in an augmented level of experienced damage. (C) With a narrow range of receptorsomes 
maintained by the cell (loss of blue and green), it can only adequately contend with one stressor 
perturbagen (#2—red), while significant cellular damage may occur, as the majority of stressor per-
turbagens cannot be mitigated. 
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Figure 2. Stress response receptorsome ensemble breadth controls the cellular resilience. For each of
the figure panels, a given receptorsome type is denoted by its specific color, while the vertical height
of the receptorsome block represents its numerical representation in the total cellular complement of
the intracellular GPCR structures. (A) Given a cellular scenario in which a broad variety of stress-
responsive receptorsomes are present, it is likely that the dynamic responses (to distinct perturbagens
1–3), indicated by a specific elevation of the numbers of the specific sensitive receptorsome types
(perturbagen 1—blue, perturbagen 2—red and perturbagen 3—green), can attenuate the damage to
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all three stress types. (B) With a reduced number of available receptorsomes (loss of red), the cell
is unable to mount an effective response to one of the perturbagens (#2—red), thus resulting in an
augmented level of experienced damage. (C) With a narrow range of receptorsomes maintained
by the cell (loss of blue and green), it can only adequately contend with one stressor perturbagen
(#2—red), while significant cellular damage may occur, as the majority of stressor perturbagens
cannot be mitigated.

Game theory is the study of mathematical models of strategic interactions among ra-
tional decision-makers. The principles of game theory are employed to consider the results
of model strategic situations (games) in which the choice of actions of a unitary factor or
agent, and the resultant loss or benefit to that factor/agent, are affected by the choices of
factors/agents [237]. Mathematical models of dynamic systems created using game theo-
rems have been applied to gross biological phenomena such as species competition [238]
and complex physiological processes such as neural network communication [239]. Game
theory was developed to analyze competitions in which one factor (within a network)
achieves success at the detriment of the other factor (zero-sum game). Subsequent modifi-
cations to this theory have been introduced to demonstrate potential collateral benefits of
competition that were not initially apparent [240]. Game theory assists in the deconvolu-
tion of the multiple dynamic equilibria within these games (e.g., physiological or disease
networks). One of the most notable examples of game theory applied to strategic equilibria
in biological systems is the Nash equilibrium or so-called Prisoner’s Dilemma. In an
equilibrium situation, each factor in the game has adopted a strategy that cannot improve
their outcome (optimizing the gain/loss ratio), given the strategic choices of the other
involved factors. Complex physiological systems, such as disease progression networks,
drug-based GPCR-ligand systems and GPCR sensory networks likely consist of multiple
interconnected dynamic equilibria [55]. These equilibria may represent intracellular ion
release dynamics, active state receptor conversion, hypothalamic–pituitary–gonadal axis
hormone feedback loops or protein–protein interactome flexibility [43,55,241].

With respect to the innate protection against aging-associated disease progression,
one important molecular signaling game in this conceptual framework would be a contest
between the cell’s ability to maintain an effective and efficient GPCR stress receptorsome
ensemble and the random and deleterious actions of the cell stressors. In this “game”,
there would be a strong component of move prediction required from both participants
in the game. The two players in this game thus possess opposing goals, i.e., cell de-
struction/damage and cellular protection and eventual survival. As we have described
before—akin to the opening gambits in chess—it is often an effective strategy to attack the
opponent in a manner that is flexible and adaptable to change and reattack in a different
manner. This flexibility is especially important for the GPCR players, as their responses will
always tend to occur with a distinct time disadvantage compared to the stressors. This hy-
pothetical situation highlights the importance of the capacity of the GPCR sensory network
to be able to rapidly sense the onset of potential stressors as soon as possible. Here, it may
be conceivable that the transcriptional machinery (linked tightly to non-G protein GPCR-
signaling systems [45,242]) may form part of this sensory system, as it possesses a nuanced
temporal response process that is more rapid than the primary protein turnover. In this
scenario, therefore, the cell system faces a receptor dilemma in which, to gain supremacy in
the cell survival game, the cells’ gambits need to be more likely to win than not. In addition
to these simple cell survival games, it is also likely that such GPCR-based sensory and
response networks also participate in game-related activity in the scenarios of stem cell
fate decision, metabolic fuel source selection or asymmetric cargo division [66,243–245].
Given the success of multicellular life, it is evident that, before the onset of significant
age-related pathologies (before the previously mentioned metabolic inflexion [162,163]),
the stress response player tends to be successful. It is interesting to note, of course, that,
with advancing age, there is a clear alteration of GIT2 expression/functionality that may
demonstrate that, indeed, this is one of the key pieces deployed in the survival gambit by
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cells [116]. Hence, following the metabolic aging inflexion, the expression of this factor
may become less than optimal [66,76,246,247] due to rises in the complexities of attacking
moves made by the stress factors player.

