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Abstract: Scleroderma renal crisis (SRC) is an acute life-threatening manifestation of systemic sclerosis
(SSc) caused by obliterative vasculopathy and thrombotic microangiopathy. Evidence suggests a
pathogenic role of immunoglobulin G (IgG) targeting G-protein coupled receptors (GPCR). We
therefore dissected SRC-associated vascular obliteration and investigated the specific effects of patient-
derived IgG directed against angiotensin II type 1 (AT1R) and endothelin-1 type A receptors (ETAR)
on downstream signaling events and endothelial cell proliferation. SRC-IgG triggered endothelial cell
proliferation via activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent
activation of the E26 transformation-specific-1 transcription factor (Ets-1). Either AT1R or ETAR
receptor inhibitors/shRNA abrogated endothelial proliferation, confirming receptor activation and
Ets-1 signaling involvement. Binding of Ets-1 to the tissue factor (TF) promoter exclusively induced
TF. In addition, TF inhibition prevented endothelial cell proliferation. Thus, our data revealed a thus
far unknown link between SRC-IgG-induced intracellular signaling, endothelial cell proliferation and
active coagulation in the context of obliterative vasculopathy and SRC. Patients’ autoantibodies and
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their molecular effectors represent new therapeutic targets to address severe vascular complications
in SSc.

Keywords: angiotensin; renin–angiotensin system; endothelin-1; systemic sclerosis; renal crisis;
autoantibodies; coagulation

1. Introduction

Systemic sclerosis (SSc) is an autoimmune disease which affects multiple organs, with
a wide range of clinical manifestations. Scleroderma renal crisis (SRC), a rare and critical
manifestation of SSc, highly affects morbidity and mortality, especially when refractory
to treatment [1]. One of its key feature, obliterative vasculopathy, is initiated by vascular
remodeling in the interlobar arteries [2], although activation of the coagulation cascade
has also been shown to be involved in the pathology [3]. In addition, inhibition of the
renin–angiotensin system has dramatically improved the therapy of SRC, although the
underlying molecular mechanisms are not well understood [4].

Interestingly, autoantibodies targeting AT1R are involved in the occurrence of oblit-
erative vasculopathy in preeclampsia [5], as well as in kidney and heart transplant rejec-
tion [6–8]. In 2011, their role in the pathophysiology of SSc, as well as their association with
renal crisis and increased mortality risk, were identified [9]. Concomitantly, autoantibodies
targeting ETAR were detected in SSc patients and presented the same features as AT1R-IgG.
In transplant pathologies, an association with ETAR-IgG is already well established [7,10].

In addition, a previous study using receptor-specific IgG isolated from kidney trans-
plant recipients with vascular pathology showed that AT1R stimulates TF activation in an
acute clinical setting [6]. Passive transfer of patient’s IgG to rats with kidney grafts induced
renal lesions [6].

We hypothesized that the endogenous ligands of AT1- and ETA receptors activate
different intracellular signaling pathways compared to pathological SRC-IgG complexes.
The known ability of GPCRs to respond to different agonists such as endogenous ligands,
or even antibodies by triggering specific activation of different downstream signaling
pathways [11], supports this assumption.

The aim of the current study was therefore to investigate in detail the signaling path-
ways that are specifically activated by IgG from SRC patients. We demonstrate that SRC-IgG
affected the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated ki-
nase 1/2 (ERK1/2) signaling cascade. Moreover, we examined the cellular phenotype
triggered by this specific activation to decipher its underlying mechanisms. Our present
study provides new insights into the pathogenic molecular mechanisms of obliterative
vasculopathy in SRC and the involvement of AT1R- and ETAR-IgG.

2. Results
2.1. Autoantibodies against AT1R/ETAR Activate Ets-1 Transcription Factor via the ERK1/2 Pathway

We first verified whether ERK1/2 activation in HMEC-1 occurs upon stimulation with
SRC-IgG [9]. IgG prepared from SRC patients carrying AT1R-/ETAR-autoantibodies (IgG
levels > 10 U/mL in ELISA) strongly increased ERK1/2 phosphorylation (Figure 1a). This
effect was less pronounced with either endogenous ligands AT-II and ET-1 (0.8 and 1.65,
respectively, vs. 4.05 with IgG), or IgG from healthy controls (Ctrl-IgG) (Figure 1a).

