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Abstract: Combination therapy is becoming imperative for the treatment of many cancers, as it
provides a higher chance of avoiding drug resistance and tumor recurrence. Among the resistance-
conferring factors, the tumor microenvironment plays a major role, and therefore, represents a viable
target for adjuvant therapeutic agents. Thus, hypoxia and extracellular acidosis are known to select
for the most aggressive and resilient phenotypes and build poorly responsive regions of the tumor
mass. Carbonic anhydrase (CA, EC 4.2.1.1) IX isoform is a surficial zinc metalloenzyme that is
proven to play a central role in regulating intra and extracellular pH, as well as modulating invasion
and metastasis processes. With its strong association and distribution in various tumor tissues and
well-known druggability, this protein holds great promise as a target to pharmacologically interfere
with the tumor microenvironment by using drug combination regimens. In the present review,
we summarized recent publications revealing the potential of CA IX inhibitors to intensify cancer
chemotherapy and overcome drug resistance in preclinical settings.

Keywords: carbonic anhydrase IX; small-molecule inhibitors; solid tumors; tumor hypoxia; tumor
acidosis combination cancer therapy; adjuvant agents

1. Introduction

Increasingly prevalent cancer treatment failure largely stems from anticancer drug
resistance in tumors and represents one of the major challenges to the healthcare sys-
tem in the XXI century. Despite the prominent development of novel approaches in the
fields of surgery, radiation therapy, and laser therapy, it is a chemotherapeutical treatment
that remains the main tool for the management of advanced-stage tumors [1]. Therefore,
there is an urgent need for innovations overcoming the main causes of drug resistance,
which include drug inactivation, drug target alteration, drug efflux, DNA damage repair,
cell death inhibition, epithelial-mesenchymal transition, and inherent tumor cell hetero-
geneity [2]. While drug target alteration and tumor cell heterogeneity are still extremely
challenging to combat, microenvironment-based tumor protective mechanisms appear
more tractable in terms of pharmacological targeting [3]. Particularly, poor oxygen supply
and hypoxia-related acidosis are widespread phenotypic characteristics of many malig-
nancies. Furthermore, these two features are often associated with poor prognosis as
they select for highly aggressive, stem cell-like phenotypes that are non-responsive to the
hitherto efficient treatments [4]. This results in a rapid tumor recurrence and threatens
patients’ survival [5]. In light of these facts, combining anticancer drugs with adjuvant
agents targeting tumor protective mechanisms is turning into a widely acknowledged
approach and treatment standard. It is noteworthy that hypoxia-related acidosis attracts
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immediate attention in this context, contributing to drug inactivation, as well as metabolic
adaptations in highly malignant cell phenotypes. Moreover, beyond tumor survival, hy-
poxia and acidosis largely enable cancer cell invasion, migration, and metastasis, which
drastically complicates tumor management, and thus, therapeutic interventions disrupting
these mechanisms are of great interest [6,7]. Noteworthy, due to its cancer-specific tissue
localization, carbonic anhydrase IX (CA IX), a pH-regulating enzyme overexpressed in hy-
poxic niches, holds great promise as a targetable protein associated with highly malignant
and stem cell-like cancer phenotypes [8].

Carbonic anhydrases (CA) are ubiquitous zinc metalloenzymes that catalyze CO2–HCO3
−

interconversion, therefore, governing a major buffering system across cell compartments
and in extracellular space. While twelve catalytically active isoforms are present in human
tissues, it is the membrane-anchored CA IX isoform that displayed a clear association
with tumor cells, being overexpressed in hypoxia regions where it has a major impact on
intracellular pH (pHi)/extracellular pH (pHe) regulation [8–10].

Interestingly, since the active sites are highly conservative among the isozymes, devel-
oping type-specific CA inhibitors (CAIs) remains a challenging task. In fact, sulfonamide-
based drugs, which are used in the clinic as diuretics and glaucoma treatments (where
cytosolic CA II is a main pharmacological target), are generally pan-isotype CA inhibitors.
On the other hand, highly potent and CA-IX-selective small molecules emerged in the last
decades, with SLC-0111 recently progressing to Phase Ib/II clinical study, as well as its
sulfamate analogs with favorable inhibitory profiles (for CA inhibitors discussed in the
present see Table 1) [11,12].

Table 1. CA inhibitory agents evaluated for combination cancer treatment, their Ki values against therapeutically relevant
enzyme isoforms and general information on the current status.

Drug/Drug
Candidate Chemical Structure Ki (nM) Current Status Ref

Acetazolamide (AZ)
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overexpressed [18]. Noticeably, CA IX-targeting molecules recommended themselves for
radiotherapy and transonic applications [19–23].

CA IX overexpression in cancer cells is associated with hypoxia and poor vasculariza-
tion of tumor mass [24]. In such conditions, glycolytic metabolic reprogramming occurs,
implying an accumulation of acidic species, such as lactate, and a significant decrease of
pHi [25]. Hypoxia and accompanying intracellular space acidification activate the HIF-1α
(hypoxia induced factor 1α) pathway leading to the upregulation of hypoxia response
element (HRE) and CA IX expression [26]. In turn, CA IX interferes with membrane trans-
port proteins, thus alleviating the intracellular acidosis and allowing for acidification of
extracellular medium [27]. Therefore, emerging tumor acidosis is a crucial feature of the
tumor microenvironment, which contributes significantly to the poor therapeutic outcomes
and drug resistance [28]. Particularly, the following effects have been described:

• decreasing drug uptake in tumor cells due to the altered protonation state;
• selecting for highly aggressive and drug-resistant phenotypes possessing stem cell

characteristics, and harboring protumorigenic mutations associated with poor treat-
ment response;

• enhancing invasion and metastatic processes through apoptosis induction in surround-
ing cells, elevated secretion of proteinases, and the disruption of E-cadherin-mediated
cell adhesion;

• inducing angiogenesis via activating VEGF (vascular endothelial growth factor) production;
• decreasing immune infiltration of tumors.

In this context, multiple roles of CA IX in tumor survival and development have been
identified in recent decades, and these aspects have been reviewed elsewhere [8,29].

An increasing number of reports currently implicates the role of CA IX blocking in
cancer cells in intensifying standard chemotherapy of solid tumors, as well as overcoming
ubiquitously encountered acidosis-promoted drug resistance. Furthermore, impeding
hypoxia-driven glycolytic metabolism through blocking pHi alkalization in highly aggres-
sive phenotypes is considered a powerful tool for preventing tumor cell invasion and
metastasis [30]. Despite the great promise held by the drug combinations involving CA
IX inhibitors, the number of in-depth studies on such treatments remains very limited, as
highly justified models of the tumor microenvironment are required to perform conclusive
investigations.

