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Abstract: Antimicrobial peptides (AMPs) are considered prospective antibiotics. Some AMPs fight
bacteria via cooperative formation of pores in their plasma membranes. Most AMPs at their working
concentrations can induce lysis of eukaryotic cells as well. Gramicidin A (gA) is a peptide, the
transmembrane dimers of which form cation-selective channels in membranes. It is highly toxic for
mammalians as being majorly hydrophobic gA incorporates and induces leakage of both bacterial
and eukaryotic cell membranes. Both pore-forming AMPs and gA deform the membrane. Here we
suggest a possible way to reduce the working concentrations of AMPs at the expense of application
of highly-selective amplifiers of AMP activity in target membranes. The amplifiers should alter the
deformation fields in the membrane in a way favoring the membrane-permeabilizing states. We
developed the statistical model that allows describing the effect of membrane-deforming inclusions
on the equilibrium between AMP monomers and cooperative membrane-permeabilizing structures.
On the example of gA monomer-dimer equilibrium, the model predicts that amphipathic peptides
and short transmembrane peptides playing the role of the membrane-deforming inclusions, even in
low concentration can substantially increase the lifetime and average number of gA channels.

Keywords: lipid membrane; antimicrobial peptide; gramicidin; theory of elasticity; partition function;
Mayer cluster expansion; monomer-dimer equilibrium

1. Introduction

Antimicrobial peptides (AMP) are considered as prospective candidates for the next
generation of antibiotics; they are thought to be able to overcome multiple drug resistances
of bacteria. In a variety of AMPs several (overlapping) classes can be distinguished: α-
helical amphipathic peptides [1,2], β-hairpin peptides [3], channel-formers [4]. AMPs can
fight bacteria via several mechanisms, among which the cell lysis or pore formation in
the plasma membrane is relatively widespread [1,5–7]. The selectivity of AMPs towards
bacteria is mainly based on negative electric charge of the outer leaflet of bacterial plasma
membrane, as opposed to electrically neutral outer leaflets of membrane of eukaryotic
cells. Thus, most of AMPs carry large positive electric charge to ensure strong binding of
peptides to bacterial membranes [1,3,6].

Two types of pores are usually observed: (i) barrel-like, where the pore edge is
formed exclusively by peptide molecules [8,9]; (ii) toroidal, where the edge is formed
by both peptides and lipids [8,10,11]. The characteristic feature of amphipathic peptides
having α-helical secondary structure is that their helix has one predominantly hydrophobic
side surface, while the opposite side surface is mainly polar and charged. The ratio of
hydrophobic/hydrophilic areas determines the so-called polar angle, which is considered
to be responsible for the type of the pore formed by the peptides: larger polar angle yields
barrel-like pores. AMPs having β-sheet secondary structure mostly form barrel-like pores
of fixed stoichiometry, and, consequently, fixed pore diameter and conductivity [3].
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The mechanisms of pore formation by membrane-bound peptides are still under
debate. Experimentally, two configurations of AMPs are commonly observed: (i) a surface-
bound S-configuration, in which the AMPs lie almost parallel to the membrane surface,
having their hydrophobic parts incorporated into the lipid monolayer hydrophobic core;
(ii) a membrane-spanning I-configuration, in which AMPs stand about perpendicularly to
the membrane plane forming the edge of toroidal or barrel-like pore [8,10,12]. An intensive
transformation from S to I-configuration leading to pore formation takes place at around
certain so-called critical surface concentration of AMP, which usually weakly depends on
particular AMP chemical structure, and for the most AMPs has the order of magnitude
of about 40–100 lipids per peptide [1,8,10,13]. In the membrane-bound S-configurations
AMPs incorporate their hydrophobic parts into the lipid monolayer, thus unavoidably
inducing elastic deformations of the membrane [2,12,14–16]. The characteristic length of
lateral spread of membrane deformations is about several nanometers [17–19]. When the
membrane-deforming peptides are far separated, their induced deformations are inde-
pendent and the corresponding elastic energies are additive. However, as the distance
between the peptides decreases, the deformations overlap leading to effective lateral inter-
action between the peptides [19]. Deformations induced by a typical α-helical amphipathic
peptide affect about 80 lipid molecules in the peptide vicinity [19,20] in both membrane
leaflets; this value is pretty close to the AMP critical surface concentration. In other words,
an intensive pore formation starts when, on the average, the whole membrane is covered
by peptide-induced deformations. Substantially higher AMP concentrations usually lead
to micellation of the membrane; in this case the AMP acts as a detergent [21]. Physical
reasons of cooperative re-orientation of initially membrane-bound AMP molecules in the
course of transformation to I-configuration, as well as the reasons of similarity of the
critical concentration values among AMPs having different chemical structures are not yet
resolved. In the work [22] the authors thoroughly analyzed approximately 16,000 different
peptides 9–15 amino acid residues long, soluble in water and increasing the permeability of
phospholipid membranes upon binding to them. As a result, 10 peptides with high rates of
solubility and membrane permeabilization were selected. The analysis of the selected pep-
tides did not reveal any unique features of the chemical structure. These extremely active
peptides had no common sequence motifs, differed in peptide length and total electrical
charge. However, the peptides had a similar secondary structure and core hydrophobicity.
In an extensive review on membrane permeabilizing peptides [23], it is noted that there
is no established single mechanism of action of such peptides, and that the membrane
permeabilization is the result of a heterogeneous and dynamic ensemble of structural states
of peptides that differ depending on a variety of experimental conditions. In this regard,
there are practically no discrete active structures among the thousands of known AMPs,
and there are no clear rules for determining the chemical structure of a peptide to achieve
a given membrane activity. In this review, the authors propose not to analyze specific
features of the chemical structure of peptides, but rather to consider the distribution of the
totality of all membrane-permeabilizing peptides in the space of their mechanical action on
lipid membranes.

Unfortunately, at the bulk concentrations of the AMP that are necessary to achieve the
critical surface concentration, most AMPs effectively bind and permeabilize membranes
of eukaryotic cells as well [1]. The AMP affinity towards a membrane of particular lipid
composition is determined by peptide electric charge and by the tendency to hide the
hydrophobic parts of the molecule inside the membrane hydrophobic core. The latter is
achieved via partial incorporation of the peptide into the lipid monolayer, and it is the
incorporation that is responsible for membrane deformations leading to peptide-peptide
lateral interaction and cooperative pore formation. Thus, an effective AMP has to have
a substantial hydrophobic part of the molecule. The hydrophobic interactions depend
but weakly on the particular type of the membrane (bacterial or eukaryotic), and for this
reason there should be always a fraction of AMPs that bind to eukaryotic cells, potentially
leading to their permeabilization or even lysis. Such concomitant damage of eukaryotic
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cells substantially hinders the development and practical use of AMPs. A way to overcome
this side effect is to develop highly effective AMPs to decrease their working concentrations.
However, the critical AMP concentration is most probably determined by the characteristic
lengths of membrane deformations, which should weakly depend on the particular type of
the membrane (bacterial or eukaryotic). In this view, the use of synergistic combinations of
antimicrobial agents seems to be a more reliable alternative [24–26]. The synergism may
be achieved by action of two peptides on two consequent stages of the bacteria damage.
For example, the first peptide can permeabilize the plasma membrane thus allowing the
second peptide to reach its target inside the cell [25]. In the work [26] the synergistic effect
was shown to be based on that the binding of the first peptide (PGLa) to the membrane
substantially facilitated the binding of the second peptide (magainin 2) via relaxation of
unfavorable membrane curvature strain.

A special class of AMPs is so-called channel-formers, a typical member of which is
gramicidin A (gA) [27,28]. This pentadecapeptide is produced by Bacillus brevis. In mem-
brane environment gA attains β6.3-helical conformation [29,30]. The longitudinal axis of the
helix is tilted but slightly with respect to the membrane normal; such an orientation is main-
tained by three tryptophan amino acids at gA C-terminal [28,31,32]. Two gA monomers
located in the opposing leaflets of the membrane can reversibly form a cation-selective
ion channel via transmembrane head-to-head dimerization [27,29]. Normally, the con-
ducting dimer is stabilized by six hydrogen bonds established between amino acids at
N-terminal of two gA monomers [33]. Both dimerization and dissociation of the dimer are
suggested to pass through the common state of so-called coaxial pair (denoted as P), in
which two gA monomers from opposing lipid monolayers are located one on top of the
other [34–36]. The coaxial pair is considered to correspond to the top of the energy barrier of
the dimerization/dissociation process, whereas the states of two monomers or conducting
dimer correspond to (local) minima of the free energy. In all three characteristic states
(far-separated monomers, coaxial pair, conducting dimer) gA induces elastic deformations
of the membrane [31,32,34–36]. In turn, elastic parameters of the membrane (thickness,
spontaneous curvature, lateral tension, elastic rigidity) substantially affect the characteris-
tics of the channel (lifetime and probability of formation) [37–39]. This allowed utilizing
gramicidin as a molecular sensor of membrane elasticity [40–42]. Various membrane-
deforming inclusions, like amphipathic peptides, are also expected to influence the lifetime
and probability of formation of the conducting channel via deformation-mediated lateral
interactions with gA monomers, dimers and coaxial pairs. The interactions may differently
contribute to the energies of these states, thus modifying the height of the energy barriers
of gA dimerization/dissociation. Recently, we have demonstrated that even gramicidin
monomers themselves may serve as such membrane-deforming inclusions, and they can
influence the characteristics of the channel via deformation-mediated lateral interactions
with the dimer and coaxial pair [36]. Lateral dimers of gA may be formed via connection
of two gA monomers located in the same membrane leaflet by a linker [43–45]. In a series
of works [43–45] it is demonstrated that the lifetime of so-called tandem channels of gA
formed from two lateral dimers located in opposing membrane leaflets, exceed the lifetime
of the regular gA channel by about three orders of magnitude. This effect can be also
quantitatively explained by strong membrane-mediated lateral interactions between two
transmembrane dimers of gA that comprise the tandem channel [35]. The experimentally
observed strong influence of membrane-mediated lateral interactions on gA channel char-
acteristics makes gA a convenient tool to validate predictions derived based on the theory
of elasticity of lipid membranes.

