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Abstract: In recent years, the rapid development of genetically modified (GM) technology has raised
concerns about the safety of GM crops and foods for human health and the ecological environment.
Gene flow from GM crops to other crops, especially in the Brassicaceae family, might pose a threat
to the environment due to their weediness. Hence, finding reliable, quick, and low-cost methods
to detect and monitor the presence of GM crops and crop products is important. In this study,
we used visible near-infrared (Vis-NIR) spectroscopy for the effective discrimination of GM and
non-GM Brassica napus, B. rapa, and F1 hybrids (B. rapa X GM B. napus). Initially, Vis-NIR spectra
were collected from the plants, and the spectra were preprocessed. A combination of different
preprocessing methods (four methods) and various modeling approaches (eight methods) was used
for effective discrimination. Among the different combinations, the Savitzky-Golay and Support
Vector Machine combination was found to be an optimal model in the discrimination of GM, non-GM,
and hybrid plants with the highest accuracy rate (100%). The use of a Convolutional Neural Network
with Normalization resulted in 98.9%. The same higher accuracy was found in the use of Gradient
Boosted Trees and Fast Large Margin approaches. Later, phenolic acid concentration among the
different plants was assessed using GC-MS analysis. Partial least squares regression analysis of
Vis-NIR spectra and biochemical characteristics showed significant correlations in their respective
changes. The results showed that handheld Vis-NIR spectroscopy combined with chemometric
analyses could be used for the effective discrimination of GM and non-GM B. napus, B. rapa, and
F1 hybrids. Biochemical composition analysis can also be combined with the Vis-NIR spectra for
efficient discrimination.

Keywords: Brassica rapa; transgenic canola; GM detection; Vis-NIR spectroscopy; chemometrics;
machine learning

1. Introduction

Oilseed rape (Brassica napus L.), also known as canola, is one of the most important
oil crops, belongs to the Brassicaceae family which has 338 genera and 3709 species [1]. It
produces 75 million tonnes per year of oil globally, among which approximately 60% of
rapeseed oil is used for food, 38% for industrial uses, and 3% for feed [2]. B. napus (AACC,
2n = 38) originated by natural hybridization between two diploid progenitors, B. rapa (AA,
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2n = 20) and B. oleracea (CC, 2n = 18) in the Mediterranean region about 7500 years ago [3,4].
Introgression of genes from B. rapa and synthetic materials produced by artificial crossing
between the two diploid progenitors have broadened the genetic pool of B. napus [5,6].
Since it is closely related to several weeds and wild species and produces a large amount
of pollen, when it has favorable conditions, it attains a significant degree of outcrossing
(20–40%) [7,8]. Several studies have reported on the hybridization of B. napus with close
relative species, among which B. rapa is the most common [8,9].

In the last three decades, GM technologies have introduced various novel character-
istics into B. napus including increased oil content [10], drought resistance [11], herbicide
resistance [12], and the production of bioactive compounds [13]. Farmers have adopted
transgenic canola for its potential advantages, but the coexistence of transformants and
nontransformants poses a threat to the inserted transgene spreading [14]. B. napus can grow
on both wasteland and agricultural fields, and may develop feral wild populations that
can serve as pollen donors and acceptors [15,16]. The introduction of GMOs in agricultural
and food markets should be accompanied by a regulatory body to monitor the presence
and quantity of GMOs. Nowadays, there are a lot of analytical methods for determining,
characterization, and verifying GMOs in crops and foods. There ae DNA-based methods
like Southern blot, qualitative and quantitative PCR, and real-time PCR, and protein-based
methods like Western blot, ELISA, and lateral flow strip [17,18]. Overall, GMO detection
approaches based on DNA and proteins are flexible, sensitive, and accurate. Nevertheless,
these methods are laborious, expensive, time-consuming and require highly qualified
professionals. Conversely, spectroscopy methods are nondestructive, synchronous, and
involve consistent detection instruments that are environmentally benign, quick (<1 min),
low-cost, and simple to use without requiring complicated sample preparation [17].