In agreement with previous results [9], the inhibition of MEK-1 (a kinase upstream
from ERK1/2) with the specific inhibitor PD 184,352 abolished ERK1/2 activation by both
AT-II and ET-1, as well as by SRC-IgG (Figure 1a). In summary, these assays confirm that
ERK1/2 activation in endothelial cells occurs directly after stimulation with SRC-IgG.
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respectively. Such treatment abolished the increase in Ets-1 at transcriptional level down 
to 14% with Sitaxentan, and down to 28% with Valsartan (Figure 1c). It is known that 
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Figure 1. SRC-IgG activate Ets-1. Non-stimulated cells (Ctrl) were used as references when natural 
ligands were included, whereas Ctrl-IgG served as references when only IgG were used. (a) HMEC-
1 were stimulated with AT-II, ET-1, Ctrl-IgG or SRC-IgG, with or without pre-incubation with MEK-
1 inhibitor. ERK1/2 activation was measured as the pERK/α-Tubulin ratios. (b) Ets-1 transcriptional 
(left) and translational levels (right) were measured over time after stimulation with Ctrl- or SRC-
IgG. (c) Specificity was asserted by pre-treatment with an AT1R or ETAR inhibitor (Valsartan or 
Sitaxentan, respectively), before stimulation with Ctrl- or SRC-IgG. (d) (left and right) HMEC-1 

Figure 1. SRC-IgG activate Ets-1. Non-stimulated cells (Ctrl) were used as references when natural
ligands were included, whereas Ctrl-IgG served as references when only IgG were used. (a) HMEC-1
were stimulated with AT-II, ET-1, Ctrl-IgG or SRC-IgG, with or without pre-incubation with MEK-1
inhibitor. ERK1/2 activation was measured as the pERK/α-Tubulin ratios. (b) Ets-1 transcriptional
(left) and translational levels (right) were measured over time after stimulation with Ctrl- or SRC-IgG.
(c) Specificity was asserted by pre-treatment with an AT1R or ETAR inhibitor (Valsartan or Sitaxentan,
respectively), before stimulation with Ctrl- or SRC-IgG. (d) (left and right) HMEC-1 were incubated
with Ctrl-IgG, natural ligands or SRC-IgG with or without pre-incubation with respective receptor
blockers. (a–d) n = 4; representative blots are shown. * p < 0.05.

Notably, it has been reported that healthy individuals do carry AT1R- and ETAR-
IgG [12]. We demonstrated that although such healthy donor IgG do activate ERK1/2
(Figure 1a), such activation does not involve either AT1R or ETAR signaling (Figure S1,
absence of the effect of AT1R and ETAR inhibitors on Erk phosphorylation), in contrast
to SRC-IgG.

To determine the intracellular mechanisms underlying ERK1/2 immune activation,
we focused further downstream on Ets-1, a transcriptional regulator in AT-II- and ET-1-
mediated effects [13–16], and on the causative TF in autoimmune chronic pathologies [17,18].
Time-dependent HMEC-1 stimulation with SRC-IgG showed a maximal increase in Ets-1
transcript (Figure 1b left) and protein expression (Figure 1b right) one hour after the start of
the stimulation, persisting over 12 h in contrast to Ctrl-IgG. Transcriptional SRC-IgG effects
were comparable to the effects generated by the stimulation of HMEC-1 with AT-II and
ET-1 (Figure S2).

Next, we explored Ets-1 expression caused by SRC autoantibody stimulation by
treating endothelial cells with the AT1R- or ETAR inhibitors Valsartan and Sitaxentan,
respectively. Such treatment abolished the increase in Ets-1 at transcriptional level down to
14% with Sitaxentan, and down to 28% with Valsartan (Figure 1c). It is known that ERK1/2
mediates Ets-1 transcriptional activity by phosphorylating threonine 38 (Thr38) of the Ets-1
protein [19]: AT1- and ETAR inhibitors specifically decreased such Ets-1 phosphorylation
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(Figure 1d, left and right, respectively). An absence of the effects of AT2R and ETBR
inhibitors or Ctrl-IgG is shown for comparison.

These results demonstrate that SRC-IgG activates ERK1/2-signaling, thereby increas-
ing Ets-1 signaling activity via AT1R and ETAR.

2.2. AT1R-/ETAR Autoantibodies Trigger Endothelial Cell Proliferation via an ERK1/2—Ets-1
Signaling Pathway

Endogenous ligands induce endothelial cell proliferation via AT1R and ETAR in en-
dothelial cell types such as human umbilical endothelial vein cells (HUVECs) [20–22];
therefore, we next investigated whether SRC-IgG could trigger similar responses in en-
dothelial cells.

BrdU incorporation revealed that 24 h of stimulation with SRC-IgG indeed increased
HMEC-1 proliferation (Figure 2a left and right), although endogenous ligands and Ctrl-
IgG failed to impact endothelial cell proliferation. Furthermore, pre-incubation with AT1-
and ETAR inhibitors abolished such SRC-IgG-induced proliferative responses, and even
decreased it under the control level for Sitaxentan (Figure 2a left and right, respectively),
suggesting a receptor-specific proliferative effect of SRC-IgG. Additionally, inhibition of
the upstream regulators of ERK1/2 signaling, cRaf1 and MEK-1, prevented this observed
proliferation boost (Figures 2b and S3), demonstrating a direct link between activating
antibody-mediated stimulation of the ERK1/2 pathway and endothelial cell proliferation
in HMEC-1.

