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Abstract: While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards
bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well
characterized. Moreover, since different protocols are often used, comparing the effect of b-LED
towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to
analyze, in the same experimental setting, both the bactericidal activity and the effects on human
keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive
(i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with
catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient
cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of
Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction
of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same
time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype,
characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout
of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay
in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated
with complex responses in keratinocytes that certainly deserve further analysis.

Keywords: b-led light; skin infections; EMT; genotoxic damage

1. Introduction

Antimicrobial resistance (AMR) is the capacity of a microorganism to acquire the
ability to replicate in the presence of a concentration of an antimicrobial agent that would
instead be generally sufficient to inhibit or inactivate microorganisms of the same species [1].
This is an increasing global health concern with a high epidemiological impact on the whole
population (increase in morbidity and mortality), with heavy social and economic burdens
(extension of hospital stays/greater use of diagnostic procedures).
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A study by the European Center for Disease Prevention and Control (ECDC) reports
that in 2015, in the countries of the European Union and the European Economic Area,
there were 671,689 cases of AMR infections, to which 33,110 deaths were attributable, a
third of which occurred in Italy, highlighting the seriousness of the problem in our country.
Compared to non-resistant forms, resistant bacteria will double the chances of developing
a serious health issue and triple the chances of death [2]. There is a huge economic impact
for this phenomenon. In the US, more than two million infections a year are caused by
bacteria that are resistant to at least first-line antibiotic treatments, implying for the US
health system 20 billion USD in excess costs each year [3,4].

The development of AMR can occur in surprisingly short times. This phenomenon
is favored by the rapid bacterial replication rate (one replication cycles every 20 min) and
by the spontaneous mutations in bacterial genome. As long as the resistance is limited
to a single class of drug, it is possible to use different classes of molecules to overcome
the problem. However, multiple resistances often arise, which are identified with the
acronyms “MDR” (multi-drug-resistant), “XDR” (extensively drug-resistant) and “PDR”
(pan-drug-resistant) [5].

Sepsis is the second leading cause of death in chronic renal patients on hemodialy-
sis/peritoneal dialysis (HD/DP) [6]. These data are particularly relevant given the sig-
nificant and continuous growth of the population undergoing dialysis. According to the
United States Renal Data System Report, at the end of 2018, 495,052 patients were under-
going hemodialysis, with an increase of 8.8% between 2017 and 2018. Peritoneal dialysis
patients increased to 58,636, representing a 7.7% growth since 2017. Most patients perform
dialysis through catheter devices (venous or peritoneal) [7].

The permanent interruption of the skin, due to the presence of central venous or peri-
toneal catheters, is responsible for the infections in the majority of cases with a significant
clinical impact. The most important risk factors are the duration of catheter placement, skin
colonization at the catheter insertion site, and the frequent manipulation of the venous or
peritoneal line. Dialysis patients often carry all three of these factors [8].

Light-emitting diodes (LEDs) are an optoelectronic device that exploits the ability
of some semiconductor materials to produce photons through a spontaneous emission
phenomenon when crossed by an electric current [9]. Currently, LEDs are available at
wavelengths ranging from ultraviolet (UV) to visible to near infrared (NIR) bandwidth
(247 to 1300 nm) [9].

LED light does not deliver enough power to damage tissues and does not have the
same risk of accidental eye damage that lasers do. Visible/NIR-LED therapy has been
deemed to present no significant risk by the Food and Drug Administration and has
been approved for use in humans [9]. However, the effects of LED light exposure on
eukaryotic cell physiopathology, including keratinocyte cell plasticity, have so far been
incompletely studied.

Some preliminary data show that LED treatments are effective for the inactivation
of pathogenic microbes (Gram-positive bacteria, Gram-negative bacteria, mycobacteria).
Specifically, blue LED (b-LED) in the spectrum of 400–470 nm seems to have intrinsic
antimicrobial properties resulting from the presence of endogenous photosensitizing chro-
mophores in pathogenic microbes [10,11]. Accordingly, Dungel et al. showed that treatment
with both red and b-LED significantly enhanced angiogenesis and perfusion in a skin flap
model in rats [12].