The use of near-infrared (NIR) and visible NIR (Vis-NIR) spectroscopy combined
with chemometric analyses has resulted in effective discrimination of GMOs in agro-food
markets [18]. Vis-NIR spectroscopy is most common in the detection of GMOs used with the
spectral range of 350–2500 nm (Visible (350–780) and NIR (780–2500)) overlapping with the
optical radiation range (100–1000 nm) [18,19]. It works on the principle of identifying the
relative proportions of C-H, N-H, and O-H bonds in organic molecules. Detection of GMOs
using Vis-NIR spectroscopy is not based on the detection of changes in DNA or single
proteins but on identifying the changes in structural changes due to the genotype changes
caused by the introduction of transgenes for target traits [17]. Previously, several research
projects were successful in using Vis-NIR spectroscopy and chemometric approaches for
the effective discrimination of GM crops and foods [18,20–22]. Further, it is important
to assess the biochemical compositional changes in the transgenic plants [23]. This can
provide a correlation between spectral data prediction and the chemical composition [24].
Hence, in the present study, we aimed to explore the feasibility of effective discrimination
between GM and non-GM B. napus, and their hybrids with B. rapa (B. rapa X GM B. napus),
by using Vis-NIR spectroscopy in combination with different preprocessing and machine
learning methods and assessing the phenolic compounds using GC-MS analysis.

2. Results
2.1. Diffuse Reflectance Spectroscopic Analysis and Preprocessing

The original raw spectra of the B. napus, GM B. napus, B. rapa and the F1 hybrids
were collected in the green house. The original raw spectra were those that had not been
preprocessed in any way and the average raw spectra are shown in Figure 1A. Further,
the spectra from all the plants were preprocessed with three different methods, namely,
Savitzky-Golay smoothing filter (21-points), Normalization, Standard Normal Variate and
averaged, as shown in Figures 1B and 2C,D, respectively.
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Figure 1. Average spectra obtained from all the plants. (A) Raw spectra. (B) Savitzky-Golay. (C) 
Normalization. (D) Standard Normal Variate. 

There were differences in spectral reflectance but the majority of the spectra acquired 
from the four plants followed a similar pattern. The average reflectance difference be-
tween GM and non-GM B. napus, B. rapa, and F1 hybrids are assumed to be due to changes 
in hundreds of physicochemical constituents. The average spectra for all the plants, raw 
and preprocessed, with three different methods, namely, Savitzky-Golay, smoothing filter 
(21-points), Normalization, and Standard Normal Variate, effectively visualized the dif-
ferences (Figure 1). From the PCA-paired plot from PC1 to PC 6 (Figure 2A), all the dif-
ferent PCs showed some pattern of separation for the different samples, but PC1 vs. PC2 
showed the greatest visual differences as shown in Figure 2B. Therefore, outlier detection 
was performed using these two PCs before commencing preprocessing for the machine 
learning classification methods. In PC1 and PC2 (Figure 2B) the B. napus plants could be 
clearly separated from the others.  

Figure 1. Average spectra obtained from all the plants. (A) Raw spectra. (B) Savitzky-Golay. (C) Nor-
malization. (D) Standard Normal Variate.

There were differences in spectral reflectance but the majority of the spectra acquired
from the four plants followed a similar pattern. The average reflectance difference between
GM and non-GM B. napus, B. rapa, and F1 hybrids are assumed to be due to changes in
hundreds of physicochemical constituents. The average spectra for all the plants, raw and
preprocessed, with three different methods, namely, Savitzky-Golay, smoothing filter (21-
points), Normalization, and Standard Normal Variate, effectively visualized the differences
(Figure 1). From the PCA-paired plot from PC1 to PC 6 (Figure 2A), all the different PCs
showed some pattern of separation for the different samples, but PC1 vs. PC2 showed
the greatest visual differences as shown in Figure 2B. Therefore, outlier detection was
performed using these two PCs before commencing preprocessing for the machine learning
classification methods. In PC1 and PC2 (Figure 2B) the B. napus plants could be clearly
separated from the others.
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Figure 2. Principal Component Analysis (PCA) paired plot (A) and PC1 vs PC2 plot (B) for the
visualization of B. napus, GM B. napus, B. rapa and F1 hybrids.