It has previously been reported that Ets-1 acts as a negative regulator of endothelial
apoptosis during embryogenesis [23]. Therefore, we used shRNA to knock down Ets-1
expression in HMEC-1 before exposing it to healthy or patient IgG. Western blots revealed
that shRNA prevented Ets-1 protein level increases in cells stimulated with SRC-IgG but
did not change the Ets-1 protein expression in cells exposed to Ctrl-IgG (Figure 2c). This
indicates an induction of Ets-1 synthesis in response to SRC-IgG but not Ctrl-IgG. Moreover,
shRNA targeting Ets-1 reduced endothelial cell proliferation in cells treated with SRC-IgG
but had no effect on cells that received Ctrl-IgG (Figure 2d).

We conclude that the SRC-IgG-mediated stimulation of AT1R/ETAR activates ERK1/2,
and that its downstream signaling induces the Ets-1 transcription factor which, in turn,
promotes endothelial cell proliferation.

2.3. Tissue Factor Expression Is Positively Regulated by Ets-1 Binding in the Promoter Region

To complete this cascade of Ets-1 regulated mechanisms with effector proteins, we
considered TF as a biologically important and potential downstream effector target due to
its demonstrated crucial role in the coagulation cascade [24,25]. To establish a direct link
between Ets-1 and TF regulation in SRC-related vascular obliteration, we performed pro-
moter analysis of the TF gene using dual luciferase assays. TF promoter deletion constructs
showed that a motif located within 495 base pairs downstream of TF transcription initiation
site is essential for TF expression induced by both endogenous ligands (Figure 3a left) and
SRC-IgG (Figure 3a right). AT1R- and ETAR-inhibitors abolished all increases in promoter
activity, again demonstrating specificity to these receptors (Figure 3b, left and right).

The luciferase assays were expanded to the endogenous TF promoter. Hence, we
first assessed the presence of an active Ets-1 binding site in the promoter. An EMSA (elec-
trophoretic mobility shift assay) showed specific binding of Ets-1 to the TF promoter, which
was even higher upon SRC-IgG stimulation. This binding was lost upon the addition of spe-
cific non-labeled DNA. Moreover, addition of the Ets-1 antibody confirmed that the DNA
fragment was occupied by Ets-1 (Figure 3c). We performed chromatin immunoprecipitation
(ChIP) with anti-Ets-1 antibodies on stimulated HMEC-1 (Figure 3d left (Ets-1 binding
site flanking primers) and right (binding site-independent primers, negative control)) and
confirmed our promoter analyses conclusions (Figure 3a); immunoprecipitation with Ets-1
antibodies specifically yielded a Ets-1 binding site PCR product of expected size, enriched
upon ligand or activating IgG stimulation.
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sponding receptor inhibitors (a) (left and right) or cRaf1 inhibitor (b). (c) Abolition of Ets-1 transla-
tional regulation by shRNA following six-hour HMEC-1 stimulation. Ctrl shRNA corresponds to a 
mix of three control shRNA plasmids. Blots were over-exposed to better appreciate the decrease in 
the protein level. (d) Decrease in SRC-IgG induced endothelial cell proliferation by Ets-1 knock-
down. (a–c) n = 4, (d) 7 ≤ n ≤ 11; representative blots are shown. * p < 0.05. 
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Figure 2. Endothelial cell proliferation elicited by SRC-IgG via ERK1/2–Ets-1 signaling. Non-
stimulated cells (Ctrl) were used as reference when natural ligands were included, whereas Ctrl-IgG
served as reference when only IgG were used. HMEC-1 were stimulated for 24 h with either
natural ligands, Ctrl- or SRC-IgG, and specificity was assessed via two-hour pre-incubation with
corresponding receptor inhibitors (a) (left and right) or cRaf1 inhibitor (b). (c) Abolition of Ets-1
translational regulation by shRNA following six-hour HMEC-1 stimulation. Ctrl shRNA corresponds
to a mix of three control shRNA plasmids. Blots were over-exposed to better appreciate the decrease in
the protein level. (d) Decrease in SRC-IgG induced endothelial cell proliferation by Ets-1 knockdown.
(a–c) n = 4, (d) 7 ≤ n ≤ 11; representative blots are shown. * p < 0.05.

Taken together, these findings demonstrate that an active Ets-1 binding site exists in
the TF promoter, >495 base pair upstream of transcription initiation site, which stimulates
TF expression in HMEC-1 in response to SRC-IgG.

2.4. SRC-IgG-Mediated Ets-1 Signaling Induces TF-Dependent Proliferation

After confirming that AT1R/ETAR stimulation increased Ets-1 binding to the TF
promoter (Figure 3), we further investigated the effect on TF mRNA in HMEC-1. Tran-
scriptional levels of TF transiently tripled one hour following SRC-IgG (but not Ctrl-IgG
stimulation; Figure 4a left), which, in turn, became considerably upregulated TF protein
levels after six hours of stimulation (Figure 4a right, endogenous ligands and Ctrl-IgG had
minimal effects).