The practical use of gA as an antimicrobial agent is very limited because of its high
toxicity. In highly-organized organisms, relatively hydrophobic gA molecules incorpo-
rate into cellular plasma membranes without any significant selectivity towards bacterial
cells [46,47]. Monomer-dimer equilibrium of gA is strongly shifted towards monomers.
If gA concentrations are sufficient to raise the permeability of bacterial membranes, the
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permeability of eukaryotic membranes will raise as well. At smaller concentrations, the
average number of gA channels is too small to cause any significant antimicrobial effect.

Here we attempt to build a rational basis for development of specific molecules ampli-
fying the membrane-permeabilizing activity of AMPs in the target (bacterial) membrane.
The amplifiers selectively binding to bacterial membranes are supposed to allow reducing
working concentrations of AMPs and simultaneously increase their selectivity. Permeabi-
lization of the membrane via formation of barrel-like pore, toroidal pore or ion channel is
accompanied by elastic deformations of the membrane, and these deformations contribute
to characteristics of the membrane-permeabilizing structures. In other words, the average
conductivity of the membrane should depend on the spatial structure of its deformations.
Rigid membrane inclusions that purposefully modify the deformation fields of the mem-
brane can thus potentially regulate the activity of AMPs. The application of the amplifiers
would allow separating the requirements to AMPs in terms of high specificity and activity.
With the use of amplifiers, AMPs may have a relatively low selectivity, and the amplifiers
may not have the ability to permeabilize the membrane at all. With the simultaneous
addition of AMP in a low (non-toxic for eukaryotic cells) concentration and the amplifiers
of its activity, AMP can be incorporated into membranes of almost all cells. However, the
permeabilization should occur exclusively in bacterial membranes due to the selective
incorporation of the amplifiers of AMP activity into bacterial membranes. Due to the
selective incorporation into bacterial membranes of both the AMP itself and the amplifier
of its activity, the effective distribution coefficient between the membranes of bacterial and
eukaryotic cells of such a combined antimicrobial drug is determined by the product of the
distribution coefficients of its individual components (AMP and activity amplifier).

In a number of works devoted to investigation of the molecular mechanisms of AMP
action, a small number of peptides simultaneously acting on the membrane are consid-
ered [14,16]. However, the permeabilization of membranes by AMPs at a certain surface
concentration is a stochastic process, and the average membrane conductivity induced
by AMPs is a statistical value. Thus, it seems reasonable to use statistical approaches for
understanding and adequate description of AMP action mechanisms and for estimation
of the membrane conductivity under certain experimental conditions. For definiteness,
here we develop the statistical model for conductivity of the membrane induced by grami-
cidin A, although the consideration can be generalized for other types of AMPs inducing
elastic deformations. As potential amplifiers of the gA activity, we consider single-pass
transmembrane peptides, e.g., WALP or KALP [48–50], and short amphipathic peptides.
Both type of peptides (denoted as I, inclusion) are supposed to carry a chemical group
responsible for the selective binding to bacterial membranes. We demonstrate that even
low concentrations of amphipathic peptides (e.g., 1 peptide per 2500 lipids) and extremely
low concentrations of short transmembrane peptides (e.g., 1 peptide per 100,000 lipids) are
sufficient to substantially (several times) alter the average characteristics of the gA channel
ensemble (i.e., lifetime and number of conducting dimers).

2. Results
2.1. Algorithm of the Model Development

Consider the membrane with N1 monomers of gA in the upper monolayer (denoted
as U), N2 monomers of gA in the lower monolayer (denoted as L), and m particles of the
inclusion (denoted as I). At the moment, gA monomers from opposing membrane leaflets
form k conducting dimers (denoted as D). The rate of transition of gA monomers between
the leaflets is assumed to be very low, and thus the numbers of gA monomers in each
leaflet N1, N2 are constant. First, we derive the partition function Z0 of the membrane
with adsorbed gA molecules and incorporated inclusions. In the zeroth approximation,
we consider the ideal system, where all possible membrane-mediated interactions of gA
species and inclusions are absent. In order to account for the interactions of gA species
and membrane inclusions (all particles with all ones), we utilize the Mayer cluster expan-
sion [51–53]. In this approach, it is supposed that the configuration partition function of the
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non-ideal system can be expressed as a product of specific functions of pairwise interaction
potentials; each function is averaged with respect to all possible positions of two interact-
ing particles accounting for the Gibbs weight of the configurations. For gA monomers
incorporated into two (upper and lower) leaflets of the membrane that are able to form
conducting dimers, in the presence of inclusions, there are ten such pairwise interaction
functions corresponding to the total number of ways to choose couples of particles from
four types of particles present in the system: gA monomer in the upper monolayer (U),
gA monomer in the lower monolayer (L), conducting dimer (D), inclusion I: U + U, U + L,
L + L, U + D, L + D, U + I, L + I, D + D, I + I, D + I. In the limit of low concentrations,
the pairwise functions are statistically independent and the average of their product can
be substituted by the product of their average values. This substitution yields the first
approximation of the partition function. Following van Kampen [52], we look for the
higher-order corrections by means of correcting factors. In particular, the second correction
should include three-particle correlations yielding the factors in the partition function in an
amount equal to the number of ways to select three particles from four types of particles
(U, L, D, I) present in the system; if we had only one kind of particles, there would be
N × (N − 1) × (N − 2)/3! of such factors. Utilizing this approach, for known potential
energy of particle pairwise interactions, one can calculate the coordination partition func-
tion in any desired order on concentrations. Generally, the factors for calculation of the
partition function in the second order approximation on concentrations can be presented as
the linear diagram (Figure 1a), third order—as the triangular diagrams (Figure 1b), fourth
order—as square-like or fourth order diagrams shown in Figure 1c. In the diagrams, each
vertex corresponds to the particle of the particular type, each edge corresponds to the
function f AB, which characterizes the interaction of the particles A and B, standing in the
corresponding vertices, f AB = exp[–wAB/(kBT)] − 1, where wAB is the pairwise interaction
potential of particles A and B, kB is the Boltzmann constant, T is the absolute temperature.
The interactions should be integrated over all possible configurations (positions) of the par-
ticles yielding the Mayer’s cluster integrals, and then should be summed over all possible
types of particles. All illustrated diagrams are irreducible [51–53]. Utilizing the described
approach, for known potential energy of particle pairwise interactions, one can calculate
the coordination partition function in any desired order on concentrations. In the present
work, we consider the partition function in the fourth order on concentrations.
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proximation on particle concentrations. (a)—linear diagram for calculation of the partition function in
the second order on concentrations; (b)—triangular diagram to calculate the third-order contributions
to the partition function; (c)—the fourth order diagrams allowing obtaining the partition function in
the fourth order on concentrations.
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The potential energy of the pairwise interaction of the particles was considered as the
energy of elastic deformations of the membrane in the corresponding configuration of the
particles. The elastic energy was calculated in the framework of the theory of elasticity
of lipid membranes [20,34–36,54,55]. The gA monomer, dimer and membrane inclusion
differed by the type of the boundary conditions they impose on the membrane deformations.
The obtained potential energies allowed calculating numerically the Mayer’s integrals of
the necessary order. The Mayer’s integrals were then used to obtain the partition functions
of the system. The partition functions allowed calculating the dependences of the average
lifetime of the gA channels as well as the average number of dimers in the membrane (i.e.,
the total membrane conductivity) on the concentrations of gA monomers and membrane
inclusions (peripheral or transmembrane).

2.2. Pairwise Interaction Potentials

The profiles of pairwise interaction potentials calculated in the framework of the theory
of elasticity of lipid membranes are illustrated in Figure 2 for configurations involving
gA monomers. From Figure 2 it is seen that the interaction potentials with gA monomers
are mostly repulsive except that for monomer-dimer (wUD) and monomer-transmembrane
inclusion (wUI). The potentials decay rapidly with increasing distance between the particles,
and at r ≈ 10 nm the interactions are negligibly weak.
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Figure 2. Profiles of pairwise interaction potentials for configurations involving gA monomers.
Red curve—wUU(r); green curve—wUL(r); blue curve—wUP(r); magenta curve—wUD(r); dark blue
curve—wUI(r) (for transmembrane inclusion). The configurations are schematically illustrated in the
right-hand-side of the figure. The membrane is shown as light gray stripe; solid black lines correspond
to surfaces of the upper and lower monolayers; dotted line corresponds to the monolayer interface;
gA monomers are shown as squares; the transmembrane inclusion is shown as the rectangle. The
colors of the particles in the right-hand-side of the figure correspond to the colors of the interaction
potential curves wAB.

All dependences wAB illustrated in Figure 2 have global minima. The minima are
relatively deep when gA monomers interact with transmembrane particles: for dimer, wUD,
and transmembrane inclusion, wUI, the depths of the minima are ~3.5 kBT and ~1.5 kBT,
respectively (Figure 2). The minima of the potentials that do not involve transmembrane
particles are relatively shallow and their depths do not exceed about 0.5 kBT (curves wUU,
wUL, wUP in Figure 2). In all configurations considered in Figure 2, the monolayer interface
is not flat as the particle configurations and their induced deformations do not possess
mirror symmetry with respect to the plane of the unperturbed membrane.