As GPCR systems comprised of ligands (or stressful stimuli), receptors and transduc-
tion systems attempt to control the physiological homeostasis/allostasis, the components
of this receptor system itself are also likely to compete to maintain, for example, the neuro-
transmission, endocrine axes and sensory perceptive mechanisms. Hence, we are faced
with the concept of games within games, which is reminiscent of the concept of persistent
homology within biological network structures [83]. Thus, systemic GPCR regulatory
control over both global and cellular homeostasis is a process that is innate and vital for
longevity. In this sense, a pertinent goal for effective therapeutic remediation is the support
of these innate control processes. Novel therapies therefore should be designed to mimic
the endogenous pattern of innate GPCR control over cellular homeostatic networks. To this
end, recent research has applied game theory protocols to the network theory to accelerate
the creation of so-called precision medicines [248]. Biane and coworkers developed a
workflow (combining game theory and Boolean network dynamics) described as a network
action game that was employed to advise the optimal drug selection. The decision-making
process (for the modulation of breast cancer signaling) was modeled using game theory
that defined the drug selection process among possible alternates, while Boolean networks
were used to assess the interplay between the disease and drug actions on the patient
homeostatic molecular system.

The actions/strategies of the disease and drugs are often focused on edge (node-to-
node connector) alterations of the specific protein–protein interactome(s). The ability to
create precision medicines for a specific purpose is strongly dependent on the discovery of
refined molecular signaling paradigms that selectively describe the most effective remedia-
tion route through the disease network. Farahmand et al. recently aimed to identify the
crucial subnetworks within breast cancer signaling activity using a novel game theoretic
approach (GTA) that integrated the use of a genome-wide expression profile and protein–
protein interaction networks [249]. This approach was able to identify novel and robust
metastatic markers, reveal new candidate genes for cancer susceptibility and engendered a
greater feature classification performance compared to standard discriminatory models.
It is also important to note that game theory approaches have also shown promise in
identifying optimal peptidergic drug-like molecules with anticancer activity [250]. CGR
(chaos game representation) is a method of converting a long one-dimensional sequence,
e.g., text or genetic sequences, into a graphical form. CGR represents the application of
nonrandom input to an iterated function system [251]. CGR has been applied (in com-
bination with machine learning approaches such as support vector machines and deep
learning) to the investigation of proteomic/peptidergic sequence analyses [250,252]. Ge
and coworkers (2019) developed an advanced form of CGR (generalized chaos game repre-
sentation: GCGR) to achieve a significantly higher prediction performance for the efficacy
of anticancer peptide agents using public chemoinformatic databases [250]. Given these
advances in game theory-based therapeutic derivation, it is evident that the application of
this form of mathematical analyses has a burgeoning relevance to molecular biology and
GPCR biology especially.