We further tested whether increasing TF expression modulated its activity. AT-II and
ET-1 stimulation indeed increased TF activity (46% and 87% increases in comparison to
the control, respectively, Figure 4b) [26], whereas stimulation with activating IgG exhibited
a potential comparable to ET-1 (79% increase compared to control, Figure 4b). Ctrl-IgG
had an effect in the range of what was observed with AT-II. The receptor specificity was
again confirmed by the lack of increase in TF activity upon pre-treatment with AT1/ETAR
inhibitors (Figure 4b). Similarly, Ets-1 knockdown in HMEC-1 demonstrated the essential
role of Ets-1 for TF activity induced by SRC-IgG, whereas Ets-1 was not involved with



Int. J. Mol. Sci. 2022, 23, 244 6 of 16

Ctrl-IgG (Figure 4c). This was corroborated by supplemental data, where SRC-IgG, but not
Ctrl-IgG, stimulated thrombin protein release in HMEC-1 (Figure S4).
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Figure 3. Ets-1 binding to the TF promoter upon AT1R/ETAR stimulation by either respective natural
peptide ligand or in response to SRC-IgG. (a) (left and right) Dual luciferase assay shows a TF
promoter activity increase in response to either receptor-activating scenarios as compared with non-
stimulated or Ctrl-IgG treated cells. (b) (left and right) Observed activation is abolished by specific
AT1R or ETAR inhibitors. (c) EMSA performed with nucleus proteins of endothelial cells incubated
with TF promoter DNA. Shift specificity was assessed using non-labeled DNA, the incubation with
Ets-1-specific antibodies triggering a supershift. (d) (left and right) Chromatin immunoprecipitation
(ChIP) performed using stimulated cells, the DNA of which was precipitated with an antibody
directed against Ets-1. (a) left, (b,d) n = 4, (a) right, (c) n = 3; representative blots are shown. * p < 0.05.

Finally, we investigated the link between TF and endothelial cell proliferation. For
this purpose, HMEC-1 were pre-incubated with specific TF-inhibiting antibodies before
stimulation with Ctrl- or SRC-IgG. TF-inhibiting antibodies specifically and significantly
reduced SRC-IgG-induced endothelial cell proliferation (39% decrease), whereas they only
had a limited effect upon stimulation with Ctrl-IgG (15% decrease) (Figure 4d).

These results clearly demonstrate that TF acts as a downstream effector of Ets-1 in the
ERK 1/2 immune-induced signaling pathway mediating endothelial cell proliferation in
SRC (Figure 5).
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antibody annihilates endothelial cell proliferation elicited by SRC-IgG. (a,c) n = 4, (d), 4 ≤ n ≤ 7;
representative blots are shown. * p < 0.05, ** p < 0.01.
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Figure 5. Proposed intracellular cascade following AT1R and ETAR activation by SRC-IgG. Binding
of SRC-IgG to the receptors triggers the activation of cRaf1, MEK, ERK1/2 and, in turn, of Ets-1,
through phosphorylation of its Thr38. Once activated, Ets-1 binds to the promoter of TF, triggering its
expression (mRNA and protein). This intracellular pathway results in endothelial cell proliferation,
inducing obliterative vasculopathy in SSc patients.
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3. Discussion

Our study provides evidence that activating autoantibodies directed against AT1R/ETAR
trigger a specific signaling pathway linking the transcriptional control of endothelial cell
proliferation with increased pro-coagulatory properties in scleroderma renal crisis (SRC).
Exposure of microvascular endothelial cells to receptor-activating antibodies triggered
ERK1/2 phosphorylation, increased further downstream Ets-1 transcription factor activa-
tion and led to subsequent synthesis of TF as Ets-1 target gene and initiator of coagulation.
This cascade was not observed upon activation with the natural ligands of the receptors.
With this newly described molecular mechanism, we expand our previous findings [9]
and offer potential explanations as to why SRC patients harboring AT1R- and ETAR-IgG
present an increased risk for the earlier occurrence of severe and potentially lethal vascular
complications in the kidney.

In this study, we concentrated on SRC-IgG and their involvement in the pathogene-
sis of SRC. Antibodies other than AT1R- and ETAR-IgG have been associated with SRC.
Anti-RNA polymerase III antibodies (ARA), especially, have been associated with kidney
manifestations of systemic sclerosis [27–29]. However, although these antibodies consti-
tute a biomarker of SRC, no studies show that these antibodies participate actively in the
occurrence of the disease. In the publication from Mouthon L. et al., three out of the four
SRC patients tested presented anti-Topoisomerase I antibodies (ATA) [27]; according to
the literature, antinuclear antibodies, among which include ARA and ATA, are mutually
exclusive [30]. Moreover, ATA is associated with the occurrence of interstitial lung disease,
but not with SRC [31].

