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Abstract: Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LIN-
COO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian
cancer (OC). Methods: We present an analysis on the association of these genes with any pheno-
types and mutations indicative of involvement in female cancers and predict the structural and
functional consequences of those SNPS using in silico tools. Results: These seven genes present
with 976 SNPs/mutations that are associated with human cancers, out of which 284 related to female
cancers. We have then analysed the mutation impact on amino acid polarity, charge and water
affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa)
changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified,
only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC)
was suggestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that
the R831C/R804C mutation is deleterious and the predicted ∆∆G values suggest that the mutation
reduces the stability of the protein. Future in vitro studies should provide further insight into the
role of this transporter protein in UCEC.

Keywords: missense mutations; protein modelling; SLC4A11; uterine corpus endometrial carcinoma

1. Introduction

Ovarian carcinoma (OC) is the most fatal gynaecologic malignancy, accounting for
more than 200,000 deaths annually (WHO; Cancer Today). Over 80% of patients with
advanced OC will relapse, and despite further good remissions from additional chemother-
apy and surgery, they will usually die from their disease [1]. The median progression-free
survival (PFS) for relapsed ovarian cancer (ROC) patients who last had treatment within
3–12 months previously is 4–9 months, with overall survival (OS) of ~12–20 months [2].
It should be noted that there is a genetic variation of response to chemotherapy and
subsequently to tumour progression [3].

A plethora of studies—primarily via genome-wide association studies—have conclu-
sively demonstrated an association between single-nucleotide polymorphisms (SNPs) and
cancer risk [4]. There is a high frequency of SNPs occurrence in the human genome. In par-
ticular, amino acid point mutations or non-synonymous single-nucleotide polymorphisms
(nsSNPs) may alter the structure and subsequently affect the function of the mutated pro-
tein [5]. More than 13,000 known SNPs are in exon regions, of which 58% are nsSNPs [6].
Indeed, a number of nsSNPs are associated with an increased cancer risk [7]. For example,
nsSNPs in codon 31 of the p21 gene are associated with an increased risk of cervical cancer
development [8].
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Apart from genetic changes, exposure to endocrine-disrupting chemicals (EDCs) can
disturb the normal functions of the endocrine system in humans and increase the risk of
adverse health effects [1]. Bisphenol A (BPA) (an EDC) has a pro-carcinogenic impact in
hormone-dependent and hormone-independent cancers [9–11]. BPA exposure is reported
to alter the cancer cells’ biological behaviours, particularly, proliferation, invasion, growth,
survival, migration and apoptosis [9,12–16]. Recently, we have identified seven genes that
have prognostic power for the overall survival in OC, namely Guanylate Binding Protein
5 (GBP5), Insulin Receptor Substrate 2 (IRS2), Keratin 4 (KRT4), long intergenic non-protein
coding RNA 707 (LINC00707), Mitochondrial Ribosomal Protein L55 (MRPL55), Ribosome
Biogenesis Regulator 1 Homolog (RRS1) and Solute Carrier Family 4 Member 11 (SLC4A11).
Out of these seven genes, KRT4 appears to be a biomarker of BPA exposure-associated OC,
whereas GBP5, LINC00707 and SLC4A11 appear to be biomarkers of disease [17].

In this study, we aimed to predict the structural and functional consequences of SNPs
mapped in genetic variants of these seven biomarkers in gynaecological malignancies.

2. Results
2.1. Landscape of Mutations in Seven Biomarker Genes Based on TCGA, cBioPortal and UK Biobank

We have previously identified seven biomarkers of OC and exposure-associated OC,
as discussed [17]. We found that these 7 biomarkers represent 976 and 284 SNPs/mutations
associated with human cancers and female cancers, respectively. It should be noted that in
Figure 1, we did not illustrate UK BioBank (PhenoScanner)-associated mutations (Table 1)
as it has no overlapping/intersection with any other database (cBioPortal or TCGA).