2.2. Intersection of Systemic GPCR Pharmacology with Complex Systems

The intelligent combination of multilayered integration of high-dimensionality data
streams (metabolomic, transcriptomic, proteomic or epigenomic studies) is currently the
optimal mechanistic way to appreciate both complex physiological systems (e.g., stress
responses and aging) and GPCR-based drug responses [37,84,107,253]. There actually may
be no need to increase the volume or sensitivity of data collecting systems, given our current
ability to speed up drug discoveries using novel retrieval techniques to find previously
cryptic data connections [47,97,247]. With the current state of knowledge in biomedical
science about the complexity of systemic disease and drug responses [44,57,83,254–262], it
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is clear that therapeutic interdiction at the system level offers the best chance to combat
complex and widespread diseases such as cancer, cardiovascular disease or type II diabetes
mellitus (T2DM). While comprehensive high-dimensionality assessments of the complexity
of the physiological/pharmacological responses have been proven to be tremendously
useful, they often represent a static impression of the underlying biology, omitting the
vital temporal component of complex systems [263–265]. This static network biology does
not fit well with the fact that age-related disorders progressively grow and develop over
a long timeframe. Besides that, this static approach does not intersect with the dynamic
processes of therapeutic intervention. Refining and optimizing innovative therapies thus
require a dynamic systems-based understanding of an individual’s underlying disease
status and the mechanistic pathway of the administered drug. Therefore, for the most
effective investigation of drug actions, precise temporal molecular profiles of systemic
physiological activity are needed. This approach should employ an integrated pipeline
that combines experiments and computational models to provide insight into how GPCR-
associated stress sensor- and disease-related systems are organized through time and how
this higher degree of organization leads to a functional intersection between the therapies
and disease [107,266,267]. The standard biochemical estimates of the functionality of GPCR-
based therapeutics typically focus on the atomic (e.g., calcium mobilization assay screening)
and molecular scales (e.g., cAMP accumulation assays) in contrast to the physiology and
pharmacology, which traditionally focus on the dynamic tissue/organ-level functions (e.g.,
plasma cortisol levels or brachial blood pressure regulation) and, more recently, on omic-
related studies, (e.g., proteomic, transcriptomic, metabolomic and epigenetic assessments
of drug/disease functions). The essence of modern drug design should consider how
receptors sense, regulate and control the progression of age-related disorders. This pipeline
should therefore aim to effectively condense data from these diverse data streams to
contend with the multilevel and dynamic nature of the disease and drug effect process.

Our current scientific ability to comprehend diseases at the system level requires the
cognizance of drug discovery and development ventures that consider how specific agents
can act across multiple functional networks at several dimensional states. As a result,
novel GPCR-based drug discovery methods can be thought of as a network-to-network
complementary matching process via which investigators are able to develop network-
level pharmacological interventions, i.e., disease sensation and regulation to therapeutic
matching [44,45,83,256,261,262,268]. In this context, a pertinent challenge forms: How
many disease indices/outcomes must be controlled by the desired therapeutic to exert the
optimal therapeutic effect with the least number of off-target actions? Using therapeutic
agents that modulate the network in a subtle way might be useful to achieve the therapeutic
goals, since all complex systems aim to stabilize themselves to prevent stress-inducing
perturbations effectively disrupting the overall status of the network and thus generating a
full disease phenotype. It is reasonable to contend that perhaps the simplest mechanism
to achieve this would involve the coopting of the endogenous stress-responsive network
communication systems of the body. This somatic communication system is required to
allow communication between human cells but, also, between the cells and their temporally
changing molecular environment. As the physiological time progresses, further levels of
biochemical entropy increase, resulting in a natural degradation process that is expressed as
pathological aging. The degree and rate of time-dependent degradation closely controls the
development of the molecular signatures of the disease. This communication necessitates
a molecular framework but, also, a mechanism for transmitting information across the
cell membrane from the outside to the interior environment of the cell, of which the
transmembrane heptahelical GPCR is possibly the most therapeutically relevant [1]. GPCRs
facilitate communication between cells across long distances in the body, allowing for
true system-level actions [6,8,269–272] and still represent the largest family of targets for
the currently approved drugs [1,3,4]. In recent years, this vital long-distance regulatory
communication across multiple physical/tissue and pharmacological axes [5] has been
shown to not be the only physiological regulatory network of GPCRs. Hence, this somatic
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system is reproduced at the single-cell level—with communications being focused on
coherent organelle crosstalk—by ensembles of GPCRs focused into groups that prioritize
stress responses that can then be coopted to regulate the aging/disease network [2,76].

2.3. G Protein-Coupled Receptors as System-Level Regulators

GPCRs create intricate communication networks for an incredibly broad range of
endogenous physiological stimuli. Thus, GPCRs represent effective sensors for subatomic
particles like photons (rhodopsin [273]), atomic elements (calcium-sensing receptors [274]),
small metabolites (succinate [275]), small molecule neurotransmitters (dopamine [276]), neu-
ropeptide transmitters (tachykinins [28]), large glycoprotein hormones (thyrotropin [277])
and even animal-based toxins ((alpha-latrotoxins [278]). This GPCR sensory network there-
fore links stimuli sensations to alterations in the signaling activity via G proteins. In recent
years, however, it has also been clear that GPCRs (through alternate signaling mechanisms
outside specific G protein activity) also link stimuli sensations to intracellular protein
expression patterns [45,76]. These distinct and multiple downstream signaling modes of
GPCRs allow for the future derivation of a multiplicity of signal-selective therapies [43,279].