Our work presents the involvement of the ERK1/2–Ets-1 signaling pathway in the
occurrence of SRC vascular lesions. Members of the ETS transcription factor family partici-
pate in the regulation of inflammatory and angiogenic responses in endothelial cells [19].
The Ets-1 protein structure contains a conserved DNA-binding domain, forming a winged
helix-turn-helix structure. Other Ets-1 target genes, such as the IL-8 gene, can be induced
by SRC-IgG stimulation, as we have previously demonstrated [32]. Ets-1 activation is
also involved in chronical autoimmune pathologies such as rheumatoid arthritis [18]
and lupus [17].

Several reports indicate a role of Ets-1 in endothelial cell proliferation [33,34]. In a
pathological paradigm of murine carotid–jugular fistula, Ets-1 expression has been shown to
be increased in the neointima and overlying endothelium [35]. In terms of signaling, chronic
infusion of AT-II in mice induces Ets-1 expression in endothelial cells [16]. Our results
imply that SRC-IgG cause endothelial proliferation through Ets-1-mediated transcriptional
program, notably its subsequent chronic activation of TF. TFs act as the primary initiator of
the in vivo coagulation cascade. The endothelium itself has been shown as an important
source of TF [36]. Uncontrolled endothelial proliferation, combined with increased pro-
coagulatory properties of the endothelium of middle-sized arteries and arterioles, can
contribute to the formation of onion-skinning concentric narrowing, which then leads to the
obliterative vasculopathy observed in kidneys during SSc [37]. Studies of antiphospholipid
syndrome have demonstrated that autoantibodies can exert an influence on TF expression
on either monocytes [38] or endothelial cells [39].

Notably, the differences observed between the proliferation measures in Figure 3a,b,d
are most likely due to the use of distinct experimental methods (namely, a Roche prolifera-
tion kit for the 3a/b and BrdU immunofluorescence for 3d), not actual biological difference.

Activation of the ERK–Ets-1–TF axis was investigated here in human endothelial cells.
However, AT1R and ETAR are also strongly expressed in renal vascular smooth muscle
cells, (vSMCs) [40,41]. Moreover, SRC has been associated with the proliferation of both
endothelial and vascular smooth muscle cells [42]. Hence, we cannot exclude that the
signaling pathway we describe also occurs in vSMCs, and further studies are needed to
clarify whether these cells are also affected by SRC-IgG. One such modern approach to
identify how SRC-IgG differentially influence EC and vSMC would be single-cell sequenc-
ing. Two recent articles have thus investigated the relative impact of EC and vSMC in
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hypertension-induced vascular remodeling [43,44]. In a mouse model of salt-induced hy-
pertension, Zhang et al. showed that hypertensive vessels present increased smooth muscle
cell populations, partly due to endothelial-to-mesenchymal cell transition [44]. In a context
of systemic sclerosis, single-cell sequencing was used to study immune cell heterogeneity
between patients and healthy controls using skin samples [45], or whole endothelial cell
genetic patterns in individuals with or without the disease [46]. Such investigations would
be of particular interest in blood vessels from SRC patients to identify the consequences
of SRC-IgG on specific cell types. Obviously, a single-cell sequencing approach in blood
vessel would require spatial cell type identification, one of which possibilities could be to
couple this method with spatial transcriptomics, as the group of H. Benjamin published
recently for acute kidney injury [47].

We observed differences between the actions mediated by SRC-IgG and natural ligands.
In HMEC-1, patient IgG and ET-1 activated ERK 1/2 and Ets-1, although ET-1-driven
activation was significantly lower in comparison with SRC-IgG. In the literature, the ET-
1 activation of ERK 1/2–Ets-1 signaling has exclusively been reported once in human
peritoneal mesothelial cells [33]. In contrast, AT-II has been reported three times as an Ets-1
activator, but exclusively in renal or cardiac fibroblasts [48–50].

In addition, in contrast to SRC-IgG, neither AT-II nor ET-1 increased HMEC-1 pro-
liferation. AT-II has, however, recently been associated with increased proliferation in
lymphatic endothelial cells, and previously in human umbilical vein endothelial cells (HU-
VECs) [20,51]. AT1R stimulation triggered angiogenesis in both instances, a mechanism not
involved in the present work. Additionally, three reports demonstrated that ET-1 increases
endothelial cell proliferation [52–54], although in each case, the ETAR inhibitor was only
mildly efficient, whereas the ETBR inhibitor blocked the observed effects.

Finally, TF protein expression was only moderately increased in response to either
natural ligand (in contrast to SRC-IgG), which was mirrored by a moderate induction of TF
activity compared with SRC-IgG. AT-II-induced increases in TF expression had already been
reported in monocytes [55] and transgenic rats showing cardiac vasculopathy [56]. ET-1
links to TF are less well documented, but have been shown in children with bronchopul-
monary dysplasia [57], whereas the induction of TF by AT1R-IgG has already been reported
in women with preeclampsia and in acute kidney graft rejection by our group [6,58]. In the
present study, TF activation by SRC-IgG was mediated by Ets-1. On the other hand, our
previous sister reports in preeclampsia and kidney graft rejection involved AP-1 and/or
NF-κB [6,58]. Articles establishing TF activation by AT-II also involved NF-κB [55,56].
Hence, although the massively decreased TF expression following Ets-1 inhibition makes
such a hypothesis unlikely, further studies are needed to establish whether AP-1 and NF-κB
also participate in SRC and TF induction.