Herein we summarized recent research publications implicating malignant cells’ ex-
posure to combinations of CAIs with either conventional cytostatic agents or targeted
anticancer drugs. Concise mechanistic context and essential experimental details are pro-
vided where possible. Thus, the present review serves to increase researchers’ interest in
CA IX inhibitors as anticancer adjuvant agents and highlights the lessons learned from the
recently reported preclinical studies.

2. Carbonic Anhydrase Inhibitors/Anticancer Agent Combinations
2.1. Acetazolamide in Combination with Conventional Cytostatic Agents
2.1.1. Acetazolamide and Doxorubicin

Cellular uptake of a wide range of conventional cytostatic agents can be hindered due
to the shifts in tumor microenvironment characteristics, such as poor perfusion, hypoxia,
and/or acidity [31]. The widely acknowledged ion-trapping model predicts that the
decrease in extracellular pH, which is often encountered in hypoxic regions, prevents
weekly basic drugs from penetrating malignant cells and thus confers regional failure [31].
Inhibition of CA IX isoform on the cellular surface proved to be a viable approach for
affecting extracellular acidification in solid tumors [32]. One of the pioneering attempts
to employ small molecular CA IX blockers to overcome cytostatic resistance in hypoxic
(acidic) regions was made in 2012 by Geiling and colleagues who investigated the combined
effect of CA pan-inhibitor acetazolamide (AZ) and doxorubicin (DOX) [33]. To this end,
the authors used colon carcinoma HT-29 (CA IX rich) and HCT 116 (CA IX poor) cell lines,
as well as MDA-MB-435 human melanoma cells, stably transfected to express empty vector



Int. J. Mol. Sci. 2021, 22, 13405 4 of 31

(EV1) or CA IX (CA9/18) (Figure 1). Interestingly, the treatment with AZ significantly
increased the toxicity of DOX in CA IX-rich cells. Conversely, DOX efficacy was unaffected
by AZ treatment in the cells with low CA IX expression. The authors concluded that the
effect of AZ treatment is largely related to the blocking of CA IX, which is instrumental for
cancer cells to maintain acidic pHe, thus hampering the membrane transport of weakly
basic drugs, including DOX. This point was further supported by the fact that the weakly
acidic drug melphalan exerted reduced toxicity under the same conditions against the CA
IX-rich cell lines (Figure 1) [33].
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2.1.2. Acetazolamide and Sulforaphane

Mokhtari and coworkers reported a series of studies investigating the synergistic
activity of AZ and natural product sulforaphane against bronchial carcinoid cell lines
and their derived mice subcutaneous xenografts [34]. Sulforaphane shows multiple an-
ticancer effects [35–37]. Among others, it selectively activates the nuclear transcription
factor erythroid 2p45 (NF-E2)-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1
(Keap1), which is an essential downstream effector of the PI3K/Akt/mTOR [38,39]. Im-
portantly, overexpression of Nrf2 due to defects in Keap1 was observed in several types
of cancer, where it served as a non-HIF mediated mechanism, promoting tumor cell sur-
vival in hypoxic conditions, including apoptosis inhibition, metabolic reprogramming,
and chemotherapeutic resistance [40]. Finally, sulforaphane has been reported to reduce
the expression of serotonin receptors (5-HT2, 5-HT3) and transporter (SERT) in Caco-2
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cells, which appears relevant with regard to the treatment of hormone-secreting bronchial
carcinoids [41,42].

As unveiled by Mokhtari, combined treatment of NCI-H727 (typical) and NCI-H720
(atypical) lung carcinoid cells with AZ and sulforaphane (SFN) led to a significant reduction
in their viability and clonogenicity, as well as markedly decreased the fraction of invasive
cells compared to the single-agent controls. In addition, a profound drop in the tumor-
derived serotonin has been noticed in vitro. The authors suggested that the observed syn-
ergistic effects could be explained through the inhibition of both MEK/Erk (MAPK/ERK
kinase/ extracellular signal-regulated kinase) and PI3K/Akt (phosphatidylinositol-3 ki-
nase/Akt) pathways, which in turn regulate the expression of CA IX and other HIF-
targeted genes [34]. Furthermore, in H727 and H720 spheroids, the AZ+SFN combination
largely decreased proliferation rates compared to single-agent therapies. Noticeably, when
xenografted into immunocompromised mice, these spheroids still strongly responded to
the combined treatment, and a prominent reduction in tumor growth and gross vasculariza-
tion was observed. Such effect was accompanied by a remarkably decreased expression of
the stemness markers. The in vivo studies also further confirmed the downregulation of the
PI3K/Akt/mTOR (mechanistic target of rapamycin) pathway and downstream effectors,
as well as a more profound perturbation of pH homeostasis in lung cancers under exposure
to AZ+SFN treatment. Moreover, these conditions markedly reduced the 5-HT expression
in both the atypical H720 and typical H727 bronchial carcinoid xenograft, and the highly
aggressive atypical histotype was extremely sensitive to the treatment. Therefore, the
combination AZ+SFN promisingly exerted multiple anticancer agents in different models
of bronchial carcinoid via blocking a range of hypoxia-mediated pro-survival pathways
and 5-HT secretion in bronchial tumors [43].

In 2017, similar experiments with SFN+AZ combination were performed against
HTB-9 and RT112(H) human bladder tumor cell lines and in vivo on the corresponding
xenografts [44]. SFN+AZ treatment produced a substantial decrease in the cancer cell
viability, growth, invasion, clonogenic potential, and apoptosis. In line with these in vitro
results, the drug combination reduced the tumor growth in xenograft-bearing mice. Sub-
sequent biochemical experiments revealed that co-administration of SFN and AZ caused
downregulation of the PI3K/mTOR pathway in bladder tumors. Moreover, the metastatic
burden was significantly decreased in animals, which was associated with decreased ex-
pression of E-cadherin, N-cadherin, and vimentin. Summarized, the joint action of the
drugs against highly aggressive bronchial and bladder cancers was associated with re-
stored pHi and pHe values and a more efficient blockade of PI3K/Akt/mTOR pathway
as compared to single-agent treatment. In addition, the combined treatment enhanced
apoptosis and produced a significant drop in the expression of adhesive molecules and
stemness markers in tumor xenografts, whereas the expression of 5-HT was profoundly
affected in the pulmonary carcinoid (Figure 2).
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2.1.3. Acetazolamide and Cisplatin