Figure 3 illustrates the profiles of pairwise interaction potentials for configurations
that do not involve gA monomers. From Figure 3 it is seen that the interaction potentials
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in such configurations are mostly attractive. The potentials decay rapidly with increasing
distance between the particles, and at r ≈ 10 nm the interactions are negligibly weak.
All dependences wAB illustrated in Figure 3 have global minima, and their depths are
quite large: from ~4 kBT for wPI up to ~11 kBT for wDD. All configurations illustrated in
Figure 3 are mirror symmetric with respect to the plane of the unperturbed membrane; the
monolayer interface is flat.
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monolayer interface; gA monomers are shown as squares; the transmembrane inclusions are shown
as rectangles. The colors of the particles in the right-hand-side of the figure correspond to the colors
of the interaction potential curves wAB.

2.3. Influence of Lateral Interaction on the Equilibrium Number of Dimers

The pairwise interaction potentials presented in Figures 2 and 3 were utilized to numer-
ically calculate the Mayer’s cluster integrals of the necessary order. The Mayer’s integrals
were then used to obtain the partition functions of the system. Some intermediate equations
could not be solved analytically, and thus, to obtain the approximate solutions, we utilized
the perturbation theory. The partition functions allowed obtaining the dependence of
the dimer-monomer equilibrium constant on the concentration of gramicidin monomers,
amphipathic membrane inclusions, and transmembrane inclusions in the membrane. This
dependence leads to the shift of the equilibrium number of conducting dimers, CD, as
compared to the case of absent lateral interactions, Cid

D . Below, we graphically illustrate the
dependence of the ratio CD/Cid

D = 1 + ∆CD/Cid
D (see Equation (24)) on the concentration of

gramicidin monomers, amphipathic membrane inclusions, and transmembrane inclusions.
For simplicity, we consider the case CU = CL = C1 = C2 corresponding to equally distributed
gramicidin monomers over the membrane leaflets. Besides, we analyzed the consequences
of membrane-mediated lateral interactions on gA analogues with N-terminal valine re-
placed by glycine ([Gly1]gA) or tyrosine ([Tyr1]gA). These analogues have significantly
reduced the monomer-dimer equilibrium constants D0, with monomer-dimer equilibrium
being shifted towards monomers as compared to gA [36]. The values of monomer-dimer
equilibrium constants (product of dimerization constant and dimer lifetime) determined in
the work [36] for gA, [Gly1]gA, [Tyr1]gA are as follows: 25,812 nm2, 250.8 nm2, 52.5 nm2,
respectively.
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The dependences of the equilibrium concentration of conducting dimers on concentra-
tions of gramicidin monomers and membrane inclusions (amphipathic or transmembrane)
are shown in Figure 4 for gA, [Gly1]gA, and [Tyr1]gA. The magenta curves in Figure 4
bound the range of concentrations where the correction to the main approximation calcu-
lated within the perturbation theory reaches 20%. This value of the correction was arbitrary
chosen to qualitatively mark the limits of applicability of the perturbation theory.
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trations of gramicidin monomers and membrane inclusions: (a–c)—transmembrane inclusions;
(d–f)—amphipathic membrane inclusions, incorporated into the top monolayer. The value CD/Cid
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the range of concentrations where the correction to the main approximation calculated within the
perturbation theory reaches 20%; for larger CU, CI concentrations the application of the perturba-
tion theory is not strictly valid. The illustrated dependences of CD/Cid

D were obtained based on
Equation (24).

From Figure 4 it is seen that increasing concentrations of gramicidin monomers
(CU = CL), amphipathic membrane inclusions and transmembrane inclusions lead to in-
crease of the ratio CD/Cid

D . The most pronounced growth of the number of the conducting
dimers is induced by transmembrane inclusions (Figure 4a–c): the doubling of the conduct-
ing dimer number is provided by only 2.5 particles per 1 µm2. Although the amphipathic
membrane inclusions cause appreciable increase of the CD/Cid

D in substantially larger con-
centrations (e.g., hundreds of particles per 1 µm2, (Figure 4d–f)), practically, it is much
easier to incorporate amphipathic peptides into the membrane as compared to transmem-
brane peptides.

2.4. Influence of Lateral Interaction on the Average Lifetime of Dimers

The membrane-deforming inclusions influence the lifetime of the conducting dimers
of gramicidin. The dissociation constant, which is the inverse lifetime of the dimer, is deter-
mined by the difference of the energies of the coaxial pair and the dimer [34–36]. Partially,
these energies include contributions from membrane elastic deformations, which, in turn,
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can be modulated by membrane-deforming inclusions. In order to characterize the effect of
membrane-mediated lateral interactions, we consider the ratio τ/τ0 of the average dimer
lifetime, τ, and this value τ0 in the “ideal” case of absence of any lateral interactions. The
dependences of τ/τ0 on concentrations of gramicidin monomers and membrane inclusions
(amphipathic or transmembrane) are shown in Figure 5 for gA, [Gly1]gA, and [Tyr1]gA. The
magenta curves in Figure 5 bound the range of concentrations where the interaction-related
correction to the main “ideal” approximation calculated within the perturbation theory
reaches 20%. This value of the correction was arbitrary chosen to qualitatively mark the
limits of applicability of the perturbation theory. From Figure 5 it follows that increasing
concentrations of amphipathic membrane inclusions and transmembrane inclusions lead
to increase of the ratio τ/τ0. The most pronounced growth of the dimer lifetime is induced
by transmembrane inclusions (Figure 5a–c): a 2–3 times increase of the lifetime is provided
by only 2–3 particles per 1 µm2. Amphipathic membrane inclusions cause appreciable
increase of the dimer lifetime in substantially larger concentrations—hundreds of particles
per 1 µm2, (Figure 5d–f). The level curves in contour plots in Figure 5 are approximately
parallel to the axis of gramicidin monomer concentration (CU) meaning that the dependence
of τ/τ0 on CU is relatively weak. In the limit CU → 0 one can obtain the simple expression,
Equation (31), for the dependence of the lifetime of the solitary dimer on the concentration
of membrane inclusions. This dependence is illustrated in Figure 6 for transmembrane and
amphipathic membrane inclusions.
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Figure 6. The dependence of the relative lifetime, τ/τ0, of the solitary conducting dimer on (a)—con-
centration of transmembrane inclusions; (b)—concentration of amphipathic membrane inclusions
(incorporated into the top monolayer). The dependencies were obtained based on Equation (31).
The magenta dotted lines bound the range of concentrations where the correction to the main
approximation calculated within the perturbation theory reaches 20%; for larger CI concentrations
the application of the perturbation theory is not strictly valid.

From Figure 6 it is seen that the average lifetime of the solitary conducting dimer grows
with increasing concentrations of transmembrane inclusions and amphipathic membrane in-
clusions. An about order-of-magnitude increase in τ/τ0 is provided by 4.5 transmembrane
peptides or 2400 amphipathic peptides per 1 µm2.

3. Discussion

In the present study we considered the consequences that the membrane-mediated
lateral interactions have on characteristics of the gramicidin ensemble and solitary dimers.
For the analysis, we developed the statistical model that accounted for the interactions
in the fourth order on concentrations of membrane-incorporated particles. The interac-
tions were assumed to be mediated by elastic deformations of the membrane, induced
by the membrane-incorporated particles. The profiles of the potential energy of pair-
wise interactions of the particles were calculated in the framework of theory of elastic-
ity of lipid membranes [20,34–36,54,55]. Generally, the interaction involving gramicidin
monomers are mostly repulsive (Figure 2), while the interactions involving transmem-
brane particles are mostly attractive (Figure 3). From the model it follows that grami-
cidin monomers themselves stimulate formation of conducting dimers excessive over the
number of dimers would be in the “ideal” case of absent lateral interactions (Figure 4),
while the average lifetime of the conducting dimer weakly depends on the monomer con-
centration (Figure 5). Along with gramicidin species (monomers, dimers, coaxial pairs),
we considered “inclusions”—membrane-deforming peptides, either transmembrane or
amphipathic (peripheral). Short transmembrane peptides were predicted to substan-
tially increase both the number of conducting dimers and the average lifetime of the
dimers in very low concentrations, of the order of several peptide molecules per 1 µm2

(Figures 4a–c, 5a–c and 6a). Amphipathic peptides alter the gramicidin characteristics less
strongly: a substantial increase in the number of conducting dimers and the lifetime of the
dimer requires concentrations of the order of hundreds-thousands of amphipathic peptides
per 1 µm2 (Figures 4d–f, 5d–f and 6b). Both transmembrane inclusions and amphipathic
membrane inclusions act as amplifiers of gramicidin activity, as they stimulate formation of
conducting dimers and increase the average lifetime of the conducting state (Figures 4–6).
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If these inclusions have higher affinity towards particular membranes, e.g., they prefer-
entially incorporate into negatively charged bacterial membranes, the inclusions would
amplify the gramicidin activity predominantly in these membranes. The high selectivity
of the inclusions and their amplification of gramicidin activity should allow reducing
substantially the working concentrations of the gramicidin (e.g., below the toxic level for
eukaryotic cells) still preserving a strong antimicrobial effect. Although the amphipathic
membrane inclusions cause appreciable increase of the CD/Cid

D in substantially larger
concentrations than the transmembrane inclusions do, practically, it is much easier to incor-
porate amphipathic peptides into the membrane as compared to transmembrane peptides.
Amphipathic peptides themselves can cause formation of pores in the membrane. However,
the critical concentrations of membrane disruption or lysis by amphipathic peptides such
as magainin-2 are of the order of one peptide per 40–100 lipid molecules [1,8,10,13]. The
typical concentration of 1000 amphipathic peptides per 1 µm2 that is sufficient to provide
substantial amplification of the gramicidin activity (Figures 4d–f and 6b) corresponds to
approximately one amphipathic peptide per 2850 lipids, i.e., about two orders of magnitude
smaller than the membrane lytic concentration.