According to the data presented here, AT1R inhibitors should prove beneficial in
the treatment of SRC. Actually, several reports about patients treated with angiotensin
receptor blockers (ARBs) exist, but the general picture remains controversial: in 1997, an
article reported the failure of losartan to control SRC in a patient [59], whereas another case
report published in 2005 described a resolution of the crisis under treatment with ARB [60].
Most patients presenting SRC receive angiotensin-converting enzyme inhibitors (ACEi), a
treatment which leads to a significant increase in the 5-year survival of SRC patients [61].
Nevertheless, a recent two-year prospective survey demonstrated that exposition to ACEi
prior to the onset of SRC was associated with a higher risk of death, even when pre-existing
hypertension backgrounds were taken into account. In contrast, ARB did not present these
negative effects [4]. Moreover, analysis of the cohort from the European Scleroderma Trial
and Research group (EUSTAR) showed that the cumulated incidence of SRC was higher
for patients treated with ACEi, whereas ARBs had no influence [62]. Finally, another recent
study revealed that ARB could delay the development of major vascular complications,
such as SRC or pulmonary arterial hypertension in SSc patients, whereas use of ACEi was
rather associated with an earlier onset of such complications [63]. These data underline
the need for further large-scale, comparative studies to determine the effectiveness of ARB
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in the treatment of SRC. Taking into account our results on SRC-IgG in the pathogenesis
of SRC mediated by AT1- and ETAR, the use of ARBs appears more likely to be beneficial
compared with ACEi, as mostly reported.

3.1. Study Limitations

We are aware that our study has limitations. Our IgG preparations stemmed from
four patients with scleroderma renal crisis. However, as emphasized in a recent article, this
complication has become increasingly rare over the years [64].

As a second limitation, we did not investigate the activation of NF-κB and AP-1
transcription factors that have already been associated with AT1R-Abs in acute kidney graft
rejection. Nonetheless, the considerable effect of Ets-1 shRNA-mediated knockdown on
proliferation and TF expression leads us to the conclusion that Ets-1 is a major player in the
signaling axis that could lead to the endothelial phenotype of SRC.

Moreover, the spectrum methods is constantly evolving, and single-cell sequencing
has noticeably changed the way studies are conducted. Applying this method to our exper-
imental setting could hold the key to understand how SRC-IgG are affecting differentially
specific blood vessels cell types.

Finally, IgG isolated from healthy controls do induce ERK1/2 activation and endothe-
lial cell proliferation, but without involving AT1R, ETAR or Ets-1. Future studies should
assess the exact particularities of patients and healthy autoantibodies.

3.2. Conclusions and Perspectives

Our results highlight a new mode of signaling and transcriptional regulation of TF
by Ets-1, induced by autoantibodies against AT1R and ETAR. This adds a new layer of
complexity to the concept, in which endothelial injury can be separated into two stages of
response: first, a rapid, initial reaction; and second, a slower phenotypic response, the latter
of which could trigger vascular remodeling [65]. Our studies further point to additional
molecular mechanisms involving Ets-1 and TF. Hence, Ets-1 has been involved in dermal
and renal fibrosis, and targeting this factor showed improvements in collagen dysregu-
lation [13,66]. Concomitantly, TF has been associated with lung fibrosis, and therapeutic
interventions with Dabigatran (anticoagulant) were conclusive [67]. Therapeutic strategies
in SRC could be improved, associating specific targeting of new actors and known beneficial
treatments, such as plasmapheresis [68].

4. Materials and Methods
4.1. Clinical Samples and IgG Isolation

Serum and plasma were obtained from four patients treated for angiotensin-converting
enzyme I (ACEI) inhibitor-refractory SRC in our clinic between January 2006 and October
2010, after written informed consent and local ethics committee approval (EA1/013/705)
had been received. SRC was defined by an otherwise unexplained rapid decline in renal
function (increase in serum creatinine≥50%) in patients with SSc. Diagnosis was confirmed
by renal biopsy showing obliterative vasculopathy of arteries and arterioles in all cases
(Table S4). All healthy and SRC individuals were tested for the presence of AT1R and
ETAR antibodies using a sandwich ELISA (CellTrend GmbH, Luckenwalde, Germany),
as described in detail in [69]. Only SRC patients showed high (above 10 U/mL) AT1R-
and ETAR-IgG levels. All experiments were performed with four different individual
IgG preparations isolated from patient plasma. IgG were isolated with HiTrap Protein
G columns (GE Healthcare, Chicago, IL, USA). Briefly, plasma originating from the first
plasmapheresis was aliquoted in 50 mL samples and frozen. Aliquots (50 mL) were thawed
upon experimentation, mixed 1:1 with binding buffer (0.02 M Na2HPO4, pH 7.0) and
filtered through a 0.45 µm filter to eliminate debris. The mix was then passed twice through
a protein G column to bind IgG. Unspecific binding was removed by washing the column
with binding buffer. IgG were eluted using a low-pH elution buffer (0.1 M Glycin-HCl,
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pH 2.7), and harvested in fractions 4 to 8. The elution buffer was then neutralized with 1 M
Tris, pH 9.0, and IgG were dialyzed against low-glucose DMEM overnight.