Table 1. Data summary for the mutation samples from TCGA, UK BioBank and cBioPortal datasets.
The “Total Samples” is with respect to the samples associated with the genes of interest.

Gene Samples TCGA UK BioBank cBioPortal

Total Samples 713 950 647
All cancers 713 (100%) 48 (100%) 647 (100%)

Female cancers * 145 (20.33%) 7 (14.58%) 208 (32.14%)

GBP5 All cancers
Female cancers

145 (20.33%)
27 (3.78%)

3 (6.25%)
1 (2.08%)

150 (23.18%)
54 (8.34%)

IRS2 All cancers
Female cancers

114 (15.98%)
30 (4.20%)

8 (16.66%)
-

82 (12.67%)
18 (2.78%)

KRT4 All cancers
Female cancers

154 (21.59%)
22 (3.08%)

7 (14.58%)
2 (4.16%)

158 (24.42%)
50 (7.72%)

LINC00707 All cancers
Female cancers

-
-

24 (50%)
2 (4.16%)

-
-

MRPL55 All cancers
Female cancers

35 (4.90%)
10 (1.40%)

1 (2.08%)
1 (2.08%)

24 (3.70%)
9 (1.39%)

RRS1 All cancers
Female cancers

57 (7.99%)
16 (2.24%) 1 (2.08%)- 38 (5.87%)

11 (1.70%)

SLC4A11 All cancers
Female cancers

208 (29.17%)
40 (5.61%)

4 (8.33%)
1 (2.08%)

195 (30.13%)
67 (10.35%)

* Female cancers: ovarian, cervical/endocervical, uterine, breast and endometrial/uterine corpus endometrioid carcinoma.
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Figure 1. Venn diagram showing the possible mutations/SNPs associated with seven biomarkers in
cBioPortal and UCSC Xena repository. (a) Mutations in human cancers. (b) Mutations in female cancers.

These SNPs were further analysed according to the number and percentage of muta-
tions associated with seven biomarkers of interest in human cancers (Figure 2) and female
cancers (Figure 3), along with mutation types.

Figure 2. (a) Bar plot representing types of SNPs/mutations associated with seven biomarkers in
human cancers. (b) Pie chart demonstrating the percentage distribution of 976 SNPs for 7 biomarkers
in human cancers, where red colour represents the number of mutations in each gene.
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Figure 3. (a) Bar plot indicating different types of mutations associated with seven biomarkers in
female cancers. (b) Pie chart specifying the percentage distribution of 284 SNPs for 7 biomarkers in
female cancers, where red colour represents the number of mutations in each gene.

Further, we analysed the percentage of mutation and sample size in all related human
cancers (Figure 4a) and female cancers (Figure 4b), along with associated biomarkers
(highlighted in seven colours). Table 2 summarises the mutation impact on protein structure
and function, including amino acid (aa) polarity, charges and water affinity.

Figure 4. (a) Bar plot showing the sample size and percentage of mutation in seven biomarkers in
each human cancer type, (b) with emphasis on female cancers.
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Table 2. Data summary for the exon mutation samples used in this study from TCGA, UK BioBank
and cBioPortal datasets to analyse the mutation impact at protein structure and function. Including
amino acid polarity, charges and water affinity.

Feature Count

Exon Mutation 807 (100%)
Non silent mutation 560 (69.39%)
Silent mutation 173 (21.43%)
Stop codon mutation 74 (9.16%)

Amino Acid Polarity 560 (100%)
Polar to Non-polar 104 (18.57%)
Non-polar to Polar 123 (21.96%)
No charge 333 (59.46%)

Amino Acid Charge 560 (100%)
Positive to Negative 1 (0.17%)
Positive to No charge 93 (16.60%)
No charge to Positive 37 (6.60%)
Negative to Positive 16 (2.85%)
Negative to No charge 31 (5.53%)
No charge to Negative 27 (4.82%)
No charge 355 (63.39%)

Amino Acid Water Affinity 560 (100%)
Hydrophobic to Hydrophilic 8 (1.42%)
Hydrophobic to Neutral 65 (11.60%)
Neutral to Hydrophobic 84 (15%)
Hydrophilic to Hydrophobic 47 (8.39%)
Hydrophilic to Neutral 76 (13.57%)
Neutral to Hydrophilic 46 (8.21%)
No charge 234 (41.78%)

We extracted the gynaecological cancer amino acid changes (n = 30) (Table 3) according
to the selection criteria in Figure 5.