The developed model is quite general; its possible applications are not limited to the
case of gramicidin. The model may be utilized for analysis of amplifying or weakening
effect of various membrane-deforming inclusions with respect to different types of AMPs.
The only requirement is that at the sequential stages of the action, the AMP should induce
different deformations of the membrane. For the example of gramicidin this means that
the spatial distributions of elastic deformations of the membrane induced by gramicidin
monomers, coaxial pair and dimer should be different. In the case of pore-forming AMPs,
elastic deformations of the membrane can be induced by AMPs themselves, pores and
membrane-incorporated inclusions. Accounting for the energy of the deformations, one
can obtain the membrane-mediated interaction potentials, similar to those illustrated in
Figures 2 and 3. The potentials can be further used to calculate the configuration partition
functions and, consequently, to analyze the modulation effect of membrane inclusions on
the pore-forming activity of AMPs, following the formalism developed in the “Materials
and Methods” section.

The considered mechanism of the purposeful change in the equilibrium constant of the
dimerization reaction is of a general nature and is not specific for gramicidin. In particular,
we expect that in multiple systems, where membrane-deforming particles (monomers) can
form higher-order aggregates (dimers, trimers, etc.) an addition of deformation-inducing
inclusions can change the equilibrium distribution of the aggregate numbers. In such
reactions, the inclusions do not play a role of a catalyst, as catalysts do not influence
the chemical equilibrium. The inclusions strongly favor or stabilize a particular state or
aggregate (e.g., the dimer in the case of gramicidin, Figure 3) thus shifting the equilibrium
towards that state. This is rather similar to the action of the excessive external pressure on
the equilibrium A + B⇔ AB, where the volume of (A + B) reagents exceeds substantially
the volume of AB product. In this case, a higher pressure favors smaller volume of the
system, thus shifting the equilibrium to the right, towards AB product. The analogous
effect should have an increased temperature if the direct reaction is endothermic, while the
opposite reaction is exothermic. Commonly, in three-dimensional systems, the equilibrium
constants weakly depend on the concentrations of the reagents. E.g., the Debye shielding
works in solution; besides, when two oppositely charged particles combine, their charges
cancel each other out and the combined particle (dimer) can interact with neighboring
particles only via dipole and other interactions that are weaker than Coulomb interactions.
In this sense, membranes are specific systems that allow particles to interact via relatively
long-range deformations.

Fundamentally, the membrane with incorporated peptides can be considered as the
system of many electric charges that mutually electrostatically interact. These interactions
should alter when the membrane is disturbed by the inclusions, and thus the electrostatic-
based interactions should contribute to the total energy of the system. However, when the
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membrane inclusion deforms the membrane, the bilayer thickness changes, the monolayer
surfaces become curved, the monolayer surface can locally compress or stretch, and the axes
of lipid molecules can deviate from the normal to the monolayer surface (i.e., the molecules
can tilt). Let’s focus on the bending (curving) of the monolayer. Denote the local curvature
of the monolayer surface as J. Assuming J small, one can take Taylor series of the free energy
F on the small deviation of the curvature from zero: F(J) ≈ F(J = 0) + ∂F

∂J

∣∣∣
J=0

J + 1
2

∂2F
∂J2

∣∣∣
J=0

J2.

Here, the first term is constant. The second term is zero, as we take Taylor series in the
vicinity of the equilibrium state, where the free energy is minimal. In the third term, the
combination ∂2F

∂J2

∣∣∣
J=0

is referred to as the bending modulus (denoted by B, see Materials

and Methods section). In our model, we utilized the values of the elastic moduli that
were determined experimentally. This means that our used value of the bending modulus
includes (within the required accuracy) all possible contributions from all fundamental
physical forces (electrostatic, van der Waals, entropy-based, etc.) that arise upon deviation
of the monolayer surface curvature from zero. This is due to the fact that all these forces
and all these contributions acted when the modulus was experimentally determined and
contributed to its measured value. The same can be repeated for the other deformation
modes (lateral stretching, tilt, etc.). Thus, in our calculations, the contribution from, e.g.,
electrostatic and van der Waals interactions acting in the system of many charges are
accounted for within the required accuracy via the experimentally determined values of
the elastic moduli.

For gramicidin A, the elastic approach for the description of monomer-dimer equi-
librium was originally developed in 1986 [56] and then was modified in around 2000 to
account for the effects of monolayer spontaneous curvature [57,58]. The general statement
of the model is that the energy of elastic deformations arising in the vicinity of gA dimer
depends quadratically on the hydrophobic mismatch (d0 − l) between the length of the gA
dimer (l) and bilayer thickness (d0). Thus, the model is based on linear elastic theory (on
the Hook’s law), and is principally limited by the case of small deformations, i.e., (d0 − l)
should be much smaller than d0 and l: 2(d0 − l)/(d0 + l) << 1. Note, that the particular limits
of the linear theory applicability (i.e., the quantitative meaning of the sign “<<”) cannot be
determined within this theory; it can be only verified experimentally or, e.g., in molecular
dynamics (MD). The fundamental flaw of the original hydrophobic mismatch-based elastic
model was that it considered only the deformations induced by the gA dimer and assumed
that neither gA monomer nor the gA coaxial pair (which we consider as the transition
state in monomer-dimer reaction) deform the membrane. However, if the gA monomer
length along the normal to the membrane surface is smaller than the monolayer thickness,
elastic deformations should unavoidably appear in the gA monomer vicinity. As the gA
monomer cannot impose boundary conditions onto the monolayer (bilayer) thickness,
these deformations principally cannot be accounted for in the framework of hydrophobic
mismatch-based models. This means, that the activation barriers of the dimerization and
dissociation reactions of gramicidin are calculated not exactly correctly in such models, as
the energy of deformations in the transition state and the energy of deformations induced
by gA monomers are not taken into account. Thus, the single order parameter (bilayer
thickness) introduced in the mismatch-based models is not sufficient to account for the
deformations arising in the gA monomer vicinity. In our considerations, we utilize the
additional order parameter, characterizing the average orientation of lipid molecules—so-
called, director. The gA monomer was assumed to impose the boundary condition onto
the director (Equation (38)) and this leaded to deformations of the membrane in the gA
monomer vicinity.

Of note, the membrane-deforming inclusions alter the average energy of gramicidin
monomers in the membrane. This may lead to shift of equilibrium distribution of monomers
between the membrane and water phase. In this case, the actual concentrations of gram-
icidin monomers in the membrane should stand in the equations. Obviously, numerous
fundamental physical forces act at the peptide-lipid boundary. In our model these interac-
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tion (electrostatic, van der Waals, entropy-related, etc.) determine the boundary conditions
imposed on the parameters that describe the state of the lipid monolayer (director, thick-
ness, etc.). The corresponding energy of interactions of peptide with the adjacent lipids
yields a constant contribution. In our consideration we operate with interaction potentials
that are normalized in a way to tend to zero as the distance between the peptides increases
(Figures 2 and 3), and thus any constant contributions do not influence our model and
its results.

It should be noted that the obtained dependences (Figures 4–6) are rather qualitative,
since when calculating the interaction potentials, we used the boundary conditions derived
from simple geometric considerations. The boundary conditions can be subjected to uncer-
tainties, which can alter the quantitative values derived from the diagrams (Figures 4–6).
However, our elastic model was successfully utilized in several works, and provided the re-
sults that were in quantitative (or, at least, semi-quantitative) agreement with the numerous
experimental data and the data obtained in MD, including: the dependence of gramicidin
A dimer dissociation probability on the lateral tension of the membrane; dependence of the
probability of dimer formation on the lipid membrane thickness; dependence of the dimer
lifetime on the spontaneous curvature of monolayers; the interaction energy profile of two
gA dimers; the radial distribution of bilayer thickness around the gA dimer; the lifetime of
the tandem gA channels; the characteristic time of flicker conductance of the tandem gA
channels; the dependence of the characteristic time of gramicidin monomer-dimer equili-
bration on the gramicidin concentration, both normal dependence for gA, and anomalous
dependence observed for gA derivatives [Gly1]gA and [Tyr1]gA [34–36]. Thus, the utilized
parameters of the model and the model itself can be considered as reliable.

It is further worth noting that we used the large area limit, i.e., we assumed that al-
though the concentrations of all particles are relatively low, the total number of the particles
is still large that allow utilizing the statistical approach for the ensemble description. Practi-
cally, in the membrane of a relatively small area, the range of concentrations considered in
our model can correspond to just a few particles. In this case, it is incorrect to apply the
statistical description of the dimer-monomer equilibrium to obtain the average number
of conducting dimers (Figure 4). However, it is still correct to use the developed model
to describe the effect of membrane inclusions and gramicidin monomers on the lifetime
of a solitary dimer (Figure 6). Plasma membranes of both eukaryotic and bacterial cells
may comprise a large number of membrane-deforming species (e.g., transmembrane and
peripheral proteins, protein-lipid domains, etc.), which can take part in the modulation of
the equilibrium between AMP monomers and cooperative membrane-permeabilizing struc-
tures. Thus, the introduced membrane-deforming inclusions would regulate the already
modulated equilibrium. However, due to the high selectivity of the amplifiers towards
the bacterial cells, they should nevertheless predominantly enhance the permeability of
bacterial membranes.