4.2. Cell Culture, Stimulation and Transfection

Human dermal microvascular endothelial cells (HMEC-1) were cultured in endothelial
cell growth medium (PAA Laboratories GmbH, Pasching, Austria) with 5% (v/v) FBS. These
cells reliably express AT1R and ETAR. For stimulation experiments, HMEC-1 were serum-
starved for 24 h, then stimulated with SRC-IgG (1.5 mg/mL), ET-1 (0.1 µmol/L), AT-II
(1 µmol/L). Pre-incubation with AT1R or ETAR inhibitors (Valsartan, Sigma Aldrich, Saint
Louis, MI, USA and Sitaxentan, Pfizer, New York, NY, USA, respectively), MEK or Raf in-
hibitors (PD 184,352, Axon Medchem, Reston, VA, USA and GW5074, Sigma Aldrich, Saint
Louis, MI, USA, respectively) were performed for two hours, whereas TF-blocking antibody
(clone 5G9) was pre-incubated for 15 min. Western blots were performed as described
previously [9]. Cells were rinsed twice with ice-cold 10 mM HEPES, 150 mM NaCl buffer,
pH 7.5, before lysis in buffer containing 40 mM Tris/HCl, pH 8.0, 4 mM EDTA, 20% glycerol,
276 mM NaCl, 2% Triton X-100, 1 mM sodium vanadate, 2 mM sodium pyrophosphate,
10 mM sodium fluoride, 10 mM β-glycerophosphate, and complete protease inhibitor
cocktail (Roche Diagnostics, Switzerland). After 20 min incubation on ice, the lysates were
cleared by centrifugation at 14,000 rpm at 4 ◦C for 15 min. Protein concentrations were
determined with Bio-Rad Protein Assay. Aliquots with a 40 µg total protein content were
boiled in SDS-Laemmli buffer with 100 mM DTT for 5 min. Samples were loaded onto 10%
Bis-Tris polyacrylamide gels and separated by electrophoresis. Proteins were transferred
onto nitrocellulose membranes (GE Healthcare, Sweden), which were then blocked for one
hour at room temperature with 5% non-fat milk (Applichem, Germany) and 1% bovine
serum albumin (SERVA, Germany) in 0.1% Tween-Tris-buffered saline. Membranes were
probed with phospho-ERK (Cell Signaling, Danvers, MA, USA), α-Tubulin (Sigma Aldrich,
Saint Louis, MI, USA), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Santa Cruz,
Dallas, TX, USA or Hytest Ltd., Turku, Finland), p38-Ets-1 (Invitrogen, Carlsbad, CA, USA),
Ets-1 (Santa Cruz, Dallas, TX, USA), TF (American Diagnostica, Pfungstadt, Germany)
antibodies. shRNA vectors provided by Santa Cruz were used to deliver scrambled or Ets-1
shRNA. Cells were transfected with TurboFect (Fermentas, Waltham, MA, USA), following
the manufacturer’s instructions. After three hours, the medium was changed to starvation
medium. On the next day, cells were stimulated.

4.3. Proliferation Assays

Proliferation was measured by Bromodeoxyuridine (BrdU) assay using either a kit
(Roche Diagnostics, Switzerland) (Figure 3a,b) or immunofluorescence with anti-BrdU
antibody from Cell Signaling (Danvers, MA, USA) or Alexa Fluor 488 mouse anti-BrdU
antibody from BD Pharmingen (San Diego, CA, USA) (Figures 3d and 5d), as previously
described [70]. Briefly, cells were seeded on glass coverslips coated with 0.2% porcine
gelatin. After starvation overnight, cells were stimulated. One hour before the end of the
stimulation, BrdU was diluted to a final concentration of 20 µM in the cell culture medium.
Cells were then washed and fixed with paraformaldehyde 4% for 15 min. Permeabilization
was performed with 0.5% Triton X100 for 3 min and cells were finally blocked overnight at
4 ◦C in BSA 1%. On the next day, the BrdU antibody was diluted 1/1000 in a PBS solution
containing 1% BSA, 33 mM Tris-HCl pH 8.0, 0.33 mM MgCl2 and 0.5 mM Mercaptoethanol
and Dnase I 2 U/µL for one hour at 37 ◦C. After washing, secondary fluorescent antibody
was incubated for 1 h 30 at 37 ◦C. DAPI was used to counterlabel nuclei. Cell counting was
performed automatically using ImageJ version 1.48.