LED photo-biomodulation treatment has also been shown to accelerate the resolution
of radiation-induced dermatitis in breast cancer patients. Patients with diffuse type rosacea,
keratosis pilaris rubra, as well as post-intervention erythema can benefit from a quicker
recovery with complementary LED therapy [13,14].

However, such studies are generally performed either on microbes or cellular/tissue
compartments, without analyzing both aspects simultaneously.

The aim of the study was to evaluate the bactericidal power of b-LED on a Gram-
positive bacterium (Staphylococcus aureus) and on a Gram-negative bacterium (Pseudomonas
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aeruginosa), which are often causes of catheter-related infections, analyzing the effects on a
keratinocyte cell line in terms of cytotoxicity and cellular plasticity in the same setting.

We found that exposure to b-LED exerts an antimicrobial activity both on Gram-
positive and Gram-negative microorganisms. Furthermore, it promotes a transient growth
blockage in HaCaT cells with transient induction of a genotoxic marker, but not apoptosis.
At the same time, transient epithelial to mesenchymal transition (EMT)-like features were
induced. Surprisingly, scratch closure was impaired in cells exposed to b-LED.

These studies demonstrated that emissions causing bacterial killing may induce com-
plex events in keratinocyte plasticity deserving of further investigation.

2. Results
2.1. Antimicrobial Activity of 420 nm b-LED

Irradiation of P. aeruginosa and S. aureus strains for 4 h with 420 nm b-LED light resulted
in statistically significant bacterial growth suppression when compared with non-irradiated
controls in both bacterial strains. Post b-LED irradiation surviving fractions of all strains are
shown in Figure 1. Specifically, the logarithmic reduction of CFU in the b-LED treatment
of P. aeruginosa was a ~2.1 Log10 CFU/mL, which is equivalent to a bacterial killing value
of 99.2%. The logarithmic reduction of CFU in the b-LED-treated S. aureus was ~1.4 Log10
CFU/mL, which is a bacterial killing value of 96.3%. The results obtained with bacterial
strains were confirmed using the clinical isolate P. aeruginosa 19,595 (~1.5 Log10 reduction in
CFU, ~96.9% of killing). These results indicate a bactericidal activity of the 420 nm b-LED
light device used in this study.

Figure 1. Number of viable cells of S. aureus ATCC 25923, P. aeruginosa ATCC 27853 and the clinical
isolate P. aeruginosa 19595, after 4 h of treatment with b-LED (blue bars). Controls were untreated
samples at time 0 (black bars) and 4 h (grey bars). The data reported are the mean± standard deviation
(SD) of three independent experiments. The level of statistical significance between samples was
determined by the multiple t test (GraphPad Prism v.8.0.1, GraphPad Software, La Jolla, CA, USA),
and indicated as follows: * p < 0.05; ** p < 0.01; *** p < 0.001 and ns, not significant.
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2.2. Exposure of HaCaT Cells to b-LED Induces a Transient Cell Cycle Arrest

We then analyzed the activity of 420 nm b-LED on HaCaT cells, a human keratinocyte
cell line, using the same experimental setting as above.

Cell viability was first evaluated with a calcein AM assay. A limited reduction in cell
viability (vital cells/total cells) was found upon 24 h exposure to b-LED (Figure 2A). The
count of total cells suggested a more evident reduction of cell proliferation at 24 h after
treatment (Figure 2B). Analysis of cleaved caspase 3 ruled out induction of apoptosis after
b-LED treatment (Figure 2C).

Changes in proliferation rate were confirmed by a cell proliferation assay. Exposure to
b-LED reduced cell proliferation at 24 h post irradiation (Figure 2D). However, 48 h after
irradiation, cell proliferation rate was restored to levels comparable to the control group.