2.2. Machine Learning Classification Methods

Convolutional neural network (deep learning), linear discriminant analysis, gradient
boosted trees, support vector machine, random forest, fast large margin, generalized linear
model, and naive beyes were applied to the original spectral data and preprocessed spectra
using normalization, standard normal variate (SNV), and Savitzky-Golay. The classification
accuracy of various machine learning approaches combined with different preprocessing
methods was calculated to identify the precise method for the discrimination of GM and
non-GM B. napus, B. rapa and F1 hybrids (B. rapa X GM B. napus). This ranged from 70.5%
to 100% based on the preprocessing and models applied to the spectra (Table 1). Among
the different modelling approaches, Support Vector Machine, Linear Discriminant Analysis
and Fast Large Margin were found to have higher accuracy in combination with different
preprocessing methods (Savitzky-Golay/Support Vector Machine-100%, and Savitzky-
Golay/Linear Discriminant Analysis–99.8%) (Table 1). In this study, normalization yielded
the least performance accuracy method among the tested preprocessing methods (Table 1).
Gradient Boosted Trees and Linear Discriminant analysis accuracies were 97.3% and 98.6%,
respectively, for normalization, whereas Naive Bayes and Fast Large Margin accuracies
were 74.2% and 72.2%, respectively. With Savitzky-Golay preprocessing, the accuracies of
Support Vector Machine and Generalized Linear Model were 100% and 97.9%, respectively,
while Naive Bayes and Random Forest were 87.5% and 89%, respectively. In the case of
Standard Normal Variate preprocessing, Support Vector Machine showed 98.4% accuracy,
Fast Large Margin 96.2%, Generalized Linear Model 90.3%, and Naive Bayes 81.2% (Table 1).
Effective discrimination of B. napus, GM B. napus, B. rapa and F1 hybrids using Linear
Discriminant Analysis are shown in Figure 3.
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Table 1. Classification accuracy of the combinations of preprocessing and model for reflectance
spectra from B. napus, GM B. napus, B. rapa and F1 hybrids.

S. No Model Preprocessing Average Accuracy
(%)

Run Time
(ms)

1.
Linear Discriminant

Analysis

Raw spectra 78.3 -
Normalization 98.6 -

Standard Normal Variate 98.6 -
Savitzky-Golay 99.8 -

2.
Support

Vector Machine

Raw spectra 98.4 21,417
Normalization 79.6 41,166

Standard Normal Variate 98.4 22,074
Savitzky-Golay 100.0 30,556

3. Generalized
Linear Model

Raw spectra 85.4 32,905
Normalization 87.1 19,854

Standard Normal Variate 90.3 26,768
Savitzky-Golay 97.9 14,038

4. Gradient Boosted Trees

Raw spectra 95.2 841,966
Normalization 97.3 790,162

Standard Normal Variate 97.3 988,233
Savitzky-Golay 98.9 990,738

5. Naive Bayes

Raw spectra 70.5 6546
Normalization 74.2 6535

Standard Normal Variate 81.2 6210
Savitzky-Golay 91.4 6661

6. Fast Large Margin

Raw spectra 93.6 37,002
Normalization 71.2 38,845

Standard Normal Variate 96.2 37,597
Savitzky-Golay 98.9 17,611

7.

Raw spectra 79.0 31,558
Random Forest Normalization 86.6 30,336

Standard Normal Variate 90.9 31,411
Savitzky-Golay 91.4 31,590

8.
Convolutional Neural

Network
(Deep Learning)

Raw spectra 91.4 7529
Normalization 98.9 7123

Standard Normal Variate 97.9 5850
Savitzky-Golay 96.8 5450

The efficiency of multiple preprocessing and machine learning methods on spectral
datasets obtained from the assessed plants was statistically analyzed (Table 2). After
cross-validation, the mean percentage of classification accuracy of each machine learning
method in combination with various preprocessing methods revealed the significance
of modeling for the discrimination of GM and non-GM B. napus, B. rapa and F1 hybrids
(Table 2). Statistical analysis by ANOVA (Table 3), showed the sum of square and mean sum
of square values of different preprocessing and machine learning methods with statistical
significance at p ≤ 0.05.With a combination of preprocessing and different machine learning
methods used together, there was no significance with p ≥ 0.05 (p-value of 0.0925). The
confusion matrix shows the degree of error in the classification of the assessed plants,
which confirms that Savitzky-Golay combined with Support Vector Machine was the most
effective method for the classification (Table 4).
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Figure 3. Linear Discriminant Analysis for the effective discrimination of B. napus, GM B. napus,
B. rapa and F1 hybrids shown without confidence circles (A) and with confidence circle (B).

Table 2. Means of percentage of classification accuracy of different preprocessing and different
classification model using reflectance spectra.