Given the almost ubiquitous nature of GPCRs and their functional intersections with
nearly all physiological processes, it is therefore also conceivable that GPCRs can play a role
in almost all drug-related mechanisms [280–283]. GPCR modulators can thus be designed
to act in a synergistic manner with both large signaling networks across the body, as well as
within the intracellular signaling/sensory networks. These network-level GPCR interven-
tion strategies can then be combined with other information fluxes to produce suitable and
efficient beneficial modifications of pathophysiological processes [5,133,200,242,284–286].
These concepts pave the way to the development of GPCR modulators that act in an
endogenous pathway synergistic manner that will (i) be enhanced through the natural
systemic reinforcement of endogenous axis signaling and (ii) engender only a minimal
level of off-target collateral effects, as the process that is being regulated represents an
evolutionarily conserved signaling axis. Therapeutic development approaches focusing on
intracellular GPCR-mediated stress response network control could aid in dealing with
the enormous complexity of age-dependent disease generation mechanisms, therefore
enabling the faster discovery of novel drug classes that act in concert with the body’s
natural damage defense and repair processes.

3. Pharmacological Interventions within Complex Disease Systems

A core concept within the platform of the coordinated cellular GPCR-signaling activity
is the need to consider that nearly all signaling events—and proteins—are, in some relevant
manner, interconnected. This level of near-ultimate connectivity requires us to appreciate
how a network approach relates to the description and definition of the plastic interface
between health and disease. One vital aspect of this posit is the need to consider how
complex systems are (i) created to maintain balance and (ii) then are perturbed to mediate
deleterious disease trajectories. Thus, we can consider the state of cellular health to be
the goal of the cellular stress response network that controls the sensorial and dynamic
receptor-based signaling components at the single-cell level.

During health, keystone factors such as GIT2 [116] will strive to maintain long-term
stress resistance functions. Such factors likely control more dynamic and plastic regions
(dynamic vertices) of the network that are sensitive to random stress perturbations. As
their name implies, these network dynamic vertices can likely rapidly modulate their
edge (i.e., protein–protein) interactions to counteract the stressful perturbation [81]. This
concept is relatively well-known in both basic chemistry (Le Chatelier Principle) and in
simplistic neuroendocrine feedback loops (e.g., activin/inhibin system in the hypothalamic–
pituitary–gonadal axis [287]). However, its application in single-cell scenarios across a
global lifespan introduces several important novel issues associated with receptor-based
feedback systems. The concept of drug resistance is clear and well-known, i.e., repeated
exposure to external therapeutics can rapidly induce tolerance and resistance [288–291]. In
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these circumstances, feedback within a specific system is controlled at a rapid level through
receptor tachyphylaxis that may involve desensitization, alterations in receptor expression
or even ligand sensitivity. With a protracted level of exposure to continuous treatment,
these rapid alterations are then tolerated and incorporated into the physiological network,
thus regaining stability in the presence of this consistent perturbagen [292–295]. Given this,
it is likely that subcellular GPCR-based homeostatic systems are maintained in a constantly
sensitive manner to both short-term and long-term perturbations and, in each case, aim
to achieve balance through sensation and adaptive/protective responses. Endogenous
insults such as reactive oxygen species (ROS) will likely occur sporadically and transiently
over the cell’s lifespan. Repeated exposure to such an insult over a long-term scale may
result in the subcellular GPCR stress response network becoming tolerant to the presence
of stress/damage and then eventually try and maintain the stability of that damaged
network. In this sense, the cell will then become adjusted to disease/pathobiology and no
longer consider it as aberrant and distinct from the normal healthy state. The transition
from healthy cells to disease ones is thus likely to coincide perhaps with the metabolic
aging inflexion point [162,163]. Therefore, disease progression (which may indeed have a
common route in pathological aging [116]) may be a function of subcellular stress network
sensitivity, flexibility and stability. Considering this hypothesis, it would be important to
reevaluate how we can classify and identify what constitutes a healthy and a pathological
network status within a cell. To this end, biomarkers of network efficiency or cellular
health need to be developed—researchers have already begun this process, especially with
respect to aging and epigenetic control [66,296,297]. Hence, with respect to this novel form
of disease trajectory modulation, it is important to appreciate and dissect how the network
complexity and plasticity can be associated with such imbalance effects. In the following
sections, we shall discuss how GPCR-based sensory systems can be adapted to regulate
such higher-order network functions.