We then analyzed molecular markers of cell cycle progression. p21 was analyzed
as a readout of cell cycle blockage, whereas Cyclin D1 was considered a readout of cell
cycle progression [15,16]. Exposure to b-LED induced a significant upregulation of p21
(p < 0.05), peaking at 4 h and returning to basal levels at 24 h post-irradiation (Figure 2E).
Accordingly, Cyclin D1 (p < 0.001) was significantly inhibited at 4 h and was re-expressed
at normal levels 24 h after irradiation (Figure 2F). These results were confirmed by WB
analysis (Figure 2G,H). These results suggest that exposure of HaCaT cells to b-LED induces
a transient cell cycle arrest, which is rescued at 24 h post irradiation.

2.3. Exposure of HaCaT Cells to b-LED Induces a Transient Phosphorylation of Histone γ-H2AX

Moreover, we investigated the expression of histone γ-H2AX as a readout of genotoxic
damage [17]. b-LED radiation was compared with treatment with etoposide, a chemothera-
peutic drug inducing double-strand breaks [18]. Exposure to b-LED induced a transient
expression of phospho-γ-H2AX, which was reverted at 24 h after exposure, as shown
by both WB (Figure 3A,B) and immunofluorescence (Figure 3C,D). On the other hand,
etoposide promoted an expression of phospho-γ-H2AX histone, which was still persistent
at 48 h after exposure.

2.4. Exposure of HaCaT Cells to b-LED Induces a Transient EMT-like Molecular Features with
Delay in Wound Closure

To analyze whether exposure to b-LED induces EMT in HaCaT cells, we analyzed
the expression of SNAIL and SLUG, two master genes of EMT, and direct E-Cadherin
repressors. The expression of both SNAIL and SLUG, analyzed by qPCR, was significantly
increased at 4 h post b-LED exposure. Among these two transcription factors, SNAIL
expression was more intense and persistent than SLUG, being still increased at 48 h from
irradiation compared to untreated controls (Figure 4A). At the same time, the expression of
E-cadherin was persistently repressed (Figure 4A). E-cadherin and SLUG expression were
confirmed by WB (Figure 4B). We then performed a scratch assay as a measure of directed
migration, which is a functional readout of EMT. Unexpectedly, a scratch assay performed
24 and 48 h after b-LED radiation showed a delay in the migration of b-LED-irradiated
HaCaT cells with respect to those of control group (Figure 4C,D). However, full wound
closure occurred in both groups of HaCaT cells after 48 h.
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Figure 2. Exposure to b-LED causes a transient block in cell proliferation. (A,B) Cell viability
test of HaCaT cells exposed to b-LED. HaCaT cells were pretreated with calcein AM (2 µM) and
exposed to b-LED for 4 h. Cells were then analyzed 4, 24 and 48 h after beginning of exposure to
b-LED. Cells were fixed and stained with DAPI. Images were acquired by fluorescence microscopy.
(A) Calcein AM/DAPI-positive cells; (B) calcein AM-positive cells. Bars represent the mean ± SEM
from two independent experiments. Twelve fields containing at least 30 nuclei per field were analyzed.
* p < 0.05; ** p < 0.01. (C) Western blot showing the expression of cleaved caspase 3 in HaCaT cells
exposed to b-LED for 4 h. Cells were analyzed 4, 24 and 48 h after beginning of exposure to b-LED.
Western blot analysis was performed on total lysates. Tubulin was detected as a loading control. Data
are representative of three independent experiments. (D) Cell proliferation assay of HaCaT cells
exposed to b-LED. HaCaT cells were left untreated or were exposed to b-LED for 4 h and were then