Model
Species Accuracy (% ± SE)

Raw Spectra Normalization Savitzky-Golay SNV Significance

Naive Bayes 74.2 ± 9.5 74.5 ± 3.3 b 91.8 ± 3.1 82.7 ± 4.9 ns
Generalized Linear

Model 86.7 ± 3.7 87.2 ± 2 ab 97.3 ± 1.5 91.3 ± 6.3 ns

Fast Large Margin 94.1 ± 4.4 A 73.1 ± 4.4 Bb 99.2 ± 0.8 A 96.3 ± 3 A **
Convolutional Neural

Network 92.8 ± 3.5 99.2 ± 0.8 a 96.9 ± 3.1 98 ± 1.2 ns

Gradient Boosted Trees 76.1 ± 12.4 85.6 ± 6.4 ab 85.2 ± 6.3 59.6 ± 22 ns
Random Forest 80.8 ± 6 87.2 ± 2.3 ab 92.9 ± 3.5 91.5 ± 3.3 ns
Support Vector

Machine 98.4 ± 1.6 A 80 ± 3.6 Bb 100 ± 0 A 98.3 ± 1.7 A **

significance ns ** ns ns
ns; not significant, ** significant with the p ≤ 0.05. Different alphabetical small and capital letters show the
significance of the value in the order of column and row respectively.

Table 3. Analysis of variance of percentage of correctly classified B. napus, GM B. napus, B. rapa
and F1 hybrids from four different preprocessing and four different classification model using
reflectance spectra.

Source df SS MS F-Value p-Value

Preprocessing (P) 3 0.186074 0.062025 4.07 0.0095
Model (M) 6 0.494012 0.082335 5.4 <0.0001

P × M 18 0.426077 0.023671 1.55 0.0925
Error 84 1.280539 0.015245
Total 111 2.386702

df: degree of freedom. SS: sum of squares. MS: mean sum of squares.
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Table 4. Confusion matrix of species discrimination using better performing combinations of prepro-
cessing methods and models.

Savitzky-Golay/
SVM

Classified as Average Accuracy
(%)B. napus B. rapa GM B. napus F1 hybrid

B. napus 43 0 0 0 100
GM B. napus 0 42 0 0 100

B. rapa 0 0 44 0 100
F1 hybrid 0 0 0 56 100

Class recall (%) 100 100 100 100

Normalize/
Convolutional Neural Network

Classified as Average Accuracy
(%)B. napus B. rapa GM B. napus F1 hybrid

B. napus 42 0 0 0 100
GM B. napus 0 44 0 0 100

B. rapa 0 0 40 0 100
F1 hybrid 0 0 2 58 96.67

Class recall (%) 100 100 95.24 100

Savitzky-Golay/
Fast Large Margin

Classified as Average Accuracy
(%)B. napus B. rapa GM B. napus F1 hybrid

B. napus 42 0 0 0 100
GM B. napus 0 44 0 0 100

B. rapa 0 0 40 0 100
F1 hybrid 0 0 2 58 96.67

Class recall (%) 100 100 95.24 100

2.3. Phenolic Acid Composition Analysis

Initially, the contents of total phenolic acids, including methanol-soluble and methanol-
insoluble phenolic acids in plant samples of B. napus, GM B. napus, B. rapa and the F1
hybrids, were analyzed using GC-MS analysis. Table 5 summarizes the content of each
identified compound in the GM and non-GM B. napus, B. rapa and the F1 hybrids.

The major compounds assessed, i.e., p-hydoxybenzoic acid, vanillic acid, syringic
acid, p-coumaric acid, ferulic acid and sinapic acid, were found in different concentrations
among the assessed plants. Among the compounds, ferulic acid and sinapic acid were the
most abundant compounds in the Brassica Sp. Ferulic acid was a little lower in B. rapa than
in B. napus and F1 hybrids, whereas sinapic acid was found to be higher in B. rapa. Similar
results were obtained from the biplot of PCA in which B. rapa. was separated from the other
plants, B. napus, GM B. napus, and the F1 hybrids (Figure 4A). The loading plot indicated
that ferulic acid was lower in B. rapa than in other species and hybrids (Figure 4B).
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2.4. Partial Least Squares Regression (PLSR) Prediction of Phenolic Compounds  
Table 6 shows the PLSR prediction of phenolic compounds in all the plants. p-hy-

droxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid and sinapic 
acid could all be predicted with coefficients of determination after cross-validation 
(R2CV) above 0.89 and root mean square error after cross-validation (RMSECV) below 
64.34 ug/g. Only ferulic acid and sinapic acid had high RMSECV, and R2CV’s higher than 
0.89. The results prove that all the measured phenolic compounds could be predicted with 
high accuracy using Vis-NIR spectroscopy. Among the different compounds, vanillic acid 
could be predicted with the highest R2CV of 0.93 (Figure 5) and the lowest RMSECV of 
0.14.  