4.4. RNA Extraction and Quantitative RT-PCR

All primer sequences are provided in the Supplementary Material (Table S1). Total
RNA was extracted from cultured cells, and quantitative reverse transcription (RT)-PCR
was performed with an Applied Biosystems 7500 Fast Real-Time PCR system (Applied
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Biosystem, Waltham, MA, USA) using Power SYBR Green PCR Master Mix. Relative
amounts of gene transcript were calculated by the cycle threshold method and normalized
for the endogenous reference (β2-microglobulin).

4.5. Reporter Constructs and Luciferase Assay

All primer sequences are provided in the Supplementary Material (Table S2). PCR
products were cloned into a luciferase vector (pGL4.10, Promega, Madison, WI, USA).
HMEC-1 were transfected with the TF reporter plasmid and co-transfected with the ref-
erence pRL-TK renilla plasmid. Luciferase activity was assessed with the dual-luciferase
reporter assay system (Promega, Madison, WI, USA).

4.6. Nuclear Extracts and Electrophoretic Mobility Shift Assay (EMSA)

All primer sequences are provided in the Supplementary Material. Oligonucleotide
probes were labeled using a Biotin 3’ End DNA Labeling Kit (Thermo Scientific, Darmstadt,
Germany). Nuclear extracts were prepared using an NE-PER Nuclear and Cytoplasmic
Extraction Kit (Thermo Scientific, Waltham, MA, USA). The probe for Ets-1 used in EMSA
(5′-TGGGCAAAGCATCCGGGAAATGCC-3′) corresponds to the TF promoter region:
−498 to −475 bp. The binding mixture contained 5 µg nuclear extract, 20 fmol labeled
double-stranded probe, 1 µg poly-dI/dC, and 1X reaction buffer. Incubation was performed
at room temperature for 30 min. Protein–DNA complexes were then analyzed by elec-
trophoresis in 6% non-denaturing polyacrylamide gels and visualized using a LightShift
Chemiluminescent EMSA Kit (Thermo Scientific, Darmstadt, Germany). In supershift
experiments, nuclear extracts were incubated with Ets-1 antibody (Abcam, Cambridge, UK)
before adding the biotin-labeled probe.

4.7. Chromatin Immunoprecipitation Assay (ChIP)

Formaldehyde cross-linking and ChIP were performed using the ChIP-IT High Sensi-
tivity Kit (Active Motif, Carlsbad, CA, USA), following the manufacturer’s instructions.
Briefly, after test exposure, HMEC-1 were fixed for 10 min with complete cell fixation
solution containing 37% formaldehyde, and sonicated to generate 500–800 bp DNA frag-
ments. Immunoprecipitation was performed with protein G agarose beads and 4 µg of Ets-1
antibody (Abcam, Cambridge, UK). Chromatin extracts were incubated with the antibodies
at 4 ◦C overnight under mild shaking, and ChIP DNA was eluted according to the manufac-
turer’s instructions. Precipitated DNA was purified and amplified by PCR with specific TF
primers positive or negative for the presence of the Ets-1 binding site. PCR amplifications
were performed with the primers listed in the Supplementary Material (Table S3).

4.8. Chromogenic TF Activity Assay and Thrombin Secretion

TF activity was measured as described previously [71]. Stimulated or non-stimulated
HMEC-1 were washed twice with ice-cold PBS. Cells were incubated for 15 min at 37 ◦C
with 0.1 M n-octyl-β-D-glucopyranoside in HEPES buffer (200 µL total). TF activity was
measured by adding 100 µL of the sample to a solution of 2 nM factor (F)VIIa, 150 nM
FX, and 5 mM CaCl2. Chromogenic FXa substrate (American Diagnostica, Pfungstadt,
Germany) was added to each well (0.5 mM final). At intervals, samples were transferred to
a microtiter plate containing EDTA buffer, which terminated the generation of FXa. OD
increments were measured at 405 nm for 30 min using a kinetic ELISA plate reader (37 ◦C,
Molecular Devices, San Jose, CA, USA). TF activity units were assessed by a standard
curve. Thrombin secretion was measured with an AssayMax Human Thrombin ELISA Kit
(Assaypro LLC, St Charles, MO, USA), as described previously [72].

4.9. Statistics

All statistical analyses were performed with GraphPad Prism v8.00 (GraphPad Soft-
ware, San Diego, CA, USA). Statistical significance was assessed using Mann–Whitney
U tests (* p < 0.05, ** p < 0.01, *** p < 0.001). Data are presented as the mean of independent
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experiments with the amount of individual experiments provided in figure legends as
“n = ”; error bars depict the SEM calculated from these independent experiments. All
experiments were performed with individual patient IgG and the results were only pooled
for the graphical representation and statistical analysis.
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