evaluated for cell proliferation assays 4, 24 and 48 h after beginning of exposure to b-LED using a
SpectraMax 13 microplate reader. The experiment was performed in triplicate and was repeated twice.
* p < 0.05; ** p < 0.01; ns, not significant. (E–H) HaCaT cells exposed to b-LED for 4 h and then were
analyzed 4 and 24 h after beginning of exposure. (E) Quantitative RT-PCR expression analysis of p21
in. (F) Western blot expression of p21 in HaCaT cells. (G) quantitative RT-PCR expression analysis
of Cyclin D1 in HaCaT cells. (H) Western blot expression of Cyclin D1 in HaCaT cells. Quantitative
RT-PCR was performed on total RNA. L34 mRNA levels were used for normalization. Results are
expressed in terms of fold change; bars represent the mean ± SEM of duplicate determinations in
four independent experiments. * p < 0.05; *** p < 0.001 and ns, not significant. Western blot analysis
was performed on total lysates. Tubulin was detected as a loading control. Data are representative of
three independent experiments.
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Figure 3. Exposure to b-LED causes a transient induction of γ -H2AX histone in HaCaT cells.
(A) WB showing the expression of γ-H2AX histone (phospho S139) in HaCaT cells exposed to b-
LED for 4 h and then analyzed at the indicated times. Etoposide (10 µM) was used as positive
control. Western blot analysis was performed on total lysates. Tubulin was detected as a loading
control. (B) Densitometric quantification of the experiment shown above. Results are expressed in
terms of fold change. (C) Confocal immunofluorescence showing the expression of γ-H2AX histone
(phospho S139) in cells stimulated as in (A). (D) quantification of the experiment shown in (C). At
least 120 nuclei were quantified from 2 independent experiments. Bars represent the mean ± SEM
of duplicate determinations in four independent experiments. * p < 0.05, **** p < 0.0001 and ns,
not significant.
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Figure 4. Exposure to b-LED causes a transient EMT phenotype with delay in wound closure.
(A) Quantitative RT-PCR expression analysis of SNAIL, SLUG and E-cadherin in HaCaT cells exposed
to b-LED for 4 h and then were analyzed 4 and 24 h after beginning of exposure. Quantitative RT-PCR
was performed on total RNA. L34 mRNA levels were used for normalization. Results are expressed
in term of fold change bars represent the mean ± SEM of duplicate determinations in at least five
independent experiments. * p < 0.05; ** p < 0.01. (B) Western blot showing the expression of SLUG
and E-cadherin in HaCaT cells exposed to b-LED for 4 h. Cells were analyzed 4, 24 and 48 h after the
beginning of exposure to b-LED. Western blot analysis was performed on total lysates. Tubulin was
detected as a loading control. Data are representative of three independent experiments. (C) Effect of
exposure to b-LED on wound closure. HaCaT cells were left to reach 100% confluency in Ibidi µ-Dish
plates. MCs were exposed to b-LED for 4 h. Then, 24 or 48 h after the beginning of exposure the insert
was removed and after 18 h cells were fixed and stained with phalloidin (green) or Hoechst33342
(blue) to stain nuclei. Representative experiment is shown of three performed. (D) Quantification of
the experiment shown in (C). Bars represent the mean ± SEM from three independent experiments.
Two corresponding fields at time 0 and 24 h per experiments were measured. *** p < 0.001, ns,
not significant.