3.1. Homeostasis and Allostasis within Networks—The Role of GPCRs

As we have discussed previously, the GPCR sensory network likely can control
both long-term and short-term stressful events at the single-cell level across the lifespan.
Complex biological events, at the network level, will therefore demonstrate two distinct
types of activity, i.e., homeostasis (long-term global regulation) and allostasis (short-term
local network maintenance, e.g., dynamic vertex rearrangement). Multiple concepts of
allostasis were derived from the work of Sterling and Eyer (1988) [298]. They defined
allostasis using the following description: an organism must vary all the parameters of
its internal milieu and match them appropriately to environmental demands. For the
context of health network disruption, characterized by the persistence of perceived (e.g.,
disruption of effective glucose metabolism) or actual (oxygen radical molecular damage)
insults, the cellular stress response network needs to maintain consistent vigilance and self-
checking activity. This ongoing activity can often involve considerable molecular energetic
behaviors and, thus, present a significant burden itself, e.g., elevation of the default network
activity in the brain has been associated with increased risks for neurodegeneration [299].
Hence, the dynamic plasticity of physiological networks, often described as the process
of allostasis, facilitates the maintenance of global longer-term homeostasis. As we have
previously discussed, potential failures in this process can represent the first foothold of
disease patterns within the network [107,300–302].

In situations of cellular strain and stress, molecular allostasis likely ensures stability
through perturbagen-induced changes by modifying the setpoints and parameters of the
feedback control [303,304]. Indeed, such functional predictive stress response behaviors
have also been recently shown with respect to lifespan regulation and oxidative burdens
in a gender-distinct manner [247]. Despite being a basically beneficial reaction, allostasis
may also expose the cell to a new kind of strain referred to as an allostatic load, which may
result in an even critical loss of cellular viability. To help understand how such burdens
of anticipatory allostasis can perturb stress response networks, a recent new addition
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to Sterling’s original concepts was introduced by Lee (2019) [305], i.e., the Paradigm of
Allostatic Orchestration (PAO). The PAO represents a conceptual understanding of how
neural (brain) inputs into the homeostatic network can facilitate the creation of an active
allostatic state. In a similar vein, the concept of interoception conceptualizes the sequelae
of the reverse sequelae of this information stream, i.e., the psychosocial/cognitive effects
of physiological homeostasis [306,307].

Lee (2019) proposed that an allostatic state represents a neutrally focused monitoring
mechanism that, upon global network integration, generates the entity of somatic home-
ostasis [305]. The physiological nature and efficiency of the somatic allostatic state has
been proposed to underpin multiple disorders associated with ongoing stressful pertur-
bations/insults, such as chronic pain [308], immune and thyroid dysfunction [309,310],
irritable bowel syndrome [311] and stimulant addiction [312]. The allostatic state proposed
in the PAO does not apply to pathology or disease alone, nor does it suggest that control-
ling the neural effects (or stressors) are the sole cause of any disorder; rather, it serves to
reinforce (like interoception) that there is always a bidirectional influence between any
given system expression and the functionality of the network-controlling features. The PAO
also addresses the generation of the potential damage-generating locus within systemic
networks, i.e., allostatic load or burden. The need to maintain this network surveillance is
likely to generate a significant stress upon any cellular health network and, thus, could
be key to its gradual dysfunction over the lifespan. Hence, this novel concept within the
PAO is optimal anticipatory oscillations. This aspect of the PAO is effectively the same as
Sterling’s definition of health as the optimal predictive fluctuation. Optimal anticipatory
oscillation builds on an appreciation of the network controlling systems as “prediction
machines” [313,314], and reflects the capacity for matching between operations in the
cellular network with the typically oscillatory features of the cells in the context of the
whole organism in ways that reduce the limitations, enhance resilience or expand the range
of possible functionalities or opportunities. For example, with respect to cardiovascular
activity, optimal anticipatory oscillation may be demonstrated as the heart rate variability,
indicating a capacity for rapid recalibrations of the cardiac output in context-sensitive ways
that result in a decreased risk of morbidity or mortality [315,316].