4. Materials and Methods
4.1. General Expressions for Partition Functions

We develop the statistical model of gA ensemble in the presence of membrane-
deforming inclusions in the following way. Consider the membrane with N1 monomers of
gA in the upper monolayer (denoted as U), N2 monomers of gA in the lower monolayer
(denoted as L), and m particles of the inclusion. At the moment, gA monomers from
opposing membrane leaflet form k conducting dimers (denoted as D). The rate of transition
of gA monomers between the leaflets is assumed to be very low, and thus the numbers of
gA monomers in each leaflet N1, N2 are constant. The partition function of such system can
be expressed as:

Z =
1

N1!N2!

min(N1,N2)

∑
k=0

(
N1!N2!

(N1 − k)!(N2 − k)!k!

)
· Z0(N1, N2, k, m), (1)
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where the summation is performed over the all possible numbers k of conducting dimers;
the factor in the brackets is the number of ways to assemble k dimers from N1, N2 monomers
of gA; Z0(N1, N2, k, m) is the partition function of this system with fixed number of
conducting dimers. In the zeroth approximation, we consider the ideal system, where all
possible membrane-mediated interactions of gA species and inclusions are absent. In this
approximation, the partition function can be written as follows:

Z0(N1, N2, k, m) = e
−kWD

T


∫ ∫

S
d2rUe−

Mv2
U

2T d2vU

(2π})2


N1−k

∫ ∫
S

d2rLe−
Mv2

L
2T d2vL

(2π})2


N2−k

×


∫ ∫

S
d2rDe−

2Mv2
D

2T d2vD

(2π})2


k

∫ ∫
S

d2rIe
−

MIv2
I

2T d2vI

(2π})2


m

,

(2)

where } is the Planck’s constant; the temperature T is measured in thermal energy units;
the first exponent is the Boltzmann factor (WD is the energy of single dimer); four factors
in the brackets determine the phase space accessible by U, L, D, and I, respectively. These
factors are proportional to TS/M or TS/MI, where S is the area of the membrane, M and MI
are the effective masses of gA monomer or inclusion, respectively. The effective mass of the
dimer is considered as a doubled effective mass of gA monomer; the effective mass is the
actual mass of the peptide particle and the mass of lipid molecules involved in the peptide
particle motion. In Equation (2) we omitted the internal partition functions of the particles
(rotational, oscillatory, etc.) as they do not influence the results obtained. We introduce
the function:

Q(N1, N2, k, m) =
∫

exp[−W
T
]
N1−k

∏
i=1

drU,i

N2−k

∏
j=1

drL,j

k

∏
l=1

drD,l

m

∏
t=1

drI,t, (3)

where W is the energy of particular configuration of the system that depends on coordinates
of all particles in the membrane; the integration is performed over all possible positions of
the particles. In the case of non-interacting particles:

Q(N1, N2, k, m) ≈ Q(0)(N1, N2, k, m) = SN1−k+N2−k+k+m = SN1+N2−k+m (4)

(S is the area of the membrane). Utilizing the function Q, the partition function
Equation (2) can be rewritten as:

Z0(N1, N2, k, m) = e
−kWD

T

 ∫
e−

Mv2
U

2T d2vU

(2π})2

N1−k ∫
e−

Mv2
L

2T d2vL

(2π})2

N2−k

×

 ∫
e−

2Mv2
D

2T d2vD

(2π})2

k ∫
e−

MIv2
I

2T d2vI

(2π})2

m

·Q(N1, N2, k, m).

(5)

In order to describe the dependence of gA monomer-dimer equilibrium and the gA
channel lifetime on gA monomer concentrations in the presence of inclusions, one should
calculate the function Q taking into account the membrane-mediated lateral interactions
of dimers, monomers, and inclusions. In order to account for the interactions of gA
species and membrane inclusions (all particles with all ones), we utilize the Mayer cluster
expansion [51–53] in up to the fourth order on particle concentrations, considering the
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interactions as pairwise. In this approach, it is supposed that the configuration partition
function of the non-ideal system can be expressed as:

Q(N1, N2, k, m) = SN1−k+N2−k+k+m ϕ12 ϕ13 . . . ϕN−1,N , (6)

where ϕij = exp(–wij/T); wij are pairwise interaction potentials of particles i and j; N is
the total number of particles; the overline here and below denotes averaging with respect
to all possible positions of the interacting particles. It can be explicitly demonstrated
that ϕ12 and ϕ13 as well as ϕ12 and ϕ34 are statistically independent, and thus ϕ12 ϕ13 =
ϕ12 · ϕ13, ϕ12 ϕ34 = ϕ12 · ϕ34. However, generally, ϕ12 ϕ13 ϕ23 6= ϕ12 · ϕ13 · ϕ23. The relation
ϕ12 ϕ13 ϕ23 = ϕ12 · ϕ13 · ϕ23 can be used as the first approximation in the case of low
concentration of the particles, as in this case the configurations when all three functions ϕij
differ from unity are relatively rare. Applying this approach, we can express the function Q
in the first approximation as follows:

Q(1)(N1, N2, k, m)

SN1−k+N2−k+k+m = (ϕUU)
1
2 NU(NU−1)(ϕLL)

1
2 NL(NL−1)(ϕUL)

NU NL . . . , (7)

where ϕAB = exp(–wAB/T) is the function corresponding to interaction of particles A and
B. For gA monomers incorporated into two (upper and lower) leaflets of the membrane
that are able to form conducting dimers, in the presence of membrane inclusions, there
are ten such pairwise interaction functions corresponding to the total number of ways to
choose couples of particles from four types of particles present in the system: gA monomer
in the upper monolayer, gA monomer in the lower monolayer, conducting dimer, inclusion:
U + U, U + L, L + L, U + D, L + D, U + I, L + I, D + D, I + I, D + I. In the limit of low
concentrations, the pairwise functions are statistically independent and the average of their
product can be substituted by the product of their average values. In the limiting case
of large system (S→ +∞, N→ +∞, N/S = C = const) the expression Equation (7) can be
rewritten as:

Q(1)(N1, N2, k, m)

SN1−k+N2−k+k+m = exp

(
N2

U
2S

β1,UU +
N2

L
2S

β1,LL +
NUNL

S
β1,UL + . . .

)
, (8)

where β1,AB =
∫
(ϕAB − 1)drAB is the Mayer’s first irreducible cluster integral [53], rAB

= rA − rB is the vector directed from the particle B to the particle A. The power of the
exponent in Equation (8) includes 10 terms, each of which corresponds to the certain pair
of interacting particles.

Following van Kampen [52], we look for the higher-order corrections by means of
correcting factors. In particular, the second correction should include three-particle cor-
relations yielding the factors in the partition function in an amount equal to the number
of ways to select three particles from the four types of particles (U, L, D, I) present in the
system; if we had only one kind of particles, there would be N × (N − 1)×(N − 2)/3!
of such factors. Introducing the notation ϕAB = 1+ f AB, within the requited accuracy one
can obtain:

ϕ12 ϕ13 ϕ23
ϕ12·ϕ13·ϕ23

=
(

1 + f12 f13 f23
S2 + O

(
1

S3

))
,

Q(2)(N1, N2, k, m)

Q(1)(N1, N2, k, m)
= exp

[
∑

A,B,C

CABC
S2 fAB fAC fBC

]
,

(9)

where CABC is the number of ways to choose particles of types A, B, or C from the total
number of particle types present in the system; the summation is performed over all
possible triplets of the particles. In particular, for gA monomers in the upper leaflet,
CUUU = NU(NU − 1)(NU − 2)/3!; the number of ways to choose two gA monomers in the
upper leaflet and the dimer is CUUD = NU(NU − 1)k/(2!·1!); the number of ways to choose
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gA monomer in the upper leaflet, gA monomer in the lower leaflet and the dimer is given
by CULD = NUNLk/(1!·1!·1!), etc.

In order to obtain the next correcting factor, one should consider all possible groups of
four particles and calculate the factor ϕ12 ϕ13 ϕ23 ϕ14 ϕ24 ϕ34

D [52], where D is the approximation of
the value ϕ12 ϕ13 ϕ23 ϕ14 ϕ24 ϕ34 obtained on the previous iteration. Generally, the factors for
calculation of the partition function in the second order approximation on concentrations
can be presented as the linear diagram (Figure 1a), third order—as the triangular diagrams
(Figure 1b), fourth order—as fourth order diagrams shown in Figure 1c. In all diagrams,
each vertex corresponds to the particle of the particular type, each edge corresponds
to the function f. The interactions should be integrated over all possible configurations
(positions) of the particles, and then should be summed over all possible types of particles
(analogously to Equation (9)). All illustrated diagrams are irreducible [51–53]. Utilizing the
described approach, for known potential energy of particle interaction, one can calculate
the coordination partition function in any desired order on concentrations. We consider
the partition function in the fourth order on concentrations. In this case, the expression for
Q(N1, N2, k, m) can be presented as:

Q(N1, N2, k, m) = SN1+N2−k+m exp
[

P
(

NU

S
,

NL

S
,

k
S

,
m
S

)]
, (10)

where P is the polynomial (of the fourth order in our case) depending on the concentrations
of particles of different types; the coefficients of P are determined by the diagrams illustrated
in the Figure 1. Explicitly, the polynomial P can be written as follows:

P =

[
β1,UU

(N1−k)2

2!S + β1,LL
(N2−k)2

2!S + β1,UL
(N1−k)(N2−k)

S + β1,UD
(N1−k)k

S

+β1,LD
(N2−k)k

S + β1,UI
(N1−k)m

S + β1,LI
(N2−k)m

S + β1,DD
k2

2!S + β1,DI
km
S + β1,II

m2

2!S

]
+

[
β2,UUU

(N1−k)3

3!S2 + β2,LLL
(N2−k)3

3!S2 + β2,UUL
(N1−k)2(N2−k)