Another study involving AZ was reported by Gao in 2018 [45]. In this case, AZ
was combined with an old DNA-alkylating drug cisplatin (CIS) to treat Hep-2 laryngeal
carcinoma cells (Figure 3). The authors showed that the suggested drug combination was
more efficient than single-agent treatment and resulted in decreased levels of Hep-2 cell
viability, proliferation, and metastasis. Meanwhile, elevated expression of p53 and drop in
the Bcl-2/bax ratio corresponded to higher rates of apoptosis in cancer cells. Unexpectedly,
in this study, healthy human umbilical vein endothelial cells (HUVEC) turned out to be
insensitive to both AZ and CIS either in single-agent or combined regimens, yet there are
no evident reasons for such selectivity (at least in the case of cisplatin) (Figure 3) [45].
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2.2. Acetazolamide in Combination with Targeted Anticancer Drugs
2.2.1. Acetazolamide and Rapamycin

The mechanistic target of rapamycin (mTOR) is a serine/threonine-specific protein
kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) [46]. Participat-
ing in multiple signaling pathways by forming mTOR complexes 1 and 2 (mTORC1 and
mTORC2), this protein regulates cell cycle progression, apoptosis, autophagy, proliferation,
and metabolism of tumor cells [47]. Macrolide’s compound rapamycin and its analogs
(also known as rapalogs) represent the first generation mTOR inhibitors [48]. Despite
showing encouraging results in preclinical models as monotherapeutic agents, these drugs
demonstrated limited efficacy in patients as tumor relapse often occurred through resis-
tance formation [49]. In 2016, Faes and coworkers reported that the activity of mTORC1
is mainly restricted to the non-hypoxic tumor compartment, suggesting that there is a
potential for combination treatment involving hypoxia-targeting molecules (Figure 4) [50].
In fact, in vivo experiments on mice injected with colorectal carcinoma HT-29 cells and
murine colon adenocarcinoma MC-38 cells highlighted that mTORC1 hyperactivation
promotes tumor-cell proliferation in normoxia. Contrastingly, in hypoxic areas of the
tumor, a decrease in mTORC1 activity was observed, which abrogated rapamycin anti-
tumor efficacy in these areas. Furthermore, rapamycin treatment increased the hypoxic
tumor compartment compared to controls in both HT-29 tumor xenografts and MC-38
tumor allografts and gave significant rise to CA IX protein expression in these regions.
Based on these findings, the authors subsequently evaluated the joint effect of AZ and
rapamycin in the mouse models [50]. It turned out that both AZ and rapamycin alone
reduced tumor growth; however, the effect was dramatically increased when both agents
were combined. Interestingly, the observed effect was long-lasting, as after three months of
the treatment HT-29 tumor xenografts did not progress. It was additionally demonstrated
that AZ increased tumor necrosis and the number of tumor blood vessels in HT-29 and
MC-38 tumors. Moreover, AZ drastically reduced proliferation in hypoxic, but not in
normoxic tumor regions, whereas the opposite was true for rapamycin. Thus, combined
administration of rapamycin and AZ produced remarkable antiproliferative effects in vivo
in both hypoxic and non-hypoxic compartments (Figure 4) [50].
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2.2.2. Acetazolamide and Bevacizumab

Vaeteewoottacharn and colleagues investigated AZ as an adjuvant agent for the treat-
ment of cholangiocarcinoma, which has a very poor prognosis and a small range of therapy
opportunities [51]. The overexpression of VEGF in tumor tissue gives rise to the use of
VEGF inhibitors for this cancer; however, cancer cells’ adaptation to the treatment resulted
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in limited efficacy in patients [52]. Of note, HIF-1α and CA IX upregulation has been
reported to contribute to the drug resistance against anti-angiogenic therapy [53]. In this
context, Vaeteewoottacharn combined AZ with bevacizumab, a monoclonal antibody that
blocks angiogenesis by inhibiting VEGF to treat cholangiocarcinoma tumors in vivo. De-
spite the fact that bevacizumab (0.1 mg/kg/mouse) effectively inhibited tumor growth,
remarkable overexpression of HIF1α, VEGF, VEGFR1, and CA IX was observed in the
treated tumors (Figure 5). The results, therefore, highlighted the compensative mechanism
of the tumor in response to the VEGF inhibition. Reassuringly, the combination treatment
with AZ produced a more significant reduction in tumor growth and angiogenesis, al-
though the influence of the combined treatment on VEGF and HIF1α pathways remained
uninvestigated (Figure 5) [51].
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2.2.3. Acetazolamide and Imatinib

In 2017, Abd-El Fattah and colleagues combined imatinib (IM) with AZ in attempts
to enhance the cellular uptake of the former weakly basic drug (Figure 6) [54]. IM is a
tyrosine kinase inhibitor capable of blocking tumorigenic and prometastatic kinases Bcr-
ABL, c-Kit, platelet-derived growth factor receptor (PDGFR), and epidermal growth factor
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receptor (EGFR) [55]. Co-administration of AZ led to a significant increase in the uptake of
IM by cells T47D and MCF-7 breast cancer cells. The authors also reported considerable
biochemical alterations in the presence of AZ compared to IM monotherapy. In particular,
they observed suppression of HIF-1α mRNA, accompanied by a decrease in VEGF secretion,
inhibition of NO release, a profound suppression of matrix metalloproteinases MMP-2 and
9 and phospho-p38 MAPK (mitogen activated protein kinase) and rise in tissue inhibitor
of metalloprotease-1, 2 (TIMP-1, 2) levels. These results highlighted the potential of the
drug combination in question to block angiogenesis and metastatic potential in solid
tumors by affecting multiple signaling pathways. Subsequently, in vivo experiments were
performed by using Ehrlich ascites carcinoma (EAC)-bearing mice. It was found that
single-agent IM administration caused reduced tumor volume by almost 46% after 3 days
of treatment. In the combination regimen, the tumor volume reduction amounted to 63%.
Histopathological studies showed that MVD, Ki-67, VEGF, and CD34 expression levels
were significantly increased in the isolated tumor specimens of EAC. No impact of IM on
the CA IX expression in vivo and in vitro was detected in this work. These facts led to the
conclusion that co-administration of AZ can significantly extend the anti-angiogenic and
anti-metastatic effects of IM therapy (Figure 6) [54].
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2.2.4. Acetazolamide and MS-275