Figure 5. Amino acid change/SNP selection criteria according to the change in amino acid polarity
and charge.
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Table 3. Data summary of the gynaecological cancer amino acid changes, where n = 30, showing
opposite polarity, charges and water affinity. 1—USCS Xena and 2—cBioPortal.

Database Gene Cancer Type Amino Acid Change Mutation

1/2 GBP5 Cervical and Endocervical Cancer R520I Missense
1/2 GBP5 Uterine Corpus Endometrioid Carcinoma R450W Missense
1/2 GBP5 Uterine Corpus Endometrioid Carcinoma R290C Missense
1/2 GBP5 Uterine Corpus Endometrioid Carcinoma P415H Missense

2 GBP5 Uterine Endometrioid Carcinoma R396W Missense
2 GBP5 Uterine Endometrioid Carcinoma F267C Missense
2 IRS2 Uterine Endometrioid Carcinoma E1150K Missense

1/2 KRT4 Ovarian Serous Cystadenocarcinoma R49P 5′UTR
1/2 KRT4 Cervical and Endocervical Cancer E238K/E312K Missense
1/2 KRT4 Uterine Corpus Endometrioid Carcinoma R196M/R270M Missense
1/2 KRT4 Cervical and Endocervical Cancer R9P/R83P Missense
1/2 KRT4 Uterine Corpus Endometrioid Carcinoma R27I/R101I Missense

2 KRT4 Uterine Endometrioid Carcinoma E509K Missense
2 KRT4 Uterine Endometrioid Carcinoma G84D Missense
2 KRT4 Uterine Endometrioid Carcinoma D507V Missense
2 KRT4 Uterine Endometrioid Carcinoma R270M Missense
2 KRT4 Uterine Endometrioid Carcinoma G578D Missense
2 MRPL55 Uterine Endometrioid Carcinoma G20R Missense
2 MRPL55 Uterine Endometrioid Carcinoma R96C Missense
2 MRPL55 Uterine Endometrioid Carcinoma P86H Missense

1/2 RRS1 Uterine Corpus Endometrioid Carcinoma R83C Missense
1/2 RRS1 Uterine Corpus Endometrioid Carcinoma L157R Missense
1/2 SLC4A11 Uterine Corpus Endometrioid Carcinoma R831C/R804C Missense
1/2 SLC4A11 Cervical and Endocervical Cancer R309C/R282C Missense

1 SLC4A11 Uterine Corpus Endometrioid Carcinoma R50M Missense
2 SLC4A11 Serous Ovarian Cancer R488M Missense
2 SLC4A11 Uterine Endometrioid Carcinoma R629W Missense
2 SLC4A11 Uterine Endometrioid Carcinoma D149V Missense
2 SLC4A11 Uterine Endometrioid Carcinoma E562K Missense
2 SLC4A11 Uterine Endometrioid Carcinoma R157C Missense

2.2. Prediction of the Effects of R804C/R831C on SLC4A11 Protein Stability, Function and
Physiochemical Properties

Out of 30 gynaecological cancer amino acid changes, only 1 amino acid change, at
R831C/R804C, has detected the structural damage of the protein SLC4A11, therefore, we
modelled this protein (SLC4A11) with SNP at R831C/R804C in uterine corpus endometrioid
carcinoma (Figure 6). The reason for the 2 different positions is due to the presence of
3 distinct N-terminal variants of human SLC4A11: 918 amino acid splice form 1 (where the
mutation is at position 831), 891 amino acid splice form 2 (where the mutation is at position
804) and 875 amino acid splice form 3 (where the mutation is at position 788) [18,19].