Table 6. PLSR prediction of phenolic compounds in all plants. 

Phenolic Compound Latent  
Variable 

R2 RMSEC (ug/g) R2CV RMSECV (ug/g) 

p-hydroxybenzoic acid 4 0.93 0.26 0.91 0.28 
Vanillic acid 4 0.94 0.13 0.93 0.14 
Syringic acid 4 0.92 0.04 0.91 0.05 

p-coumaric acid 4 0.91 3.68 0.89 4.03 

Figure 4. Score (A) and loading (B) plots of principal components 1 and 2 of the PCA results obtained
from data on six total phenolic acids of four varieties.
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Table 5. Total phenolic acid composition analysis using GC-MS.

S.
No

Phenolic
Acids

B. napus L. (Youngsan)
(ug/g ± SD)

GM B. napus L. (TG#39)
(ug/g ± SD)

B. rapa L. (Jangang)
(ug/g ± SD)

B. rapa X GM B. napus
(F1 hybrid) (ug/g ± SD)

Soluble Insoluble Total Soluble Insoluble Total Soluble Insoluble Total Soluble Insoluble Total

1
p-

hydroxybenzoic
acid

2.2 ± 0.4 1.1 ± 0.3 3.3 ± 0.6 2.3 ± 0.1 0.9 ± 0.1 3.1 ± 0.3 4.1 ± 0.7 1.3 ± 0.3 5.4 ± 1.0 2.2 ± 0.4 1.3 ± 0.8 3.5 ± 0.8

2 vanillic acid 3.0 ± 0.6 1.0 ± 0.2 4.0 ± 0.7 2.7 ± 0.3 1.1 ± 0.2 3.8 ± 0.5 3.9 ± 0.8 1.0 ± 0.2 4.9 ± 0.9 2.6 ± 0.6 1.0 ± 0.1 3.6 ± 0.5

3 syringic acid 0.3 ± 0.2 0.3 ± 0.2 0.6 ± 0.3 0.3 ± 0.2 0.3 ± 0.2 0.6 ± 0.3 0.6 ± 0.3 0.4 ± 0.3 1.0 ± 0.4 0.3 ± 0.2 0.3 ± 0.04 0.6 ± 0.2

4 p-coumaric
acid 56.1 ± 14.4 6.9 ± 0.7 63.0 ± 13.8 28.1 ± 17.1 5.5 ± 0.9 33.7 ± 18.0 49.9 ± 15.7 12.7 ± 1.5 62.6 ± 15.0 56.2 ± 6.4 6.1 ± 4.2 62.3 ± 10.5

5 ferulic acid 1498.8 ± 184.2 110.4 ± 17.6 1609.2 ± 197.5 1255.9 ± 120.6 128.1 ± 8.3 1384.0 ± 125.7 891.5 ± 51.4 49.4 ± 9.2 940.9 ± 60.5 1167.8 ± 132.1 86.3 ± 10.2 1254.1 ± 140.5

6 sinapic acid 877.3 ± 138.9 26.5 ± 4.8 903.77 ± 140.38 935.8 ± 427.3 37.2 ± 14.6 973.06 ± 441.83 1439.2 ± 518.4 35.2 ± 8.6 1474.3 ± 511.6 923.6 ± 73.0 35.2 ± 6.0 958.80 ± 78.64
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2.4. Partial Least Squares Regression (PLSR) Prediction of Phenolic Compounds

Table 6 shows the PLSR prediction of phenolic compounds in all the plants. p-hydroxybenzoic
acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid and sinapic acid could all be
predicted with coefficients of determination after cross-validation (R2CV) above 0.89 and
root mean square error after cross-validation (RMSECV) below 64.34 ug/g. Only ferulic
acid and sinapic acid had high RMSECV, and R2CV’s higher than 0.89. The results prove
that all the measured phenolic compounds could be predicted with high accuracy using
Vis-NIR spectroscopy. Among the different compounds, vanillic acid could be predicted
with the highest R2CV of 0.93 (Figure 5) and the lowest RMSECV of 0.14.