Overexpression or aberrant recruitment of histone deacetylases (HDACs) to the pro-
moter of tumor-suppressor genes is one of the most common epigenetic alterations in
tumor onset and progression [56]. Small molecule HDAC inhibitors, despite eliciting
impressive results in preclinical settings, show limited efficacy in patients due to their
toxic effects and emergence of drug resistance in cancer cells [57]. Therefore, continuous
efforts are being made to discover drug combinations that would allow for achieving the
full therapeutic potential of HDAC inhibitors in patients [58]. Of note, both CA IX and
HDACs are overexpressed in neuroblastoma [59]. In the light of these facts, Mokhtarti and
coworkers provided a study comparing the efficacy of MS-275, a small-molecule HDAC
inhibitor, AZ, and their combination within in vitro and in vivo models of neuroblastoma
(Figure 7) [60]. Intriguingly, co-administration of AZ and MS-275 led to a stronger de-
crease in cell viability and migration capacity as compared to the monotherapies. In turn,
exposure of neuroblastoma SH-SY5Y xenografts to the combined AZ+MS-275 treatment
yielded a significant reduction in tumor growth and vascularization. The authors reported
a profound decrease in the expression of stemness markers in the tumors subjected to the
AZ+MS-275 combination. Extensive apoptosis has been shown in the treated tumors, and
the drug combination helped recover the T-cell balance. Finally, the combined treatment
also led to a substantial downregulation of HIF1-α and CA IX, thereby confirming the
contribution of AZ to the observed effects (Figure 7) [60].
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2.3. Acetazolamide in Multidrug Combinations
Acetazolamide and CHOP Combination

CHOP is a chemotherapy combination that is used to treat non-Hodgkin lymphoma [61].
It includes cyclophosphamide, doxorubicin hydrochloride (hydroxydaunorubicin), vin-
cristine sulfate (Oncovin), and prednisone [62]. Lymphomas are often marked with sig-
nificant intratumor metabolic heterogenicity, which largely improves their therapy resis-
tance [63]. In particular, hypoxic and highly acidified compartments tend to show a poor
response to CHOP medication [64].

In 2020, Mehes and colleagues published an article unveiling benefits from co-adminis-
tration of AZ as an adjuvant agent with CHOP medication in lymphomas (Figure 8) [65]. A
simultaneous study of tumor progression together with tumor–host immune mechanisms
was provided by using a recently established murine aggressive lymphoma model apply-
ing cultivated A20 B-cells [66]. Upon the six days of treatment with a single CHOP/single
AZ intravenous injection, the size of hypoxic areas within the tumor decreased prominently.
An even more massive drop in the size of the hypoxic compartments was observed when a
single CHOP + five-day extended AZ administration regimen was used within the six days
period. Both treatments caused a dramatic decrease in tumor size. Subsequent western
blot analysis of the dissected tumor tissues revealed no increase in the CA IX levels upon
treatment. Interestingly, as the immune system of the host animals remained intact in the
performed model, the authors were able to demonstrate remarkable differences of CD3+
and CD8+ T-cell tumor infiltration in the analyzed specimens. In fact, minimal infiltrates
were demonstrated in the control lymphoma samples, whereas combinations of CHOP and
AZ raised the amount of the immune infiltration by one order of magnitude. Thus, CD3+
and CD8+ T-cell immune infiltration proved to be significantly higher under any of the
AZ+CHOP adjuvant therapies compared to that of the control, CHOP-alone, as well as the
AZ-alone, treated groups. Since it is widely acknowledged that tumor microenvironment
acidification gains special importance for both drug availability and tumor–host immune
interactions, the authors concluded that it was CA IX inhibitory activity of AZ that inten-
sified the tumor-reductive effect of the conventional CHOP treatment and allowed for a
prominent immune T-cell infiltration of tumors in vivo. Additionally, the local vasodila-
tion effect exerted by AZ could be beneficial for the delivery of cytotoxic substances and
immune effectors in animals [67]. Therefore, CHOP chemotherapy potentiation by AZ and
the interplay between CA-inhibition and antitumor immune infiltrates in lymphomas were
reported for the first time in this intriguing manuscript (Figure 8) [65].
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2.4. Methazolamide in Combination with Conventional Cytostatic Agents
Methazolamide and Gemcitabine

Joshi and colleagues employed another clinically used pan-isoform CAI methazolamide
with a hope to intensify gemcitabine treatment of pancreatic cancers (Figure 9) [68]. In
the reported in vitro experiments, Joshi and coworkers tested methazolamide+gemcitabine
drug combination against patient-derived pancreatic carcinoma cells PDX-1986, PDX-546,
Capan-2, MIA PaCa-2, as well as immortalized PANC-1 cells cultured in 2D and 3D
modes [68]. Intriguingly, significant growth inhibition was produced by the drug combina-
tion in all cases compared to drug-alone controls. This encouraged the authors to further
test the combined medication regimen in PDX-546-bearing mice. Reassuringly, the combi-
nation group showed more significant tumor growth inhibition compared to the drug alone.
Meanwhile, the authors observed no detectable bodyweight loss suggesting good tolerance
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of the treatment. Histopathological studies revealed a pronounced reduction in expression
of the stem cell markers and proliferation marker Ki-67 in the combination group, but not
in drug-alone treated animals. In addition, both methazolamide and combination groups
displayed anti-angiogenic morphological changes (would healing, tube formation), as well
as a significant decrease in HIF1α and VEGF expression levels, highlighting the role of
CAIs in the suppression of vascular growth in the tumor. Therefore, the potential of the
methazolamide+gemcitabine combination for the treatment of pancreatic cancer has been
preliminarily demonstrated (Figure 9) [68].
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2.5. Isoform Selective Carbonic Anhydrase IX Inhibitors in Combination with Conventional
Cytostatic Agents
2.5.1. SLC-0111 and Dacarbazine/Temozolomide/Doxorubicin/5-Fluorouracil

Andreucci and coworkers performed a detailed in vitro study on the potentiation of
cytotoxic agents’ efficacy in the presence of SLC-0111, a CA IX isoform-selective inhibitor
that recently entered Phase Ib/II clinical trials [69]. To this end, human melanoma A375-M6,
breast carcinoma MCF7, and colorectal carcinoma HCT 116 cell lines were employed.

The authors demonstrated that SLC-0111 markedly augmented cell death percentage,
late apoptosis, and necrosis in A375-M6 melanoma cells when co-administered with gua-
nine methylating agents (dacarbazin or temozolomide). A similar effect was produced
by the SLC-0111+DOX combination against MCF7 breast cancer cells. In addition, all
combinations efficiently blocked cell colony formation. This was not true, however, for
the combination of SLC-0111 and 5-fluorouracil, which did not affect the cell viability of
HCT116 colorectal carcinoma cells. Thus, SLC-0111 displayed the potential to sensitize
cancer cells to conventional cytostatic agents, which was especially true for weakly basic
drugs, but not for the weak acid 5-fluorouracil (Figure 10) [69].