For the 918 amino acid variant, the R831C substitution does not alter the secondary
structure, but this substitution leads to the expansion of cavity volume by 97.2 Å3. Cavity
also refers to a pocket on the surface (Figure 6). This substitution also results in a change
between the buried and exposed state of the target variant residue. ARG is buried (RSA
7.6%) and CYS is exposed (RSA 20.7%). In the same protein, an increased z-score from
−3.23 to −1.19 was noted, whereas for the mutant-type protein, the z-score changed from
−3.24 to −1.16.

For the 891 amino acid variant, the R804C substitution does not alter the secondary
structure, but this substitution leads to the expansion of cavity volume by 99.792 Å3. Cavity
also refers to a pocket on the surface (Figure 7). This substitution also results in a change
between the buried and exposed state of the target variant residue. ARG is buried (RSA
6.8%) and CYS is exposed (RSA 20.0%). Similarly, an increased z-score from −3.22 to −1.09
was also recorded for the wildtype protein and a similar change (from −3.22 to −1.11) for
the mutant.



Int. J. Mol. Sci. 2022, 23, 1725 7 of 13

Figure 6. (a) Aligned structure of solute carrier family 4, sodium borate transporter, member
11 protein wildtype (918 aa, grey colour) and energy-minimised wildtype (cyan colour). (b) Aligned
structure of SLC4A11 protein mutant (grey colour) and energy-minimised mutant (red colour).
(c) Aligned structure of energy-minimised solute carrier family 4, sodium borate transporter, member
11 protein wildtype (cyan) and energy-minimised mutant (red). (d) Surface view of aligned structure
of energy-minimised solute carrier family 4, sodium borate transporter, member 11 protein wildtype
(cyan) and energy-minimised mutant (red).

Moreover, we created an electrostatic potential surface for solute carrier family 4,
sodium borate transporter, member 11 protein (Figure 8). As the colour legend indicates,
the red colour (negative potential) arises from an excess of negative charges near the surface
and the blue colour (positive potential) occurs when the surface is positively charged. The
white regions correspond to fairly neutral potentials.

Arginine (R) is a positively charged, polar and hydrophilic amino acid in proteins that
has a profound role in protein structure and function that involves electrostatic interactions
and protein solvation [20]. Alternatively, cysteine (C) is a non-polar, uncharged and
hydrophobic amino acid, and the substitution from R to C may have a deleterious impact
on the protein hydration and electrostatic interactions of the protein. When we used
PROVEAN (Protein Variation Effect Analyzer), a software tool which predicts whether an
amino acid substitution has an impact on the biological function of a protein, it provided a
score of −7.292 with the annotation “Deleterious” for both R831C and R804C. The default
score threshold is currently set at −2.5 for binary classification (i.e., deleterious vs. neutral).
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Figure 7. (a) Aligned structure of solute carrier family 4, sodium borate transporter, member
11 protein wildtype (891 aa, grey colour) and energy-minimised wildtype (cyan colour). (b) Aligned
structure of SLC4A11 protein mutant type (grey colour) and energy-minimised mutant type (red
colour). (c) Aligned structure of energy-minimised solute carrier family 4, sodium borate transporter,
member 11 protein wildtype (cyan) and energy-minimised mutant type (red). (d) Surface view of
aligned structure of energy-minimised SLC4A11 protein wildtype (cyan) and energy-minimised
mutant type (red).