3. Discussion

There is a growing interest in alternative approaches to mitigate skin infections. This
need is strong in the case of patients carrying catheters, such as the peritoneal dialysis
population, since they are often subject to chronic infections that are difficult to eradicate
with standard antibiotic therapy [19].
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Although light in the ultraviolet (UV) spectrum (300–400 nm) is used to treat various
skin diseases such as psoriasis, atopic dermatitis (eczema), and vitiligo, it causes DNA
adducts that have been linked to skin cancers and premature photoaging [20–22].

Visible light in the 400–760 nm range is presumably not associated with harmful DNA
adducts, and may represent a safer alternative to UV phototherapy. However, the biological
effects, underlying mechanisms, and clinical uses of different wavelengths of visible light
have still not been completely characterized.

Moreover, most of the studies do not apply “side-by-side” comparison between the
effect of b-LED on microbes and that on host cells. Some studies have suggested the
existence of a therapeutic window where microbes are selectively inactivated while
host cells are preserved [23–25]. In this setting, irradiation with b-LED is a promising
alternative approach.

Consistent with previous reports, our results clearly show that 420 nm b-LED has strong
antimicrobial activity against S. aureus and P. aeruginosa (about 1.5–2 log reduction) [26].

A possible mechanism underlying the biological effect of b-LED is related to photo-
chemical reactions involving the absorption of a specific wavelength of light by photorecep-
tor molecules, such as endogenous porphyrins. The absorption of light in the visible light
spectrum between the wavelengths 400 and 500 nm may trigger the production of reactive
oxygen species (ROS) such as singlet oxygen, the hydroxyl radical, and the superoxide
anion that are detrimental to bacteria, thus producing the observed antimicrobial effect.
Indeed, DNA manipulation to knockout porphyrin synthesis impact microbe sensitivity to
b-LED [11,27].

While the bactericidal effect of b-LED has been widely characterized by other research
groups, the effect on eukaryotic cells has rarely been investigated, especially in a human
setting, to date.

It is commonly accepted that b-LED is much less harmful to host cells than UV irradia-
tion [28]. The DNA damage caused by UV results in (i) misincorporation of bases during
replication process, (ii) hydrolytic damage, which results in deamination of bases, depuri-
nation, and depyrimidination, and (iii) oxidative damage through ROS induction [29].

Instead, no evidence of b-LED genotoxicity was observed in mouse skin in vivo when
subjected to b-LED therapeutic exposure to inactivating biofilms [30]. The hypothesized
mechanism of the cytotoxic effect of b-LED on host cells is similar to that on bacteria, which
is associated with the photo-excitation of intracellular chromophores sensitive to blue light
and the subsequent generation of cytotoxic ROS [31,32].

Ideally, the b-LED wavelength used should selectively excite the chromophores in
pathogenic bacteria, while the photo-excitation of chromophores in host cells should
be minimal.

Investigating the effects of b-LED-mediated oxidative stress is useful, because ROS
play a dual role. They are toxic byproducts of aerobic metabolism, but are also required
for the progression of numerous basic biological processes including cell proliferation and
differentiation [33–35]. Moreover, ROS may stimulate the expression of the transcription
factor SNAIL, the EMT master gene [36,37]. Therefore, induction of EMT-fibrosis upon
exposure to b-LED may be secondary to oxidative stress induced by ROS [38]. For this
reason, the expression of EMT markers was evaluated in this experimental setting. In
in vivo conditions, the induction of a transient EMT upon exposure to b-LED would favor
the re-epithelization and the cicatrization processes at the site of catheter implantation.

Our data show a reduced cell proliferation at 24 h post b-LED. However, the replica-
tive capacity was completely re-established at 48 h post b-LED exposure. Data on cell
proliferation are in accordance with molecular analysis of cell cycle effectors.

b-LED irradiation induced a temporary cell cycle arrest in HaCaT cells, as evidenced
by the increased activity and expression of p21 and the simultaneous reduction of CycD1. A
normal cell cycle was re-established 24 h after exposure, as demonstrated by the simultane-
ous re-expression of CycD1 and inhibition of p21. CycD1 plays a major role in the positive
regulation of G1 progression. Enforced overexpression of D type cyclins can shorten the
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G1 interval in cultured cells. Furthermore, CycD1 is negatively regulated by a family of
Cyclin-dependent kinase inhibitor protein (CDKI) including p21. The increase in p21 levels
inhibits CycD1, thus contributing to G1 arrest [16].

We also investigated E-cadherin expression in HaCaT cells after b-LED exposure as
a readout of EMT induction. E-cadherin mediates the composition of adherens junctions,
which are one of the key components of the epidermal barrier. E-cadherin expression is
directly regulated by the transcription factor SNAIL [39]. SNAIL expression in different
epithelial cells leads to a conversion towards a fibroblastic phenotype at the same time that
E-cadherin expression is lost and migratory properties are acquired. Besides E-cadherin,
SNAIL promotes the expression of genes involved in the control of motility and migra-
tion [37]. In this experimental setting, we found a significant increase in both SNAIL and
SLUG mRNA expression upon exposure to b-LED. At a protein level, a marked increase of
SLUG was found.

Several lines of evidence suggest an important role for SLUG in normal adult epi-
dermis. SLUG expression promotes epithelial outgrowth of keratinocytes, including the
EMT-like processes of wound healing [40–42]. One may hypothesize that ROS induced by
exposure to b-LED have a role in SNAIL induction, as demonstrated by Radisky et al. [36].