Table 6. PLSR prediction of phenolic compounds in all plants.

Phenolic Compound Latent
Variable R2 RMSEC

(ug/g) R2CV RMSECV
(ug/g)

p-hydroxybenzoic acid 4 0.93 0.26 0.91 0.28
Vanillic acid 4 0.94 0.13 0.93 0.14
Syringic acid 4 0.92 0.04 0.91 0.05

p-coumaric acid 4 0.91 3.68 0.89 4.03
Ferulic acid 4 0.94 58.91 0.93 64.34
Sinapic acid 4 0.94 57.89 0.93 63.64
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3. Discussion

Physical qualities have a significant impact on product characteristics [25]. In this
study, the morphological changes among B. napus, GM B. napus, B. rapa and F1 hybrids
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showed the variations in appearance. The F1 hybrids were found to have the structure
of both B. napus and B. rapa. Vis-NIR spectroscopy is generally used for studying species
discrimination of different plants and compositional changes of agricultural and food
products [26,27]. The raw Vis-NIR spectra obtained by the handheld spectrophotometer
cannot to be directly used because the number of spectra was high and the spectra were
noisy [18,28]. Spectral data are mainly preprocessed to remove systemic noise to highlight
the differences across the samples [18]. Utilization of different preprocessing methods
simultaneously helps to achieve a different level of classification accuracy and provides an
opportunity to find the best preprocessing method for a particular sample [18]. The selection
of an optimum preprocessing method is difficult, since multiple different mathematical
transformations are used, and different preprocessing methods provide different prediction
results [29]. Generally, Vis-NIR spectra provide information on the chemical composition
and physical state of the particular material, which provides structural information on
the chemical functional groups of the molecules that constitute the molecular fingerprint
of the sample [30,31]. Some characteristic peaks can be observed around 500–600 nm,
the spectral range often being attributed to the presence of chlorophyll [32]; peaks also
occur around 800 nm. However, based simply on spectral reflectance, it is difficult to
distinguish these samples. Therefore, it is necessary to use principal component analysis
for effective classification using Vis-NIR spectroscopy in combination with advanced
chemometrics methods. For the selection of ideal preprocessing methods for spectral data,
the analysis should be done with several combinations of preprocessing, statistical and
modelling methods, depending on the objective of the study. Discrimination accuracy can
be improved differently depending on each method of preprocessing treatment [33].

The use of multiple modelling approaches in combination with different preprocessing
methods resulted in the discrimination of GM and non-GM B. napus, B. rapa and F1 hybrids
with different classification accuracy. Previously, several studies used a combination of
NIR spectroscopy and multiple machine learning/chemometric methods for the effective
discrimination of GM and non-GM crops with high classification accuracies [18,22,31,34].
Higher classification accuracy was found in the combination of Savitzky-Golay and Support
Vector Machine methods. There are two known advantages of using derivatives of spectra:
(1) increased resolution of overlapping peaks and reduced baseline variations, and (2) more
effective modeling and testing than with the original spectra [35]. Among eight different
chemometrics methods used, Support Vector Machine and Linear Discriminant Analysis
were found to have the highest classification accuracy. SVM is a binary classification
technique that is designed to solve a classification problem and is based on statistical
learning theory. It has been shown to be an effective method for nonlinear classification,
multivariate function estimation, and nonlinear regression [36,37]. Considering the LDA
results, LDA grouped the plants on the basis of GM and non-GM B. napus, B. rapa and
the F1 hybrids separately. The Support Vector Machine and Linear Discriminant Analysis
methods were found to be more effective as compared to any other chemometric method.
However, the ranking of the algorithms may not be accurate due to information leakage
among different machine learning algorithms. Since the spectral data from the four different
plant groups were simultaneously used for the study, the possibility of information leakage
was quite high. However, the main outcome of the study is a novel, rapid method of
discrimination of GM and non-GM B. napus and their interspecific hybrids (B. rapa X B.
napus). Statistical analysis revealed the results were accurate and significant. ANOVA
showed the ability of preprocessing methods and models to predict with a p value of
p ≤ 0.05. Similar trends were also witnessed by Sohn et al. [38] in studying the six different
Amaranthus sp. in the fields using Vis-NIR spectroscopy coupled with modelling methods.