We have further evaluated changes in protein stability using MUpro: Prediction of
Protein Stability Changes for Single-Site Mutations from Sequences [21,22], where Delta
Delta G (DDG), a metric for predicting how a single point mutation will affect protein
stability, was measured. In both variants, the predicted DDG was −0.704, suggesting
a decrease in protein stability. Similar data were obtained from the BIOCOMP.UNIBO
prediction server [23], with a DDG of −0.67 and a prediction of a disease-related mutation.
Finally, we have used the DeepDDG server [24] that predicts the stability change of protein
point mutations using neural networks and calculated a DDG value of −1.802 (kcal/mol).
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Figure 8. (a) An electrostatic potential surface of wildtype solute carrier family 4, sodium borate
transporter, member 11 protein indicating amino acid residue ARG at position 831/804. (b) An
electrostatic potential surface of mutant-type protein indicating amino acid residue CYS at position
831/804. In the colour legend, the red colour indicates negative potential, the blue colour indicates
positive potential of the protein surface and the white regions correspond to fairly neutral potentials.
Yellow arrow indicates towards the mutation site at position 831/804.

3. Discussion

In this study, we provided a comprehensive overview of a wide repertoire of mutations
of seven recently predicted biomarkers for OC that can be acquired using a number of
in silico tools. These 7 genes present with 976 SNPs/mutations that are associated with
human cancers, out of which 284 are related to female cancers that include ovarian, cervical,
endometrial cancer, as well as endometrioid and uterine carcinomas. The most prevalent
type of mutation occurring on six (i.e., GBP5, IRS2, KRT4, MRPL55, RRS1 and SLC4A11)
out of seven genes was missense mutation, followed by silent and 3′untranslated region
(3′UTR) mutations. In the case of LINC00707, being a long non-coding RNA (lncRNA),
non-coding transcript exon and intron mutations were the only two types identified in
both all cancers and female ones. In both cases, SLC4A11 had the largest percentage of
mutations out of all 7 genes at 29.4% and 28.9%, respectively.

In missense mutations, there is a change of a single nucleotide, resulting in a codon that
can produce a different amino acid. Using the Human Genome Database as a paradigm,
it is evident that several missense mutations are linked with inherited predispositions
to malignancies [25]. For example, in a recent analysis of more than 113,000 women,
missense variants for BRCA1, BRCA2 and TP53 were associated with a risk of breast
cancer [26]. Equally, a number of studies have indicated that mutations at the 3′UTR can
drive oncogene activation or inactivation of tumour suppressors by altering the binding
efficiency of microRNAs [27,28]. For example, a GAPDH mutation in the 3′UTR creates a
miR-125b binding site, and as a result facilitates the development of OC [27].

On the other hand, the mutational landscape for the lncRNA LINC00707 is quite
different. We know that lncRNAs exhibit a complex biology and are involved in a number
of processes, including gene transcription or gene silencing [29]. Although there is no
published data on intronic mutations and their impact on LINC00707, a recent study high-
lighted their importance in cancer, since 64 tumour suppressors were affected by intronic
mutations, and blood cancers showed higher proportions of deep intronic mutations [30].

We have then provided a deeper insight into the percentage of mutation of each of
the seven genes of interest in all cancers and in female cancers. For the latter, the largest
percentage (28.9%) was attributed to SLC4A11, with GBP5 and KRT4 exhibiting a high
percentage as well (21.5% and 20.4%, respectively). In this cohort of cancers, the largest
datasets were of uterine endometrioid carcinoma (n = 102) and uterine corpus endometrioid
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carcinoma (UCEC; n = 85). UCEC is the most common female pelvic malignancy, and the
sixth most common gynaecological malignancy in females, with an estimated 417,367 new
cases and 97,370 deaths worldwide in 2020 [31]. Despite the wide repertoire of therapeutic
options for UCEC, there is an increase in the incidence of endometrial cancer. Of note,
numerous shared and cancer type-specific mutation signatures have been identified, with
UCEC depicting a number of clusters with distinct mutation frequencies [32]. Out of the
seven genes in question, only one study associates the IRS2 polymorphism G1057D with
endometrial cancer [33].