2!S2 + β2,ULL
(N1−k)(N2−k)2

2!S2

+β2,UUD
(N1−k)2k

2!S2 + β2,LLD
(N2−k)2k

2!S2 + β2,ULD
(N1−k)(N2−k)k

S2 + β2,UUI
(N1−k)2m

2!S2

+β2,LLI
(N2−k)2m

2!S2 + β2,ULI
(N1−k)(N2−k)m

2!S2 + β2,UDD
(N1−k)k2

2!S2 + β2,LDD
(N2−k)k2

2!S2

+β2,UDI
(N1−k)km

S2 + β2,LDI
(N2−k)km

S2 + β2,UII
(N1−k)m2

2!S2 + β2,LII
(N1−k)m2

2!S2

+β2,DII
km2

2!S2 + β2,DDI
k2m
2!S2 + β2,DDD

k3

3!S2 + β2,III
m3

3!S2

]
+

[
β3,UUUU

(N1−k)4

4!S3 + β3,LLLL
(N2−k)4

4!S3 + β3,UUUL
(N1−k)3(N2−k)

3!S3

+β3,ULLL
(N1−k)(N2−k)3

3!S3 + β3,UULL
(N1−k)2(N2−k)2

2!2!S3 + β3,UUUD
(N1−k)3k

3!S3

+β3,LLLD
(N2−k)3k

3!S3 + β3,UULD
(N1−k)2(N2−k)k

2!S3 + β3,ULLD
(N1−k)(N2−k)2k

2!S3

+β3,UUUI
(N1−k)3m

3!S3 + β3,LLLI
(N2−k)3m

3!S3 + β3,UULI
(N1−k)2(N2−k)m

2!S3

+β3,ULLI
(N1−k)(N2−k)2m

2!S3 + β3,UUDI
(N1−k)2km

2!S3 + β3,LLDI
(N2−k)2km

2!S3

+β3,ULDI
(N1−k)(N2−k)km

S3 + β3,UUII
(N1−k)2m2

2!2!S3 + β3,LLII
(N2−k)2m2

2!2!S3

+β3,ULII
(N1−k)(N2−k)m2

2!S3 + β3,UUDD
(N1−k)2k2

2!2!S3 + β3,LLDD
(N2−k)2k2

2!2!S3

+β3,ULDD
(N1−k)(N2−k)k2

2!S3 + β3,UDDI
(N1−k)k2m

2!S3 + β3,LDDI
(N2−k)k2m

2!S3

+β3,UDII
(N1−k)km2

2!S3 + β3,LDII
(N2−k)km2

2!S3 + β3,DIII
km3

3!S3 + β3,DDII
k2m2

2!2!S3 + β3,DDDI
k3m
3!S3

+β3,UDDD
(N1−k)k3

3!S3 + β3,LDDD
(N2−k)k3

3!S3 + β3,UIII
(N1−k)m3

3!S3

+β3,LIII
(N2−k)m3

3!S3 + β3,DDDD
k4

4!S3 + β3,IIII
m4

4!S3

]
.

(11)

In this expression, the first, second and third square brackets correspond to linear, tri-

angular and fourth order diagrams, respectively (Figure 1); β2,ABC = 1
S
∫ ∫ ∫ (

e−
WAB

T − 1
)

(
e−

WBC
T − 1

)(
e−

WAC
T − 1

)
drAdrBdrC; the coefficients β3,ABCE are calculated in the analo-

gous way.
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4.2. Equilibrium between gA Monomers and Dimers in the Case of No Lateral Interactions

In the case when all possible membrane-mediated interactions of gA species and
inclusions are absent, the partition function given by Equation (1) supplemented by
Equations (2)–(5) can be calculated explicitly:

Zid = Sm 1
2N1+N2

1
N1!N2!

(
−Zinte−

WD
T

)N1(
ST

πM}2

)N2
U
(
−N1, 1− N1 + N2,− ST

πM}2Zint
e−

WD
T

)
, (12)

where U is the Tricomi’s (confluent hypergeometric) function. Formally, the obtained
partition function Equation (12) allows solving the problem of determination of the average
number of dimers. In particular, in the limit of the large area, it yields the well-known
relation for the dimer concentration [27]:

Cid
D = D0

(
C1 − Cid

D

)(
C2 − Cid

D

)
, (13)

where Cid
D is the concentration of dimers in the ideal case of absent interactions; D0 is

the monomer-dimer equilibrium constant in this case. This relation directly follows from
Equation (12):

k0 = Cid
D S = −T∂ ln Zid

∂WD
= e−

WD
T NU NL

S Zint
πM}2

T = e−
WD

T (N1−k0)(N2−k0)
S Zint

πM}2

T . (14)

A similar relation can be analytically obtained directly from the partition function,
Equations (1)–(5), by the saddle point method. Let’s rewrite Equation (5) using the Stir-
ling’s formula:

Z = const ·
min(N1,N2)

∑
k=0

e−k(1+WD
T )k−

1
2−k(−k + N1)

− 1
2+k−N1(−k + N2)

− 1
2+k−N2

(
π}2 M

ST Zint

)k

= const
min(N1,N2)

∑
k=0

e f (k) ≈ const
min(N1,N2)∫

0
e f (k)dk,

(15)

where const is some function independent on the number of dimers, k; f (k) is the logarithm
of the expression standing under the summation sign in the upper line of the equation. The
function f (k) has a maximum, which can be obtained from the equation:

∂ f
∂k

= −WD

T
+ ln

(
π}2M

T
Zint

)
+ ln CU + ln CL − ln CD + O(1/k) = 0. (16)

From this expression it is seen that in the limit of large number of particles, the
maximum of f (k) is achieved at k = k0, where k0 is determined by Equation (14). In the
vicinity of the maximum:

f (k) ≈ f (k0)− 1
2

[
1

N1−k0
+ 1

N2−k0
+ 1

k0
− 1

2
1

(N1−k0)
2 − 1

2
1

(N2−k0)
2 − 1

2
1
k2

0

]
(k− k0)

2

≈ f (k0)− 1
2

[
1

N1−k0
+ 1

N2−k0
+ 1

k0

]
(k− k0)

2.
(17)

As N1, N2, k0 are much larger than 1, the integral in Equation (15) is majorly accumu-
lated in the vicinity of k0. This allows rewriting Equation (15) as:

Z = const ·
+∞∫
−∞

e f (k)dk = const ·
√√√√ 2π(

1
N1−k0

+ 1
N2−k0

+ 1
k0

) exp[ f (k0)]. (18)

This partition function yields the same average number of dimers 〈k〉 = k0, as the
partition function given by Equation (12). The square root in Equation (18) can be omitted,
as the average number of dimers in the macroscopic limit is insensitive to this factor.
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4.3. Equilibrium between gA Monomers and Dimers: The First Order of Interactions

Let’s consider the partition function given by Equations (1)–(5) in the linear order on
the number of dimers. In this case, the polynomial P(k), Equation (11), should be truncated
on linear term on k: P = p0 + α1k, where p0 and α1 are independent on k, although they
can depend on N1, N2, m, T. Then the partition function can be expressed as (compare to
Equation (12)):

Z = ep0 Sm 1
2N1+N2

1
N1!N2!

(
−Zinte−

W∗D
T

)N1(
ST

πM}2

)N2

×U
(
−N1, 1− N1 + N2,− ST

πM}2Zint
e−

W∗D
T

)
,

(19)

where W∗D/T = WD/T − α1. Analogously to Equation (14), the average number k1 of dimers
in the first-order approximation can be obtained as:

k1 =
e−

WD
T +α1(N1 − k1)(N2 − k1)

S
Zint

πM}2

T
= D0

eα1(N1 − k1)(N2 − k1)

S
, (20)

and, consequently, the concentration of dimers in the first-order approximation:

C1st
D = D0eα1

(
C1 − C1st

D

)(
C2 − C1st

D

)
, (21)

where D0 is the monomer-dimer equilibrium constant in the limit of low concentrations;
the same D0 stands in Equation (13).

4.4. Equilibrium between gA Monomers and Dimers: Higher-Order Terms

Below, we obtain the average number of dimers taking into account k2 and higher
order terms in Equation (11). Up to the fourth order, one can present the polynomial
P(k) = p0 + α1k + α2k2 + α3k3 + α4k4, where α1, α2, α3, α4 are independent on k, although
they can depend on N1, N2, m, T. In this case, Equation (16) yields:

∂ f
∂k = −W∗D

T + ln
(

π}2 M
T Zint

)
+ ln CU + ln CL − ln CD + 2α2CD + 3α3C2

D + 4α4C3
D = 0. (22)

This equation cannot be solved analytically. To obtain the approximate solution, we
utilize the perturbation theory. We assume that the average equilibrium concentration of
dimers obtained taking into account k2 and higher order terms in Equation (11), differ but
slightly from the equilibrium concentration obtained in the first-order approximation as
given by Equation (21), i.e., that for ∆CD = CD−C1st

D , the relation |∆CD| � C1st
D holds. The

Taylor series of Equation (22) up to the third order on CD yields:

∂ f
∂k = ln

(
1− ∆CD

C1−C1st
D

)
+ ln

(
1− ∆CD

C2−C1st
D

)
− ln

(
1 + ∆CD

C1st
D

)
+ 2α2CD + 3α3C2

D + 4α4C3
D

= −
[

∆CD
C1−C1st

D
+ 1

2

(
∆CD

C1−C1st
D

)2
+ 1

3

(
∆CD

C1−C1st
D

)3
+ ∆CD

C2−C1st
D

+ 1
2

(
∆CD

C2−C1st
D

)2

+ 1
3

(
∆CD

C2−C1st
D

)3
]
− ∆CD

C1st
D

+ 1
2

(
∆CD
C1st

D

)2
− 1

3

(
∆CD
C1st

D

)3
+ 2α2

(
C1st

D + ∆CD
)

+3α3
(
C1st

D + ∆CD
)2

+ 4α4
(
C1st

D + ∆CD
)3

= 0.