Brassica crops are generally high in polyphenols, but the composition of phenolic
compounds varies greatly between species and even between crops of the same species [39].
Flavonoids (mostly flavonols, but also anthocyanins) and hydroxycinnamic acids are
the most common polyphenols found in Brassica sp. [40]. Polyphenolic compounds are
essential components of a healthy diet. It has also been reported that they possess medicinal
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properties [41]. In general, as compared to other Brassica sp. B. napus has a higher level of
phenolic compounds, especially ferulic acid and sinapic acid derivatives [42,43]. To confirm
the validity of the NIR spectroscopy model, it is imperative to analyze the regression
coefficient plots of the PLS models to check that the key wavelengths of the model are
related to the spectroscopic signal of the interested constituent molecule [44,45]. Hence,
the GC-MS analysis and the Vis-NIR Spectra were correlated with PLSR methods, and
GM and non-GM crops were discriminated based on the polyphenolic compounds. The
RMSECV levels of three hydroxybenzoic acids (p-hydroxybenzoic, vanillic, and syringic
acids) analyzed in this study were much lower compared to the three hydroxycinnamic
acids (p-coumaric acid, ferulic acid and sinapic acid). Recently, Peiris et al. [24] studied the
discrimination of sorghum lines using NIR spectroscopy with different modelling methods
and also the starch and protein content among the selected lines. They found that regression
analysis resulted in the discrimination of lines according to seed starch contents.

4. Materials and Methods
4.1. Plant Materials

The seeds of the plants used in the study, such as B. napus L. ‘Youngsan’ and B. rapa L.
ssp. pekinensis ‘Jangkang’ were obtained from the National Agrobiodiversity Center, Jeonju,
Korea. GM B. napus (Youngsan) seeds with CAMV 35S-regulated bar gene and an early
flowering gene (BrAGL20) were kindly provided by Yeon-Hee Lee, National Institute of
Agricultural Sciences, Jeonju, Korea. For hybrid preparation, artificial hand pollination was
done with B. rapa and GM B. napus and the seeds of F1 hybrids (B. rapa X GM B. napus) were
used for further studies [8]. The hybrids were confirmed through a survival assay after
0.3% Bastar treatment, the phenotype of the hybrids, and polymerase chain reaction with
partial 35S promoter and BrAGL20 [8]. All the plants were grown in soil cups (Figure 6)
and maintained in a controlled environment. This study was performed from May to July
2020 in the greenhouse of the National Institute of Agricultural Sciences, Jeonju, Korea.
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4.2. Spectral Measurement and Preprocessing

Vis-NIR diffuse reflectance spectra were collected with a handheld integrated portable
spectral analyzer (FieldSpec® HandHeld 2, ASD Inc., Longmont, CO, USA), working in
reflectance mode (log/R) in the range of 325–1075 nm with stepping of 1.5 nm. The spectra
were measured on the adaxial surface of the fully expanded leaves, which can easily capture
the light. Three spectra were obtained from various parts of the leaf blade of fifty plants in
each group. A total of 150 (3 × 50 = 150) spectra were collected from each group and used
for further analysis. During each spectral acquisition, the Vis-NIR device’s optical window
was put in direct contact with the leaf’s surface, ensuring that the sensor window was
completely covered, according to the Sohn et al. [38]. Background signals appeared in the
raw spectra of samples due to system parameters and environmental noise. To minimize
spectral noise and improve effective information, different data preprocessing methods
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were employed, namely raw spectra, normalization, Savitzky-Golay, and Standard Normal
Variate, which can reduce the noise and improve the accuracy of modelling approaches.
The computations on preprocessing were done with Unscrambler® X software, version
10.5.1 (CAMO ASA, Oslo, Norway).