We then analysed the mutation impact on amino acid polarity, charge and water
affinity, leading to the identification of 30 mutations in gynaecological cancers where amino
acid changes lead to opposite polarity, charges and water affinity. Out of 30 gynaecological
cancer amino acid changes, only missense mutation (i.e., R831C/R804C in UCEC) was
suggestive of structural damage on the solute carrier family 4, sodium borate transporter,
member 11 protein. Therefore, we modelled this protein and provided in silico evidence of
how a change from arginine (R) to cysteine (C) can exert potential deleterious consequences.

SLC4A11 is a member of the SLC4 family of bicarbonate transporters that is primarily
expressed as an integral membrane protein, with aberrant expression in the cornea, thyroid,
salivary gland and kidney. This transporter is also involved in sodium-mediated fluid
transport in different tissues. The human SLC4A11 gene encodes three splice variants
at the NH2 terminus. These include the 918 variant A, the 891 amino acid variant B
and the 875 amino acid variant C [18,19]. Of these, according to UniProt, SLC4A11-B
is the canonical sequence. To date, most of the work on SLC4A11 is concentrated on
corneal dystrophies. Indeed, mutations of SLC4A11 are the cause of congenital hereditary
endothelial dystrophy (CHED) and some cases of late-onset Fuchs endothelial corneal
dystrophy (FECD) [18]. Interestingly, one the mutations found in families with autosomal
recessive corneal endothelial dystrophy (CHED2) was on arginine 804 (G804A). The authors
of the study argued that the mutation can alter the hydrophobic interaction of methyl
groups located in the arginine stem, thus impacting on the loop stability [34].

In this study, we have shown that (1) the R831C/R804C mutation is deleterious and
(2) predicted ∆∆G values suggest that the mutation reduces the stability of the protein. As
mentioned, DDG is the change in Gibbs free energy (Gibbs free energy (G) = Enthalpy (H)
− Temperature (T) × Entropy (S)) [24]. There is also a strong structural explanation for the
change in stability: Arg-831 is in a salt bridge with nearby Glu-519, so R831C will have
a large enthalpic impact. However, we acknowledge that it is difficult to further dissect
the functional impact of this change in stability without embarking on in vitro studies,
mutating the protein in cellular models of UCEC. We also acknowledge that the cavity
hypothesis is limited by the neglect of protein–membrane interactions in YASARA. Very
recently, a new artificial intelligence system (AI) that predicts 3D protein structures with
high accuracy has emerged, termed AlphaFold [35]. Subsequently, we have modelled
our predicted structures of the two SLC4A11 protein variants with that of AlphaFold and
there is 100% alignment in the R804 transmembrane region (Supplementary Figure S1),
suggesting a conserved 3D configuration irrespective of the modelling software.

In terms of its role in female reproductive organs, the only data available come from a
study in OC, where high expression of SLC4A11 is a predictor for poor overall survival in
serous OC (grade 3/4) [36]. Leveraging data from TCGA and GTEX, we also demonstrated
significant upregulation of SLC4A11 in UCEC (Supplementary Figure S2). Future studies
should concentrate on gaining a deeper understanding of the actual role of this transporter
protein in UCEC and how this deleterious mutation might affect its function, as the normal
function(s) of SLC4A11 in gynaecological malignancies still remains unclear.

4. Materials and Methods
4.1. Data Availability

Xena Repository: Somatic mutation data and sample phenotype information were
extracted from the data generated by The Cancer Genome Atlas (TCGA) research network



Int. J. Mol. Sci. 2022, 23, 1725 11 of 13

and TCGA somatic mutations (Pan-cancer Atlas), as published in the Xena repository
hosted at the University of California Santa Cruz (UCSC) [37].