It is necessary to point out that bHLH factors such as SNAIL and SLUG have additional
cellular functions that sometimes occur independently of the induction of full EMT. The
expression of these transcription factors may protect cells from the death induced either by
the loss of survival factors or by direct apoptotic stimuli [43,44].

Therefore, SNAIL is a potent survival factor. SNAIL-expressing cells are resistant to
the action of direct apoptotic stimuli and are resistant to DNA damage. Thus, these EMT-
related transcription factors may not be able to mediate a full EMT in this experimental
setting, but may be implicated in the induction of survival pathways [45–47].

As a functional readout of EMT induction, a scratch assay was performed. The scratch
assay test showed an initial delay in the closure of the wound in the irradiated HaCaT cells
that was filled at 48 h post exposure, with complete wound closure also in the irradiated
b-LED cells.

It has been reported by previous studies that lasers favor wound healing; however,
there is a lack of consensus on standardized treatment parameters such as wavelengths,
dose, and therapeutic outcomes [48,49]. For this purpose, our study showing a reduc-
tion in scratch closure upon exposure to b-light may sound as a warning to stress the
urgence of setting the optimal parameters in order to achieve an effective wound closure in
pathological conditions.

Collectively, these findings support the conclusion that exposure to b-LED irradiation
induces a partial and transient EMT, but this is not sufficient to induce a stable mesenchymal
phenotype. Many lines of evidence focus now on the physiopatological effects of partial
EMT (pEMT), or hybrid epithelial/mesenchymal phenotype both in tumor an non-tumor
systems [50].

In conclusion, the resistance of HaCaT cells to b-LED, together with the bactericidal
efficacy, makes this a promising innovative therapeutic approach. Other studies must be
performed in order to demonstrate the safety and the possible utility of b-LED in the field
of exit-site infection in dialysis and beyond.

4. Materials and Methods
4.1. Antibodies and Chemicals

Mouse monoclonal antibody against cleaved caspase 3 was from Cell Signaling Tech-
nology (Danvers, MA, USA); against E-cadherin was from BD (Franklin Lakes, NJ, USA);
against tubulin was from Millipore (Merck, Kenilworth, NJ, USA); rabbit polyclonal anti-
bodies against p21 and cyclin D1 were from Santa Cruz Biotech (Dallas, TX, USA); against
SLUG was from Cell Signaling Technology; rabbit monoclonal antibody to γH2A.X (phos-
pho S139) was from Abcam, (Cambridge, UK). Etoposide was from Sigma-Aldrich (Saint
Louis, MO, USA).
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4.2. b-LED Source

A device was designed for the present study consisting of 54 b-LED strips anchored
on an aluminum surface and suitably sized to ensure a homogeneous surface radiance
of 160 mW/cm2 and a wavelength of 420 nm. The radiant dose used in the study
was chosen based on the results of preliminary studies on bactericidal efficacy and
plausible non-cytotoxicity.

The overall dimensions of the device were 24 cm × 16.5 cm; the size of the radiation
surface was 9 cm × 8 cm. The device was placed at a distance of 5 cm from the radiation
field in all experiments to maintain the characteristics mentioned. The irradiance was
controlled by adjusting the distance of the aperture of the LED and the target with the use
of a power/energy meter. The irradiation time used was 4 h, similar to that of a standard
dialysis session.

The LED device (Omika, Los Angeles, CA, USA model SMD 3528-300LED) was de-
signed in Rome, Italy. The density of radiant energy expressed in units of joules per square
centimeter (J/cm2) over time (hours, h) was equal to 237 J/cm2/h of delivered b-LED.

4.3. Bacterial Strains and Keratinocytes

The reference strains S. aureus ATCC 25923 and P. aeruginosa ATCC 27853 were used
in this study. The clinical strain P. aeruginosa 19595 was isolated from a leg injury by
the microbiology team of Policlinico Umberto I (Sapienza University of Rome) and was
shown to be resistant to different antibiotics (i.e., cefepime, ceftazidime, ciprofloxacin and
piperacillin/tazobactam).