2.5.2. SLC-0111 and Temozolomide

Boyd and colleagues investigated SLC-0111 for its ability to enhance the efficacy of
temozolomide against glioblastoma in vitro and in vivo (Figure 11) [70]. The study revealed
that monotherapy with SLC-0111 or temozolomide significantly decreased the growth
of glioblastoma cells isolated from pediatric primary (D456) and a recurrent (1016 GBM)
patient-derived xenograft in normoxia and hypoxia, whereas the combination caused a
further drop in the cell growth but did not increase the toxicity of temozolomide against
healthy astrocytes. It was shown that the SLC-0111+temozolomide combination promi-
nently induced cell cycle arrest via DNA damage and lowered intracellular pH in cancer
cells. Furthermore, the drug combination in question was highly efficient in vivo when
administered to nude mice implanted with a 1016 GBM patient-derived xenograft. In
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fact, SLC-0111+temozolomide produced noticeable tumor regression in xenografts, and
this effect was clearly greater than that of the drugs alone. Importantly, 130 days after
xenograft implantation, the median survival for the temozolomide-alone treatment group
was 76 days, while median survival could not be determined for the combination group.
Analysis of tumor sections from the treated mice demonstrated that expression of the Brain
Tumor Initiating Cell (BTIC) marker Sox2 was decreased with the co-administration of
SLC-0111 with temozolomide, suggesting that SLC-0111 was capable of decreasing BTIC
enrichment after temozolomide therapy. Therefore, the results obtained by Boyd highlight
a significant benefit of the addition of SLC-0111 to the conventional temozolomide-based
treatment for glioblastoma (Figure 11) [70].
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2.5.3. SLC-0111 and Gemcitabine

In 2019, McDonald and colleagues evaluated the potential of SLC-0111 to improve
therapeutic outcomes in pancreatic ductal adenocarcinomas expressing an activated form
of Ki-ras2 Kirsten rat sarcoma (KRAS) oncogene (Figure 12) [71]. Approximately 93% of
pancreatic adenocarcinomas harbor mutant KRAS oncogene, which drives tumor patho-
genesis [72]. Intriguingly, extensive in vitro and in vivo studies performed by the authors
revealed that KRAS-driven pancreatic ductal adenocarcinomas display a dependency on
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glycolysis and the need to buffer intracellular pH through the bicarbonate producing activ-
ity of CA IX. Thus, CA IX was identified as a pharmacologically targetable vulnerability
downstream of mutant KRAS, acting as a hypoxia/pH-specific effector induced by the
oncogene. In light of these facts, it became of utmost interest to evaluate the potential of
CA IX inhibitors to sensitize KRAS mutant cells to chemotherapeutic agents, specifically to
gemcitabine, which is typically used against this type of cancer. McDonald and cowork-
ers reported significant intracellular pH drop and decreased survival rates in pancreatic
cancer cells exposed to SLC-0111+gemcitabine treatment. In CA IX-positive KRAS-mutant
PaCa83–2 patient-derived xenografts, 16 weeks of administration of the drug combination
resulted in a dramatic increase in survival, as 100% of mice given the combination were
alive, with one animal remaining tumor-free after the treatment. Finally, a histopathological
study of KrasG12D/Pdx1-Cre/p53/RosaYFP genetically engineered mouse model revealed
that after 14 days of treatment, the combination group displayed significantly fewer B220+
B-cells compared to control and single agents, which can be considered beneficial in the
context of recent reports on B-cells promoting pancreatic tumorigenesis [73]. Meanwhile, no
significant impact on the number of CD3+ T-cells was observed. Therefore, while suppress-
ing tumor growth, glycolytic metabolic adaptation, and increasing survival rates in vivo,
the drug combination did not have an adverse impact on the immune microenvironment
(Figure 12) [71].
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2.5.4. S4 and Doxorubicin

Inspired by the acetazolamide-induced intensification of DOX treatment in CA IX-rich
cell lines reported by Gieling et al. (vide supra), Kuijk and colleagues performed a follow-
on study by using an isoform-selective CA IX inhibitor S4 [74]. This ureido-substituted
sulfamate SLC-0111 analog has been earlier described to exert significant antiproliferative
efficacy in vitro in different breast cancer tumor models [75,76]. It should be noticed,
however, that despite encouraging in vitro results, the in vivo efficacy of S4 remained
ambiguous. Thus, S4 was ineffective in reducing primary tumor growth in vivo, although
causing decreased spontaneous lung metastases formation in an orthotopic MDA-MB-231
breast cancer model [77]. The S4 involving tests were carried out against MDA-MB-231
triple-negative breast adenocarcinoma, intact (CA IX high) as well as doxycycline-induced
CA IX knockdown (CA IX low) HT-29 cells. The authors reported that S4-mediated CA IX
inhibition increased DOX efficacy during hypoxia and normoxia exposure in MDA-MB-231
cells, compared to single drug exposure. These results were in line with the lack of S4
efficacy in the HT-29–CAIX low cells. However, contrary to what was expected, DOX
sensitivity decreased when HT-29–CA IX low cells were exposed to S4 during hypoxic
conditions. Higher serum concentrations also abrogated the effect of S4 on DOX efficacy,
which may occur due to the high binding affinity of S4 to bovine serum albumin. MDA-
MB-231 tumor-bearing mice were consequently treated with the DOX+S4 combination to
evaluate its in vivo efficacy. Disappointingly, S4 co-administration abrogated the effect of
DOX in this animal model, and the reasons remained unclear [74].

2.5.5. S4 and Cisplatin

Soon thereafter, a study on S4+CIS combination against small cell lung cancer emerged
(Figure 13) [78]. Bryant and coworkers reported that S4+CIS reduced cell viability in two
human small cell lung cancer DMS-79 COR-L24 cell lines. Moreover, in DMS-79 xenograft
tumors in nude mice, the S4+CIS combination significantly delayed the tumor growth. Of
note is a profound decrease in the necrotic area (almost 50% of tumor area was comprised
of necrosis) in the combination therapy group. Dosing with CIS after completion of the 3-
week schedule of S4 resulted in a response equal to that of chemo-naive tumors. Therefore,
no resistance to therapy was acquired during this treatment. In turn, COR-L24 xenograft
tumors showed exquisite sensitivity to S4, keeping tumor sizes at ca. 250 mm3 for the
4-week schedule of S4. COR-L24 xenograft tumors were also more CIS responsive than
DMS 79, but the treatment was poorly tolerated. In this model, the combination of therapies
produced a slightly better treatment response than single agents with COR-L24 tumor
regression in three out of four mice showing a strong response. The histological analysis
highlighted a significant reduction in CA IX expression and reduced hypoxia regions in
COR-L24 tumor xenografts in response to S4 treatment (Figure 13) [78].
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2.5.6. n-Octyl Disulfamate/SCL-0111 and 3-O-acetylbetulin