UK BioBank: Genetic variation/mutation data were extracted from PhenoScanner
(version 2), which is a curated database holding publicly available results from large-scale
genome-wide association studies (GWAS) for the UK Biobank data. This tool helps to
facilitate “phenome scans”, the cross-referencing of genetic variants with a broad range of
phenotypes, to help aid the understanding of disease pathways and biology.

cBioPortal: Genomic alterations across a set of patients were quarried from cBioPortal
(for cancer genomics), an exploratory analysis tool for exploring large-scale cancer genomic
datasets that hosts data from large consortium efforts, such as TCGA and TARGET, as well
as publications from individual labs. The cBioPortal assists to explore specific genes or a
pathway of interest in one or more cancer types.

Statistical Analysis: All unstructured data gathering, processing, modelling and statis-
tical analyses were conducted using R (v. 4.1.0, The R Foundation for Statistical Computing,
Vienna, Austria) under the R Studio desktop application (version 1.4.1717, RStudio, Boston,
MA, USA).

4.2. Protein Structure Prediction Tools

UniProt Knowledgebase: The amino acid sequence of the protein of interest was ex-
tracted from the UniProt Knowledgebase (UniProtKB) (https://www.uniprot.org (accessed
on 10 November 2021)), which is the central hub for the collection of functional informa-
tion on proteins, with accurate, consistent and rich annotation. It records the information
extracted from the literature and curator-evaluated computational analysis.

Protein Data Bank (RCSB PDB): We used the Protein Data Bank (PDB) (https://www.
rcsb.org (accessed on 10 November 2021)) to gather the known protein structure information
of our genes of interest. It is the single worldwide archive of structural data of biological
macromolecules. It includes data obtained by X-ray crystallography and nuclear magnetic
resonance (NMR) spectrometry submitted by biologists and biochemists from all over the
world.

Phyre2: In order to predict the three-dimensional (3D) structure of our desired protein
sequence/gene, we used Phyre2 (v. 2.0). The software assists with the construction of 3D
models of our protein of interest based on the alignments between the hidden Markov
model (HMM) of the desired sequence and the HMMs of known structure.

SWISS-MODEL: We also used a fully automated 3D protein structure homology-
modelling server, SWISS-MODEL (https://swissmodel.expasy.org/ (accessed on 10 Novem-
ber 2021)), to predict the 3D structure of our desired protein sequence. Homology mod-
elling is currently the most accurate method to generate reliable 3D protein structure
models, as it makes use of experimental protein structures (“templates”) to build models
for evolutionary-related proteins (“targets”).

AlphaFold: The Protein Structure Database (https://alphafold.ebi.ac.uk/ (accessed on
10 November 2021)), an AI system which is able to computationally predict protein struc-
tures with unprecedented accuracy and speed, was also used to predict the 3D structure.

Missense3D: Structural changes introduced by an amino acid substitution/SNP were
measured and predicted by the Missense3D tool (http://missense3d.bc.ic.ac.uk/missense3d
(accessed on 10 November 2021)).

YASARA Energy Minimisation Server: Energy minimisation of the protein was per-
formed using the YASARA server (http://www.yasara.org/minimizationserver.htm (ac-
cessed on 10 November 2021)), and the YASARA application (v. 21.8.26) was used to view
and save the 3D energy-minimised structure in PDB format.

PyMOL: Electrostatic potential surfaces, electron densities and three-dimensional (3D)
visualisation of proteins were analysed by PyMOL (v. 2.4.1), which is an open-source
molecular visualisation platform.

PROVEAN: Impacts on the biological function of protein sequence variations including
single or multiple amino acid substitutions were predicted by the PROVEAN (Protein

https://www.uniprot.org
https://www.rcsb.org
https://www.rcsb.org
https://swissmodel.expasy.org/
https://alphafold.ebi.ac.uk/
http://missense3d.bc.ic.ac.uk/missense3d
http://www.yasara.org/minimizationserver.htm
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Variation Effect Analyzer) (v. 1.1) tool (http://provean.jcvi.org/ (accessed on 10 November
2021)) [38].
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