In a similar manner, recent research has also shown that, with continuous glucose
monitoring (CGM), humans often display considerable diversity in their ability to modulate
elevations in postprandial glucose elevations [317]. These diverse gluco types shown by
the patients may also represent distinct protective or resilient states of the patients to the
systemic glucose perturbations. Innate optimal anticipatory oscillation may be associated
with characteristic sleep patterns [318], motor behaviors or sensory acuity [319] or positive
cognitive appraisals [320]. It is interesting to note that circadian clock regulation likely
underpins many of these network influencers, which again reinforces the importance of
molecular aging pathways in disease etiology, as both circadian clock proteins and DNA
damage repair (DDR) proteins have coevolved [83,321]. The synergy between these two
short-loop allostatic systems (clock and DDR) likely provides a form of cellular damage
feedback to time perception that can then further inform the allostatic control of the
health network. In this specific example, a molecular characterization of the allostatic
state facets of optimal anticipatory oscillation (that provides a positive health benefit
across the organ systems) may lead to the creation of nuanced therapeutics that reduce
the prevalence and incidence of morbidity and confer systemic allostatic resilience. To
this end, our recent work linking the aging controller GIT2 to systemic cellular resilience
via its coordination of DDR, oxidative stress resistance and circadian clock control via a
functional engagement of the RXFP3 receptor provides an interesting novel route of system-
level drug developments [76,133]. With regards to the RXFP3-GIT2 system, it appears
that this allostatic sensory network maintains an observation of potential stress/damage
through a process balancing energy source usage, oxidative radical management and DNA
repair [66,76,217]. Such investigations indeed may demonstrate the future benefits of
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therapeutics targeted towards the points of allostatic control and integration within the
health network as opposed to controllers of overt disease symptoms.

3.2. Disease Signatures at the Subcellular Level

The ability to identify and classify diseases at the molecular/cellular level before the
development of perceptible symptoms will offer an important locus for novel prophylactic
therapeutics. Cellular health and dysfunction can be considered as simply different net-
work states. Hence, an agent that could alter a disease network signature at an early stage
may potentially be described as a disease trajectory modulator, as opposed to remedial
therapeutics. For the future development of these trajectory modulators, it is of the utmost
importance that effective technologies for the identification and characterization of such
molecular disease signatures at the single-cell level are developed. The early-stage identifi-
cation of characteristic disease signatures is important, because, in these early stages, there
will probably be minimal cellular pathology masking the molecular signature, whereas,
in later stages, many network perturbations may be due to cellular degradation rather
than disease etiology. In addition, network perturbations at an early stage are likely to be
of smaller magnitude, potentially facilitating their reversal with only a modest efficacy
of a targeted therapeutic agent. The persistent homology of the stress response network
structure is likely to be preserved across multiple scales of magnitude. Therefore, tech-
niques such as topological data analysis (TDA) [83,84,322] can be used to capture the
important characteristics of a mature and complex disease already at an early temporal
stage when only small-magnitude perturbations may exist. The input of high-quality high-
dimensionality data is crucial for dimensional condensation approaches such as TDA [247],
while the effective integration of such data will be necessary, as cellular dysfunction and
disease signatures are likely to occur in a multiscale manner [107]. Recently, diagnostic
and therapeutic molecular disease signatures for many different conditions have been
proposed, e.g., diabetes mellitus [317], sporadic inclusion body myositis [323], breast and
prostate cancer [324,325], pathological aging [179,326] and immunosenescence [327,328].
The capacity to accurately measure specific cellular dysfunctions and predict the future phe-
notype and outcomes of various treatment options are necessary for the potential success
of tailoring therapies for individual patients with their unique molecular disease net-
works [84]. Molecular disease signatures can involve contributions of many genes/proteins
and may be extremely complex even at the early stages. Various studies have reported
important developments in informatics deconvolution approaches related to the derivation
of multifactorial disease signatures [329–331]. Given that individual cellular responses to
imping stressors will subsequently spread to neighboring cells [332,333], it is evident that a
more nuanced understanding of how disease signatures are created from single-cellular
perturbation responses will be vital for the future development of trajectory modifiers for
aging-associated disorders.