Petrenko and colleagues, in 2021, presented the results of a study on a combination of
CA IX inhibitor n-octyl disulfamate (OCT) with a pentacyclic triterpene 3-O-acetylbetulin
(3-AC), a betulinic acid prodrug that shows selective cytostatic activity on human cancer cell
lines in vitro and in vivo (Figure 14) [79]. When co-administered, OCT and 3-AC produced
remarkable antiproliferative activity and inhibited cell migration in MDA-MB-231 and
MCF-7 breast cancer cell lines. Both effects were significantly higher for the combined
treatment than the single-drug regimens. Subsequently, SLC-0111 was also tested with
3-AC against breast cancer cells. This drug combination produced a considerable drop in
clonogenic survival rates of MDA-MB-231 and MCF-7 cell cultures. Additionally, in MDA-
MB-231, but not in MCF-7 cell cultures, increased cells sensitivity towards radiotherapy
was observed under exposure to SLC-0111+3-AC treatment (Figure 14) [79].
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2.6. Isoform Selective Carbonic Anhydrase IX Inhibitors in Combination with Targeted
Anticancer Drugs
2.6.1. SCL-0111 and APE1/Ref-1 Inhibitors

Apurinic/apyrimidinic Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a
multifunctional protein possessing a DNA repair function in base excision repair and the
ability to reduce oxidized transcription factors, enabling them to bind to their DNA target
sequences [80]. APE1/Ref-1 regulates several transcription factors involved in survival
mechanisms, tumor growth, redox, and hypoxia signaling [81]. Reports emerged showing
that blocking APE1/Ref-1 signaling with selective inhibitor APX3330 leads to decreased
activity of STAT3, a drop in HIF1α signaling, and downregulation of CA IX [82].

In 2016, Logsdon and coworkers investigated the links between APE1/Ref-1 and
HIF1α-mediated hypoxia adaptation in pancreatic cancers (Figure 15) [83]. Their in-
depth biochemical study culminated in testing APE1/Ref-1 inhibitor APX3330 combined
with SLC-0111 against pancreatic tumor spheroids [83]. Thus, dual treatment of hypoxic
Panc10.05 pancreatic adenocarcinoma cells resulted in a greater intracellular pH drop and
a lower cell survival rate than the monotherapies. Moreover, a significant effect of the
SLC-0111+APX3330 combination was corroborated in a 3D co-culture model of pancreatic
cancer, including low passage patient-derived tumor cells and cancer-associated fibroblasts.
Actually, the tumor-suppressive action of APX3330 was dramatically potentiated in the
spheroids, where the cancer cells were selectively killed even when in the protective envi-
ronment of the fibroblasts [83]. This outstanding work was further continued with a more
potent SLC-0111 analog, namely sulfamate-based CAI FC12-531A [84]. Next-generation
analogs of APX3330, namely APX2009 and APX2014, were included in the study at that
stage. Interestingly, when co-administered with APE1/Ref-1inhibitors, FC12-531A exerted
an even higher effect on tumor spheroids than SLC-0111 combinations, resulting in en-
hanced inhibition of cancer cell growth. Meanwhile, decreased expression of both CA IX
and APE1/Ref-1 was observed, orchestrated by a higher caspase-3 positivity in malignant
cells (Figure 15) [84].

2.6.2. SCL-0111 and Sunitinib

Hedlund and coworkers recently reported the study on the combination of anti-
angiogenic tyrosine kinase inhibitor sunitinib and SLC-0111 (Figure 16) [85]. To test the
drug combination, the authors employed a highly metastatic MDA-MB-231 LM2-4Luc+

in vivo orthotopic model of CAIX-positive human triple-negative breast cancer (TNBC).
Interestingly, while sunitinib monotherapy significantly inhibited primary tumor growth,
it exacerbated tumor hypoxia and increased metastasis. Of importance, CA IX expression
was increased both in the primary tumor and metastases in response to sunitinib exposure.
On the other hand, single-agent SLC-0111 treatment resulted in a modest inhibition of
tumor growth, albeit dramatically reduced spontaneous metastases. Encouragingly, these
two agents, when combined, caused a profound reduction of both tumor volume and
metastatic burden in the animal model. The authors subsequently demonstrated that a
major result of CA IX blockade was a reduction of the number of blood vessels in the
primary tumor, accompanied by a decreased permeability of the remaining vasculature.
This is of great significance since sunitinib alone markedly increased permeability of the
existing blood vessels, thereby contributing to higher metastasis rates. Moreover, CA IX
was expressed by breast tumor cells residing in liver and lung metastases, suggesting
additional mechanisms of the observed effect from the addition of SLC-0111. Finally,
the study revealed that the genetic depletion of hypoxia-induced CA IX expression by
MDA-MB-231 LM2-4Luc+ cells in vitro leads to reduced levels of VEGFA, which may
contribute to the observed effects of SLC-0111 on the normalization of tumor vasculature.
Summarized, the authors demonstrated a profound inhibition of TNBC tumor growth
in vivo, as well as a dramatic reduction in distant metastasis in response to sunitinib+SLC-
0111, which was not achievable in the framework of either monotherapeutic regimen
(Figure 16) [85].
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2.6.3. SCL-0111 and Immune Checkpoint Blockade Inhibitors

Immune checkpoint blockade therapy that prevents cancer cells from escaping a
response from tumor-reactive T-cells has recently emerged as a highly promising approach
in cancer management [86]. In fact, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4),
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PD-1 (programmed cell death protein 1), and its ligand PD-L1 inhibitors proved to interfere
with T-cell inhibitory pathways, thereby overcoming tumor immune subversion [87].
Considering that tumor acidosis is known to be a significant burden for immune functions,
Chafe and coworkers reported an expanded study on the potential of CA IX inhibition to
enhance the immune checkpoint blockade effect in cancer (Figure 17) [88]. Thus, in vitro
tests with co-culture presented by murine skin melanoma B16F10 cells and activated T-cells,
the research group showed that the use of SLC-0111 (100 µM) increased T-cell antitumor
response. The results obtained were confirmed in animal models with subcutaneous
mammary adenocarcinoma 4T1 and skin melanoma B16F10 cells. In both models, the
combination of SLC-0111 and anti-PD1/anti-CTLA4 agents reduced the number of T
regulatory cells (Tregs) and T-helper 17 cells (Th17), increased the number of Th1, CD8+
cells in tumor tissue and granzymes production by B-cells. Moreover, the drug combination
contributed to tumor necrosis, reduction in metastatic burden and increased the survival
of animals in comparison with monotherapy. This study was followed by the analysis of
patient tumor samples (n = 449), revealing the association of CA IX expression with the
increased grade, risk of metastasis, and generally poor prognosis. The authors also found
that increased CA IX expression correlates with lower expression of genes associated with
an effective immune response and immune activation, such as CD3E, CD8A, and CD4.
The obtained results, therefore, call attention to the important effect of CA IX activity on
antitumor immune response and the potential to enhance immune checkpoint therapy
outcomes via pharmacologically blocking this latter enzyme (Figure 17) [88].
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2.6.4. SCL-0111 and Suberoylanilide Hydroxamic Acid