(23)

Further, we take Taylor series of CD with respect to C1st
D up to the fourth order, substi-

tute CD into Equation (23) and under the assumptions C1st
D � C1, C2 express the coefficients

of the Taylor series as:

∆CD = 2α2
(
C1st

D
)2

+
(

3α3 + 6α2
2 − 2α2

(
1

C1
+ 1

C2

))(
C1st

D
)3

+
(

4α4 + 24α2α3 +
64
3 α3

2 −
(
3α3 + 14α2

2
)( 1

C1
+ 1

C2

)
+ 4α2

1
C1C2

)(
C1st

D
)4.

(24)
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The series given by Equation (23) is formally correct when α2Cdim0 � 1, α3C2
dim0 � 1,

α4C3
dim0 � 1.
Figures 2 and 3 demonstrate that all particles (U, L, D, I) on the average attract to

transmembrane inclusions (gA dimers and transmembrane peptides), that results in posi-
tive values of corresponding Mayer cluster integrals β1,AB, β2,ABC, β3,ABCE. The interaction
energies are negative and their absolute values are quite large, of the order of several kBT.
This allows assuming qualitatively, that the main contribution to the shift of monomer-
dimer equilibrium comes from interactions involving transmembrane inclusions, and thus
all coefficients αi should be positive. Consequently, we obtain the lower estimate for the
concentrations of dimers.

4.5. Lifetime of Dimers

Consider the gA dimer surrounded by gA monomers, other gA dimers, and mem-
brane inclusions. The inverse average lifetime of the dimer, 1/τ, is determined by the
product of the Boltzmann factor exp[–∆W/T] (where ∆W is the energy barrier of the dimer
dissociation) and the frequency of attempts, ν, to dissociate:

1
τ
= ν exp

[
−∆W

T

]
. (25)

Following [34–36], we assume that the configuration of the coaxial pair of gA monomers
corresponds to the top of the energy barrier. In this configuration, two gA monomers from
opposing membrane leaflets stand one on top of the other and do not form the dimer.
Thus, the energy barrier W is given by the difference of the energy of the pair and dimer
configurations. The presence of gA monomers, gA dimers, and membrane inclusions
influences the values of these two energies, and, consequently, alters the average lifetime
of the dimer. In particular, in the works [43–45] it was demonstrated that the lifetime of
tandem gA channels formed from two lateral dimers of gA, exceeds the lifetime of regular
gA channels by about three orders of magnitude.

In order to obtain the inverse average lifetime of dimers in the membrane, one should
average the expression Equation (25) with respect to positions of all particles present in
the membrane:

1
τ =

〈
ν exp

[
−∆W

T

]〉
= ν

∫
exp

[
−

WP,all−WD,all
T

]
exp

[
−

WD,all
T

]
Πdri∫

exp
[
−

WD,all
T

]
Πdri

= ν

∫
exp

[
−

WP,all
T

]
Πdri∫

exp
[
−

WD,all
T

]
Πdri

,

(26)

where WP,all is the energy of the system comprising gA monomers, dimers and inclusions
supplemented by single coaxial pair of gA monomers; WD,all is the energy of the system
comprising gA monomers, dimers and inclusions supplemented by single dimer (below,
such dimer is denoted as D′). Actually, the relation (26) can be considered as a ratio
of two partition functions. Utilizing the results on the formal structure of the partition
functions obtained in the previous subsections, we can express 1/τ as follows:

1
τ
=

1
τ0

∫
exp[K1 + K2 + K3 + . . .]ρ(k)dk∫
exp[H1 + H2 + H3 + . . .]ρ(k)dk

, (27)

where τ0 is the lifetime of single solitary dimer; K1, K2, K3 are contributions from diagrams
(Figure 1) that include exactly one coaxial pair; H1, H2, H3 are contributions from diagrams
(Figure 1) that include at least one dimer; ρ(k) = exp[f (k)] is the distribution function of
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the number of dimers. Below we present the explicit expressions for K1, H1, K2; other
contributions can be obtained in analogous way:

K1 = β1,PUCU + β1,PLCL + β1,PDCD + β1,PICI,
H1 = β1,D′UCU + β1,D′LCL + β1,D′DCD + β1,D′ICI,

K2 = β2,PUU
C2

U
2 + β2,PULCUCL + β2,PLL

C2
L

2

+β2,PUDCUCD + β2,PLDCLCD + β2,PDD
C2

D
2

+β2,PUICUCI + β2,PLICLCI + β2,PDICDCI + β2,PII
C2

I
2 .

(28)

Actually, it is not necessary to explicitly calculate the integrals standing in Equation (27),
as in the macroscopic limit the corresponding integrals generally accumulate in the vicinity
of the average value k = 〈k〉, i.e., the distribution function ρ(k) is very narrow (close to the
corresponding δ-function), and thus:

1
τ ≈

1
τ0

exp[K1+K2+K3+...]
exp[H1+H2+H3+...] =

1
τ0

exp[(K1 − H1) + (K2 − H2) + (K3 − H3) + . . .]. (29)

In this equation, the correction to the dimer concentration calculated in accordance
with Equation (24) should be taken into account. In the case of absence of membrane
inclusions, one can explicitly check that in the first order on concentrations C1, C2 from
Equation (29) it follows:

τ = τ0(1 + (β1,UD − β1,PU)C1 + (β1,LD − β1,PL)C2) + o(C), (30)

That coincides with the results obtained in the work [36]. Thus, in the regime of
low concentrations, the main contribution to the lifetime correction is provided from
interactions of monomers with pairs and dimers. Increasing concentrations lead to growing
contributions from dimer-dimer and dimer-pair interactions. By considering the limit C1,
C2 → 0, one can obtain from Equation (29) the dependence of the lifetime of the solitary
dimer on the concentration of membrane inclusions:

τ = τ0 exp
[
(β1,DI − β1,PI)CI + (β2,DII − β2,PII)

C2
I

2!

+(β3,DIII − β3,PIII)
C3

I
3!

]
.

(31)

4.6. Calculation of Interaction Energies Based on Theory of Elasticity of Lipid Membranes

We calculate the energy of membrane-mediated interaction of gA monomers, dimers,
pairs and membrane inclusions based on the theory of elasticity of lipid membranes. Each
the particle induces elastic deformations in its vicinity. When the particles are far separated,
their induced deformations are independent and their energies are additive. Upon mutual
approach, the deformations overlap leading to effective lateral interaction between the
particles. The method of calculation of the interaction energies is described in details
in [34–36] for gA monomers and dimers, and in [20]—for amphipathic peptides. Here we
briefly outline the algorithm of the calculation.

We introduce a Cartesian coordinate system Oxyz in such a way that the axis Oz is
directed perpendicular to the plane of the undisturbed lipid bilayer; the coordinate origin
O is placed at the monolayer interface. The upper monolayer lies in the half-space z > 0,
the lower monolayer—z < 0. We describe elastic deformations of the lipid membrane
considering it as a continuous elastic medium. The deformations are deemed small and
their energy is calculated in quadratic order, analogously to the approach developed by
Hamm and Kozlov [54]. The shapes of the upper and lower monolayer surfaces are
characterized by z-coordinates of their points, described by functions Hu(x, y) and Hl(x, y),
respectively. We describe z-coordinates of the monolayer interface by the function M(x, y).
The average orientation of lipid molecules in the upper and lower monolayers is described
by unit vectors nu and nl, respectively, called directors. Along with functions Hu(x, y) and
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Hl(x, y), the shapes of the surfaces of the upper and lower monolayers are determined by
unit normal vectors Nu and Nl, respectively. We account for the following deformations:
splay characterized by inhomogeneity of the director; tilt characterized by deviation of
directors from normal to monolayer surface, t = n/(nN) − N ≈ n − N; lateral stretching
characterized by relative change of the area of the monolayer surface α = (a − a0)/a0, (a, a0
are current and initial area per lipid molecule, respectively); lateral tension σ; the Gaussian
splay K = ∂nx

∂x
∂ny
∂y −

∂nx
∂y

∂ny
∂x ; and the deformation of twist characterized by rot(n). The

energy of elastic deformations of the lipid monolayer can be written as [20,34–36]:

W =
∫

dS
(

B
2 (div(n) + J0)

2 − B
2 J2

0 +
Kt
2 t2 + σ

2 (grad (H))2

+Ka
2 α2 + KGK + Krot

2 (rot (n))2
)

,
(32)

where B, Kt, Ka, KG, Krot are moduli of splay, tilt, lateral stretching, Gaussian splay, twist,
respectively; J0 is monolayer spontaneous curvature; the integration is performed over the
monolayer surface. We impose the condition of local volumetric incompressibility onto the
monolayer, as the bulk modulus of the membrane is very large (~104 kBT/nm3 [59]). In the
case of small deformations, this condition yields:

Hu −M = h− h2

2
div(nu)− hαu, M− Hl = h− h2

2
div(nl)− hαl , (33)

where h is the thickness of the hydrophobic part of the lipid monolayer. Within the required accu-
racy, nu,l =

(
nu,l x(x, y), nu,l y(x, y),∓1

)T, Nu,l = (±∂Hu,l(x, y)/∂x,±∂Hu,l(x, y)/∂y,∓1)T,
where the upper signs correspond to the upper monolayer, the lower signs—to the lower
monolayer; T in superscript is the transposition, subscripts “x”, “y” denote the projection
onto the corresponding axis. Using Equation (33), one can rewrite Equation (32) as follows:

W =
∫

dSu

(
B
2 (div(nu) + Ju)

2 − B
2 J2

u +
Kt
2 (nu − grad (Hu))

2 + σu
2 (grad (Hu))

2

+ Ka
2h2

(
h− h2

2 div(nu) + M− Hu

)2
+ KGKu +

Krot
2 (rot (nu))

2
)

+
∫

dSl

(
B
2 (div(nl) + Jl)

2 − B
2 J2

l +
Kt
2 (nl + grad (Hl))

2 + σl
2 (grad (Hl))

2

+ Ka
2h2

(
h− h2

2 div(nl)−M + Hl

)2
+ KGKl +

Krot
2 (rot (nl))

2
)

.