3.3. Precision GPCR Interventions for Complex Systems

Traditionally, pharmacological compounds are identified and prioritized based on
their biological effects through modulation of the activity of a unitary target, e.g., a specific
enzyme, the gating of an ion channel or the stimulation of a certain receptor. Such mono-
lithic target focusing does not consider the likelihood that cellular and somatic functions
are the result of a myriad of signaling systems that are connected to each other. The routine
implementation of high-dimensionality data acquisition and analysis has now made it
possible to not only understand the complexity of systemic diseases but, also, to under-
stand the possibility of interindividual variations in the etiology of diseases, which can
be specifically addressed with what is termed precision, personalized or individualized
medicines. Precision medicines [107,334–336] possess specific efficacy profiles, which are
selected to match best with the specific disease profile of the patient. In this emerging
medical model, computational medicine plays an important role for assisting physicians
in their decision-making [337] and stratification [323] by combining data analysis and
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systems biology modeling. In the field of precision medicine, the assessment of a drug
efficiency necessitates the ability to identify the various disturbances in a healthy system
network at both the somatic and single-cellular level that are caused by a disease process.
In previous sections, we discussed that, with respect to subcellular stress responses, GPCRs
are among the most tractable therapeutic systems to control individual variations in these
resilience networks. Therefore, in the context of precision medicine, we should consider
which strategies to implement for drug development: the highly inefficient drug design
for individual patients or the drug design for groups of patients clustered together in a
way that is already tractable to GPCR therapy [338]. The curation of known signaling
paradigms and their enrichments across the specific networks of diverse patient groups can
help to achieve this second option. First, the high-dimensionality profiling of individual
patients is crucial. Specific GPCR-sensitive signaling cascades can then be extracted out
of these datasets [57]. We previously mentioned a problem with such a strategy, namely
the diversity of signaling at the level of a single GPCR unit due to their pluri-dimensional
signaling profiles. Therefore, it can be argued that distinct patterns of GPCR adaptor
coupling—engineered to create a diverse response range to cellular stressors—could be
associated with different subforms of diseases or even different populations of patients.
The extensive acquisition of high-dimensionality data from numerous patients will be nec-
essary to confirm this. Existing GPCR-based therapies have already shown a clear capacity
to facilitate multiple drug interventions for distinct patient populations via their ability
to differentially control distinct patterns of downstream signaling. GPCR-based agents
exhibiting selectivity for signaling via GIT2 [76], NHERF [339] or β-arrestin [29,44,57] may
prove differently effective in various patient groups of which the pathology is related to
such signaling dissimilarities. A single GPCR target can functionally interact with multiple
downstream signaling adaptors within an individual in many distinct cell background
situations. Therefore, these transmembrane receptors provide a desirable opportunity to
produce highly tailored efficacy profiles specific for processes, tissues, patients and disease
clusters [23,43,73,340]. Recently, it has also been shown that the regions encoding GPCRs
are often specific loci for disease initiation via somatic mutations that will probably also
exist in a patient cluster-based manner [341–345]. These features of GPCR biology should
therefore drive the pioneering of GPCR-based therapies with pluri-dimensional efficacy,
both within a classical cell surface and subcellular stress-responsive manner, as perhaps
one of the most convenient and potentially effective forms of precision medicine [23,44,45].

4. Summary

It is clear from multiple lines of evidence that the molecular signatures of aging, at the
single-cell level, are some of the most potent triggers of diseases (cancer, T2DM, chronic
kidney disease, chronic obstructive pulmonary disease and cardiomyopathy) that result in
nearly 80% of global mortality [346–348]. Here, we have discussed how, in addition to their
role as cell surface sensors of soluble factors, subcellular functions of GPCRs associated
with stress responses likely control the connectivity between classical cellular perturbations
and the incipient molecular signatures of diseases. This concept suggests the presence
of a novel form of a pharmacological system that represents a highly nuanced functional
interface between healthy stress response networks and pathological disease-generating
molecular signatures.