Ruzzolini and coworkers recently investigated the joint in vitro antiproliferative action
of suberoylanilide hydroxamic acid (SAHA), the first FDA-approved HDAC inhibitor, and
SLC-0111 (Figure 18) [89,90]. The SLC-0111+SAHA combination exhibited enhanced
antiproliferative effects against HCT116 colorectal carcinoma, MCF7 breast carcinoma, and
A375M6 melanoma cell lines. The degree of potentiation was especially high in HCT116
and MCF7 cells, whereas A375M6 cells were least sensitive to the treatment. A remarkable
increase of cells in the G2/M phase in HCT116 and MCF7 cell lines, but not in A375M6,
was observed. In turn, colony formation was almost completely abrogated by the SLC-
0111+SAHA combination in the tested cell lines and the most remarkable synergistic effect
was observed in HCT116 cells. Similarly, when acetylation of histone H4 was assessed, as
well as that of non-histone HDACs target p53, it turned out that SLC-0111 considerably
increased the acetylation levels in both targets. In HCT116 cells, this effect was shown to be
associated with enhanced poly(ADP-ribose) polymerase (PARP) cleavage and apoptosis,
which was not true for MCF7 and A375M6. Therefore, the combination of SAHA and
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SLC-0111 proved efficient against three cancer cell lines, and HCT116 showed a profound
and mechanism-based response (Figure 18) [90].
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2.6.5. S4/FC9–399A and Proton Pump Inhibitors

Growing evidence exists that proton pump inhibitors (PPIs) can be beneficial in can-
cer treatment, allowing for suppression of tumor metabolic adaptation to hypoxia and
overcoming pH-driven drug resistance [91–93]. Of note, contrary to the vast majority of
anticancer drugs, PPIs protonation in an acidic environment leads to activation instead
of neutralization [94]. Federici and colleagues, in 2016, undertook an intriguing inves-
tigation on the synergistic antitumor action of a PPI lansoprazole and CA IX inhibitors
S4 and FC9–399A, as simultaneous blocking of the most important proton exchangers
appeared promising for the management of solid tumors (Figure 19) [17]. Within the
study, the metastatic melanoma Me30966 cell line was cultured in an unbuffered medium,
allowing for spontaneous culture medium acidification by tumor cells. Interestingly, in
such conditions, preincubation with lansoprazole leads to a significant increase in the
anticancer activity of both S4 and FC9–399A. In fact, a dramatic drop in cell survival was
observed in the presence of lansoprazole, whereas each of the single-drug treatments
exerted a neglectable effect on Me30966 viability. While spontaneous acidification was
suitable for a full activation of lansoprazole, protein pump inhibition could prevent S4 and
FC9–399A acidification, resulting in the promising in vitro data for the suggested drug
combinations [95]. Therefore, it was supposedly not the CA IX inhibitor in this case that
sensitized the cells, but instead, lansoprazole that induced the favorable conditions for the
S4 and FC9–399A pharmacological action (Figure 19) [95].
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3. Discussion and Perspectives

The literature analyses indicate significant progress in deciphering the potential of CA
IX inhibitors as adjuvant cancer treatments, with more than two dozen research articles
published in recent years. These reports comprised preliminary 2D cell culture tests as well
as in-depth ex vivo and in vivo studies simulating the complex tumor microenvironment,
protective mechanisms, and tumor–host immune interactions.
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Early works demonstrated that CA IX inhibitors are capable of enhancing the bioavail-
ability of weakly basic drugs, which suffer from regional failure in acidic tumor compart-
ments. Subsequently, a series of thorough and well-designed investigations revealed the
appreciable potential of pharmacological CA IX blockades to intensify cancer therapies
and improve treatment outcomes in many malignancies. In fact, such reports described
enhanced cytotoxic action of the drugs due to pHi alterations and apoptosis induction
in cancer cells. Moreover, co-administration of CA IX inhibitors prevented malignant
cell invasion, matrix destruction and metastasis, and inhibited angiogenesis in animal
models. Finally, the mechanism-based synergy of CA IX inhibitors with chemo and im-
munotherapeutic agents has been unraveled. It was demonstrated that the effects of drugs
affecting GFR (grow factor receptor)/PI3K/Akt/mTOR, GFR/MEK/ERK, IL-6R/JAK
(Janus kinase)/NOTH-3, IL-1βR/MyD88 (myeloid differentiation primary response gene
(88))/STAT (signal transducer and activator of transcription proteins)/ NF-kB (nuclear fac-
tor kappa-light-chain-enhancer of activated B cells), and other crucial signaling pathways
that activate HIF1α and HRE can be significantly potentiated by blocking CA IX enzymatic
activity (Figure 20).
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Being widely used in clinical settings, pan-isoform inhibitors acetazolamide and
methazolamide demonstrated significant efficacy in combination therapy of solid tumors.
As non-type-specific CA blockers, these drugs may also benefit from inhibiting other CA
isoforms, which roles in cancer may be under-evaluated at the current stage [30]. On the
other hand, a high affinity towards ubiquitous cytosolic CA I and II isoforms may play a
detrimental role leading to suboptimal drug distribution profiles and undesired effects [30].
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Importantly, with its successfully finished safety studies within the clinical trials,
SLC-0111 was effectively employed in various combinations with anticancer drugs. The
potential of this adjuvant agent will be crystallized upon Phase II completion in the coming
years [96]. Meanwhile, other CAIX inhibitory drug candidates possessing different isoform
selectivity and PK profiles are of great interest to further establish the potential of CA IX
blockade in tumors and boost the discovery of highly efficient adjuvant agents targeting
the tumor microenvironment.