(34)

The energy functional Equation (34) should be supplemented by boundary condi-
tions. The membrane is assumed to be undeformed far from the membrane-deforming
particles, i.e.,

nu,l(∞) = (0, 0,∓1)T , M(∞) = 0, Hu(∞) = h, Hl(∞) = −h. (35)

Besides, specific boundary conditions are imposed at the boundary of membrane-
deforming particles. Let’s denote the outline of the gA monomer, dimer, or pair at the
monolayer surface as Γ. Γ is assumed to be a circle of the radius r0, the center of which lies
at the axis of rotational symmetry of the gA monomer, dimer or pair. We suppose that gA
dimer imposes the following boundary conditions at the circle:

Hu(Γ) = H0 + hp, Hl(Γ) = H0 − hp, (36)

where hp is the length of the gA monomer along the membrane normal; H0 is the z-
coordinate of the dimer center, determined from the minimization of the energy functional
Equation (34) subjected to the boundary conditions Equations (35) and (36). The monomer
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and pair are supposed to impose boundary conditions on the director. For vertical gA
monomer located in the upper monolayer the boundary conditions read:

nu,n(Γ) = −
h− hp√(

h− hp
)2

+ h2
p

, nu,t(Γ) = 0, Hu(Γ) = Hm, (37)

where nu,n and nu,t are normal and tangential components of the director with respect to
the boundary Γ; Hm is z-coordinate of the circle Γ determined from the minimization of the
energy functional Equation (34). If the monomer is tilted with respect to the vertical axis,
then the boundary conditions Equation (37) are modified as follows:

nu(Γ) = n0(Γ) + ∆n, Hu(Γ) = Hm + ∆r∆n, (38)

where n0 is the boundary director of vertically standing monomer, Equation (37); ∆n is
the vector characterizing the tilt of the monomer determined from the minimization of the
elastic energy functional, Equation (34); ∆r = r − r0, where r0 is the radius-vector of the
center of the circle Γ and r is the radius-vector of a point on the contour Γ. For gA monomer
located in the lower monolayer the boundary conditions are analogous. For the coaxial pair
the same boundary conditions should be imposed simultaneously for the upper and lower
monomer of the pair.

As the transmembrane inclusion, we consider a cylindrically shaped transmembrane
peptide, the radius of which coincides with the radius of the gramicidin dimer, and the
length of which is smaller than the hydrophobic thickness of the lipid bilayer. The mem-
brane has to compress in the vicinity of such inclusions in order to avoid an exposure of
hydrophobic membrane interior to polar media (either water or polar lipid heads). We
impose the following boundary conditions on the transmembrane inclusions:

Hu(Γ) = HI0 + hI,
Hl(Γ) = HI0 − hI,
nu,n(Γ) = 0, nu,τ(Γ) = 0, nl,n(Γ) = 0, nl,τ(Γ) = 0,

(39)

where hI is the half of the inclusion length; HI0 is analogous to H0 in Equation (36); it is
determined from minimization of the energy functional, Equation (34).

Besides, we consider inactivated monomers of gramicidin as peripheral membrane
inclusions. Such monomers are generated, e.g., in the course of photo-induced damage
of gramicidin by reactive oxygen species generated by excited photosensitizers [36,60,61].
At the inactivated monomers, we impose the same boundary conditions, as at the intact
gramicidin monomers; the only difference is that inactivated monomers cannot participate
in the dimerization reaction. Inactivated monomers can also be considered as short amphi-
pathic peptides, as their imposed boundary conditions coincide [36]. In the present work
we do not consider long helical amphipathic peptides, as their strict analysis requires ex-
plicit accounting for their rotational degree of freedom in the plane of the membrane. Such
consideration would substantially complicate the calculation of configuration partition
functions. This problem is beyond the scope of the present study, although it principally
can be solved in the framework of the developed formalism.

4.7. Parameters of the System

To obtain quantitative results, we utilized the following values of the membrane
elastic parameters, typical for diphytanoylphosphatidylcholine (DPhPC): splay modulus
B = 14 kBT (kBT≈ 4 × 10−21 J) [62]; tilt modulus Kt = 40 mN/m = 10 kBT/nm2 [54]; the mod-
ulus of lateral stretching-compression Ka = 133 mN/m [63]; twist modulus Krot = B/2 = 7 kBT;
the modulus of the Gaussian splay KG = −B/2 = −7 kBT [64]; spontaneous curvature
J0 = −0.015 nm−1; hydrophobic thickness h = 1.4 nm [42,63]; all values are related to the
lipid monolayer. The length and the radius of the gramicidin monomer were hp = 0.75 nm
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and r0 = 1 nm, respectively [34–36]. The length and radius of the transmembrane inclusion
were taken 2hI = 1.7 nm and rI = r0 = 1 nm, respectively.

4.8. Numerical Minimization of the Elastic Energy Functional

The functional of the membrane elastic energy given by Equation (34) was minimized
numerically, as the minimization cannot be performed analytically under the imposed
boundary conditions. We utilized the finite element method with an adaptive mesh. The
functions in the functional Equation (34) were replaced by their piecewise linear interpolants
on each triangle of the computational mesh, the size of which decreased while approaching
the membrane inclusions. The calculation was performed for meshes of different average
sizes, and further the result was extrapolated towards the zero size mesh. The procedure
of the numerical minimization of the elastic energy functional Equation (34) is described
in details in the works [20,34–36,65]. The resulting interaction potentials are presented in
Figures 2 and 3.

4.9. Numerical Calculation of the Mayer’s Cluster Integrals

The Mayer’s cluster integrals β1,AB, β2,ABC, β3,ABCE standing as coefficients in the poly-
nomial, Equation (11), were calculated according to diagrams (Figure 1) utilizing the Monte
Carlo method. For configurations of overlapping monomers in one monolayer, overlapping
dimers, etc. the energy was set at the value equal to +∞. In the region where the interaction
energies are finite, all calculated interaction energies were approximated by the function
w(r) = e−qrP8(r), where q is some fitting constant, and P8(r) is the approximation polynomial
of the eighth degree. The deviation of the approximation from the explicitly calculated
energies did not exceed 2%. The explicit values of the integrals β1,AB are presented in
Table 1; β2,ABC—in Table 2; β3,ABCE—in Table 3.

Table 1. Values of integrals β1,AB for different types of interacting particles. The values are in the
units of nm2.

Type of Particle U L D I P

U –104 68.7 991 88.6 –15.8

L 68.7 –104 991 88.6 –15.8

D 991 991 101,659 12,701 59,529

I 88.6 88.6 12,701 9517 1636

P –15.8 –15.8 59,529 1636 —

Table 2. Values of integrals β2,ABC for different types of interacting particles. The values are in the
units of nm4.

ABC UUU
LLL

UUL
ULL

UUD
LLD ULD UUI

LLI ULI UUP
LLP

β2,ABC –2312 –1750 –476,256 –359,087 –3915 –3218 –2140

ABC ULP UDD
LDD

UII
LII

UDP
LDP

UIP
LIP

UDI
LDI DDI

β2,ABC –2267 9.5 × 108 1.1 × 106 –2.7 × 107 –37,800 1.2 × 107 2.1 × 1011

ABC DII DDD PDI PII III PDD

β2,ABC 2.0 × 1011 1.4 × 1013 1.1 × 1010 1.8 × 108 1.1 × 1010 3.4 × 1012
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Table 3. Values of integrals β3,ABCE for different types of interacting particles. The values are in the
units of nm6.

ABCE UUUU
LLLL

UUUL
LLLU UULL UUUD

LLLD
UULD
LLUD

UUUI
LLLI

UULI
LLUI

β3,ABCE –39,320 –70,375 –27,268 5.4 × 108 3.5 × 108 320,627 36,887

ABCE UUUP
LLLP

UULP
LLUP

UUDD
LLDD ULDD UUDI

LLDI ULDI UUII
LLII

β3,ABCE –162,519 –94,637 2.8 × 1012 4.3 × 1012 –9.5 × 109 –5.6 × 109 –1.5 × 108

ABCE ULII UUDP
LLDP ULDP UUIP

LLIP ULIP UDDD
LDDD

UDDI
LDDI

β3,ABCE –8.3 × 107 2.9 × 1010 2.3 × 1010 –337,172 –2.0 × 106 1.1 × 1018 3.8 × 1015

ABCE UDII
LDII

UIII
LIII

UDDP
LDDP

UDIP
LDIP

UIIP
LIIP DDDD DDDI

β3,ABCE 5.3 × 1013 3.7 × 1012 1.4 × 1016 –1.2 × 1012 5.3 × 109 1.5 × 1021 1.0 × 1019

ABCE DDII DIII IIII DDDP DDIP DIIP IIIP

β3,ABCE 2.4 × 1017 2.6 × 1016 1.5 × 1016 4.9 × 1022 9.0 × 1019 2.2 × 1017 1.5 × 1015
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