While this current posit is in a relatively early conceptual stage, it is important how-
ever to develop testable and quantifiable frameworks that can be employed in the future
to allow the application of standard statistical methods to refine the therapeutic develop-
ments. In this context, it may be useful to develop a workable GPCR meta-information
environment. Hence, multiple diverse streams of GPCR data, e.g., quantified receptor
expression (mass spectral counting), adaptor protein expression, stoichiometric interactome
constituents, transcriptomics and metabolic products, can be simultaneously assessed to
create a single gestalt readout for comparative studies. This GPCR meta-information can
also be assessed through the lens of subcellular compartments or even distinct intracellular
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liquid phases [349]. This level of refinement will hopefully allow some degree of nuance
with respect to the stratification of distinct receptorsome ensembles. This quantitative data
can then be subject to a classical signaling pathway analysis, as well as a natural language
processing concept investigation, to yield functionally relevant profiles in these different
compartments in response to aging-linked stress perturbations. To contend with this con-
siderable corpus of data, these diverse analytical streams can be hyper-annotated to the
surface of TDA structures that allow the investigation of data/text/pathway correlations
in both small local structural features as well as at a higher data structure level [83,322,324].
With consistent applications of this potential pipeline to distinct pathophysiological sce-
narios, the quantitative analyses of these GPCR sensory systems will hopefully become a
routine component of therapeutic development strategies.

With the enhanced definition of multiple distinct GPCR signaling profiles, it is hoped
that this will enable researchers to create medications that possess specific efficacy pro-
files tailored to personalized disease states. To engineer a feasible future application of
high-dimensionality data-based precision medicines, it is first crucial for the therapeutic
designer to generate an in-depth molecular characterization of the disease target itself. This
appreciation can first take the form of a data integration point, e.g., using a topological
composite mechanism such as Plurigon or Iris [322,324]. The overlaying of multi-omic
disease characteristics upon an annotated data structure [107] will create a testing space
for the interrogation of this construct with similar analytics based upon the therapeutic
drug response signatures generated using either previously existing data (GEO signatures—
https://www.ncbi.nlm.nih.gov/geo/, PRIDE—https://www.ebi.ac.uk/pride/ or the Hu-
man Metabolome database—https://hmdb.ca/, accessed on 24 November 2021) or with de
novo laboratory-generated high-dimensionality drug response data. This intense level of
data correlation will help highlight the most tractable points of molecular intervention of
the prioritized therapeutics for a specific disease indication. Given the potential efficacy
of this process, it is, however, critical that this convoluted process be refined to allow for
rapid clinician-based patient stratification of the disease and, then, for efficient therapeutic
selection to most effectively treat a specific patient group. From the multiplexed disease
signatures, the most reliable disease-characterizing and drug-tractable protein groups are
likely to form a specific subnetwork. These factors can then be rapidly screened for using
patient plasma or circulating peripheral blood mononuclear cells applied to dedicated
glass microplates spotted with antibodies for high-priority disease-characterizing and
therapeutically tractable protein sets. This data will then be able to determine the pres-
ence and relative severity level of the specific disease for which the antibody chip was
created. The specific protein expression patterns, potentially 50–100 proteins, will then be
cross-matched with the previously mentioned high-dimensionality drug signatures that
have been pre-assessed against the specific disease paradigm. This process will therefore
help prioritize what potential intervention possesses the greatest capacity to remedially
regulate the disease signatures identified from the initial patient materials. This overall
paradigm therefore uses rapid database searching and prioritizing to both refine the disease
signature presence/severity and then suggest to the clinician what type of intervention
may be best-suited to the aspects of the disease network that are the most prominent in a
specific patient. In this manner, the precision of the intervention is based upon the actual
molecular profile of the patient. Thus, the delivery of precision medicine here is based
upon the recognition that both the disease and therapeutic response exit ostensibly at a
high-dimensional level of complexity.

Our proposed GPCR stress response network will likely serve to control the allostatic
balance first at the single-cellular level and then across multiple cell groups, tissues and,
ultimately, at the whole organismal level. In this sense, this concept presents a new
therapeutic realm to possibly control the development of diseases at the single-cell level
many decades before the generation of clinically identifiable symptoms. The ultimate
capacity to understand and regulate this system could be paradigm-shifting from a global
health perspective.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/pride/
https://hmdb.ca/
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