Despite this success in the in vitro and in vivo experiments, the capabilities of different
tumors to adapt to the combination therapy have not been properly established at the
current stage. In fact, only a few reports contained posttreatment survival data for the
investigated drug combinations. Particularly, Faes et al. [45] communicated the mice
tumor xenografts did not progress after 3 months of AZ+rapamycin treatment; however,
the decrease in the tumor volumes was not observed. This indicates that there is still a
potential for resistance against the suggested drug combination. On the other hand, the
SLC-0111 produced 100% survival rates when combined with temozolomide or gemcitabine
(130 days posttreatment) [68,97].

Moreover, along with further investigations of drug combinations discussed in the
present review, significant benefit can be expected from co-administrating CA IX inhibitors
with different agents that affect various HIF-induced cellular processes, including au-
tophagy, angiogenesis, and glycolysis. In fact, considering the role of these latter processes
in tumor cell growth and survival, there is great room for synergistic action of such combi-
nations (Figure 21) [98–102].
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Furthermore, the selection of drug combinations involving CA IX inhibitors can be
guided by gene-knockout experiments unveiling synthetic lethal gene couples in can-
cer cells [103]. Very recently, Chafe et al. revealed a group of genes networks that are
significantly affected by the loss of CA IX, associated with:

• the cytoskeleton;
• cell cycle and mitosis, ribosome biogenesis, RNA processing, DNA damage repair,

and nucleic acid metabolism;
• mitochondrial organization;
• redox homeostasis: thioredoxin, glutathione S-transferases, glutathione reductase, and

the molybdenum cofactor and iron-sulfur cluster biogenesis: the cysteine desulfurase
(NFS1) and iron-sulfur cluster scaffold protein;

• iron-sulfur cluster adapter protein, adenosine 5′-triphosphate–binding cassette sub-
family B member 7, and glutaredoxin 5 [103].

One of the most significant synthetic lethal genes turned out to be NFS1-encoding
cysteine desulfurase. This mitochondrial enzyme catalyzes the generation of cofactors
containing iron for proteins, involved in a number of cellular functions. In addition,
cysteine desulfurase plays an important role in protecting cells from ferroptosis. Chafe
and coworkers demonstrated a synergic increase of cell death due to ferroptosis after co-
administration of SLC-0111 and siRNA suppressor of NFS1/non-lethal doses of erastin or
sulfasalazine (the cystine glutamate antiporter xCT). SLC-0111 contributed to intracellular
acidosis, which increases susceptibility to ferroptosis, fatty acid synthesis, glutaminolysis,
and autophagy and decreases mTOR activity (Figure 22) [103].

These results, again, highlighted that CA IX inhibitors can significantly affect the
pathogenic mechanisms with common signaling pathways and gained attention for the
new targets for combination therapy, which were discovered via genome-wide synthetic
lethal screening [104].

Summarized, CA IX inhibition proved to significantly impact overcoming tumor
resistance against conventional cytotoxic agents by reducing poorly accessible hypoxic
regions and extracellular acidosis, orchestrated by intensifying the treatment-induced pHi
acidification. In the meantime, the remarkable potential of combining CA IX inhibitors
with targeted anticancer drugs, especially those affecting HIF/HRE-related signaling
pathways, has been highlighted by several in-depth studies employing complex and
advanced tumor models. A few crucial directions for further efforts can be highlighted,
such as; (1) enriching the currently available CAIs arsenal with highly CA IX-specific
molecules possessing favorable stability and tissue distribution, (2) identifying more drugs
that can be potentiated by co-administration of CA IX inhibitors according to the pathogenic
mechanism, resistance mechanisms, and lethal gene interactions, (3) investigating the drug
combinations in 3D-models, and properly simulating tumor microenvironments, and
(4) developing well-justified protocols for in vivo studies, including posttreatment survival
analysis and knockout animals to observe the resistance mechanisms. Finally, it should be
noticed that tumor microenvironment traits remain decisive in the pathogenesis of many
cancer phenotypes and in this context, tumor-specific and readily druggable enzyme CA
IX represents an attractive drug target for innovative therapeutic approaches.
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1,3-BPG 1,3-Bisphosphoglycerate
3-PG 3-phosphoglyceric acid
Ac-CoA acetyl coenzyme A
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Akt (PKB) protein kinase B
ANG2 angiopoietin 2
APE1/Ref-1 apurinic/apyrimidinic endonuclease-1/redox effector factor 1
AZ acetazolamide
Bnip3 Bcl-2/adenovirus EIB 19-kD interacting protein 3
BTIC brain tumor initiating cell
CA carboanhydrase
CA IX carbonic anhydrase IX
CAIs CA inhibitors
CHOP cyclophosphamide, doxorubicin hydrochloride hydroxydaunorubicin, vincristine

sulfate Oncovin, and prednisone
CIS cisplatin
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DOX doxorubicin
EAC Ehrlich ascites carcinoma
EGFR epidermal growth factor receptor
ERK extracellular signal-regulated kinase
EV1 empty vector
F-1,6-BP fructose-1,6-bisphosphate
G-6P glucose -6 phosphate
GAP glyceraldehyde-3-phosphate
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GFR growth factor receptor
GLU glucose
GLUT glucose transporter
GSH glutathione
HDAC histone deacetylases
HIF-1a hypoxia-inducible factor 1a
HK hexokinase
HRE hypoxia response element
HUVEC human umbilical vein endothelial cells
IL interleukin
IM imatinib
JAK Janus kinase
KEAP1 Kelch Like ECH Associated Protein 1
KRAS Kirsten rat sarcoma
LDH-a lactic dehydrogenase-a
MAPK mitogen activated protein kinase
MCT monocarboxylate transporters
MEK MAPK/ERK kinase
MMP matrix metalloproteinases
mTOR mechanistic target of rapamycin
mTORC mTOR complexe
MyD88 myeloid differentiation primary response gene (88)
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
NFS1 iron-sulfur cluster biogenesis: the cysteine desulfurase
NHE Na+,H+-exchanger
OCT n-octyl disulfamate
PARP poly(ADP-ribose) polymerase
PD-1 programmed cell death protein 1
PDGFR platelet-derived growth factor receptor
PDK1 pyruvate dehydrogenase kinase 1
PGK1 phosphoglycerate kinase 1
PHD prolyl hydroxylases
pHe extracellular pH
pHi intracellular pH
PI3K phosphatidylinositol-3 kinase
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PPIs proton pump inhibitors
ROS reactive oxygen species
SAHA suberoylanilide hydroxamic acid
SFN sulforaphane
STAT signal transducer and activator of transcription proteins
TCA tricarboxylic acid
Th17 T-helper 17 cells
TIMP-1 tissue inhibitor of metalloprotease-1
TNBC triple-negative breast cancer
Tregs T regulatory cells
VEGF vascular endothelial growth factor
VHL Von Hippel-Lindau
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