4.3. Modelling Methods and Statistical Analysis

For the effective visualization, principal component analysis (PCA) was used to
analyze patterns and variances in the dataset. This was to detect and remove outliers
before developing the classification models. For the effective discrimination of spectral
data, several machine learning methods were used. The modelling was performed with
the software package RapidMiner studios Version 9.0.002 (Rapidminer, Inc., Boston, MA,
USA). In the study, we used seven classification methods, namely, Linear Discriminant
Analysis, Convolutional Neural Network (deep learning), Gradient Boosted Trees, Support
Vector Machine, Random Forest, Generalized Linear Model, Fast Large Margin, and Naive
Bayes to find the best modeling approach with higher classification accuracy. For each of
the algorithms, the inputs were provided as the data points of the spectra and the classes
were the identification labels of B. napus, GM B. napus, B. rapa and F1 hybrid (B. rapa
X GM B. napus). The metaparameters were tuned according to the Sohn et al. [38] and
Abdeni et al. [46] for the effective use of the machine learning methods through RapidMiner
software package. The classification accuracy of the various machine learning approaches
combined with different preprocessing methods were calculated for identifying the precise
method for the discrimination of GM and non-GM B. napus, B. rapa and F1 hybrid between
B. rapa and GM B. napus.

One-way analysis of variance (ANOVA) was performed when comparing means for
testing the influence of the application of a scatter correction method, the eight classification
algorithms, and the interaction of the two precious factors (preprocessing and machine
learning methods). As a mean comparison method, Tukey’s range test was used at a
significance level of p ≤ 0.05.

4.4. Assessment of Phenolic Acid Contents

To compare the spectral differences and chemical composition of GM and non-GM
plants we assessed phenolic acid compounds using GC-MS analysis. The leaves of all
the plants were collected as three biological replicates and then freeze-dried at 80 ◦C for
at least 72 h and ground into a fine powder using a planetary mono mill (Pulverisette
6; Fritsch, Idar-Oberstein, Germany). The powder was stored at −80 ◦C until analysis.
Methanol-soluble and methanol -insoluble phenolic acids were extracted according to the
procedure described by Park et al. [47]. The powdered samples (0.01 g) were extracted
by incubating at 30 ◦C for 10 min with 1 mL of 85% methanol containing 2 g/L butylated
hydroxyanisole. After centrifugation at 13,000 rpm for 10 min at 4 ◦C, the supernatant and
residue were analyzed to determine the quantities of soluble and insoluble phenolic acids,
respectively. Hydrolysis was conducted with 1 mL 5 N NaOH at 30 ◦C under nitrogen gas
for 4 h. All mixtures were extracted with ethyl acetate and evaporated. After derivatization
by using pyridine and N-(tert-butyldimethylsilyl)-N-methyltrifluroacetamide with 1% tert-
butyldimethylchlorosilane, sample (1 µL) was injected into a 7890A gas chromatograph
(Agilent, Atlanta, GA, USA) with a split ratio of 10, and separated on a 30 m × 0.25-mm
i.d. fused silica capillary column coated with 0.25-µm CP-SIL 8 CB low bleed (Varian Inc.,
Palo Alto, CA, USA). The column effluent was introduced into a Pegasus HT TOF mass
spectrometer (LECO, St. Joseph, MI, USA). The detailed condition of GC-TOFMS was
followed as described previously [47]. Partial least squares regression (PLSR) was used to
develop models to regress on the concentrations of p-hydroxybenzoic acid, vanillic acid,
syringic acid, p-coumaric acid, ferulic acid and sinapic acid in all the samples. For all
predictions, the dataset was divided into calibration and validation once again, and k-fold
cross-validation was used to test the predictive significance of the models. The statistical
parameters used to evaluate the performance of the PLSR models were the root mean
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square error of calibration (RMSEC) and the coefficient of determination (R2C); in cross-
validation (RMSECV, R2CV). The optimum number of latent variables was determined
based on the minimum RMSECV to minimize the probability of over fitting.

5. Conclusions

In conclusion, Vis-NIR spectroscopy coupled with machine learning methods effec-
tively discriminated between B. napus and GM B. napus, as well as B. rapa and the F1 hybrids
(B. rapa X GM B. napus). Among the different combinations of preprocessing and machine
learning methods, the combination of Savitzky-Golay and Support Vector Machine was
found to be the most effective method, with 100% classification accuracy. The correct
classification accuracy of the validation tests was achieved at 100% in a spectral range
of 325–1075 nm. Further, GC-MS analysis-based phenolic acid measurements and PLSR
analysis showed that the results were significantly correlated with Vis-NIR spectroscopy-
based discrimination of GM and non-GM B. napus, B. rapa and F1 hybrids. Thus, it is
suggested that this nondestructive technology can be used in the field for the rapid detec-
tion of unintentional releases of GM crops and their hybrids into the environment, and for
effective management.
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