Bacteria were cultured in Luria-Bertani (LB) medium and incubated at 37 ◦C until
reaching an optical density (O.D.) of 0.8 at 590 nm, measured with an UV-1700 Pharma Spec
spectrophotometer (Shimadzu, Tokyo, Japan). Afterwards, bacterial cells were centrifuged
at 1400× g for 10 min and resuspended in phosphate buffered saline (PBS) at a final
concentration of 1 × 106 colony forming unit (CFU)/mL, and 500 µL were added onto
individual wells in 24-well microplates.

Plates were left open in a biological safety cabinet class II and irradiated for 240 min
with b-LED. Control (non-irradiated) cultures were not exposed to light. After 240 min,
aliquots of 10 µL from control or treated samples were diluted 1:100 in PBS or directly
spread onto LB-agar plates, respectively, for colony counting after an overnight incubation
at 37 ◦C. Bactericidal activity was expressed as reduction in the number of CFU and in
percentage with respect to the controls. Values represent the mean ± standard deviation
(SD) of three independent experiments.

HaCaT cells were from (from AddexBio, San Diego, CA, USA). Cells were cultured in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum, 50 U/mL
penicillin, 50µg/mL streptomycin.

4.4. Real Time Quantitative Polymerase Chain Reaction (qPCR)

To evaluate gene expression of HaCaT keratinocytes qPCR was performed in the
treated and control groups. Results obtained with microarray and quantitative real-time
PCR (qPCR) were then compared. qPCR quantitative real-time PCR of Cyclin d1, p21,
SNAIL, SLUG, E-cadherin (ECAD), smooth muscle alpha-actin (ACTA 2) was performed.
Total RNA, was extracted from cell cultures with ReliaPrep™ RNA Tissue Miniprep System
(Promega, Madison, WI, USA) and quantified with NanoDrop™ 2000/2000c Spectropho-
tometers. An amount of 1 µg of total extract was reverse transcribed with iScriptTM c-DNA
Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to the manufacturer’s
instructions. cDNA was diluted and 20 ng were amplified by qPCR reaction using GoTaq®

qPCR Master Mix (Promega, La Jolla, CA, USA). The following specific primer pairs were used:
for L34: 5′GTCCCGAACCCCTGGTAATAG3’ and 5′GGCCCTGCTGACATGTTTCTT3′; for
SNAIL: 5′CACTATGCCGCGCTCTTTC3′ and 5′GCTGGAAGGTAAACTCTGGATTAGA3′;
for E-cadherin: 5′TACGCCTGGGACTCCACCTA3′ and 5′CCAGAAACGGAGGCCTGAT3′;
for SLUG: 5′TGGGCAAAGAACTACTGCG3′ and 5′AGAGTTGGCGGAGCTAAACAG3′;
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for p21: 5′GAGGAGGCGCCATGTCAGAA3′ and 5′AGTCACCCTCCAGTGGTGTC3′; for
Cyclin D1: 5′CCTCTAAGATGAAGGAGACCA3′ and 5′CACTTGAGCTTGTTCACCA3′.
Relative expression levels were calculated with the 2(−∆∆Ct) method and were normalized
to L34 ribosomal RNA.

4.5. Cell Viability Assay

HaCaT cells were plated at the concentration of 3 × 10 5 cells per well in a 6-well plate.
The next day, cells were incubated for 1 h in Hanks Balanced Salt Solution, HBSS (Gibco™,
Life Technologies, Carlsbad, CA, USA) with 2 µM calcein AM (Invitrogen, Waltham, MA,
USA), at 37 ◦ C in humidified 5% CO2 atmosphere. Cells were then left untreated or were
exposed to b-LED for 4 h. Cell were then evaluated for cell viability assay at time 0, 24
and 48 h after b-LED exposure using calcein AM according to the manufacturer’s protocol.
Images were acquired using a fluorescence microscope (Nikon Inverted Microscope Eclipse
TE200, Amsterdam, The Netherlands). The experiment was performed in triplicate and
repeated twice.

4.6. Cell Proliferation Assay

HaCaT cells were plated at the concentration of 2 × 104 per plate in a 96-well plate.
The next day, cells were left untreated or were exposed to b-LED for 4 h or and were
evaluated for cell proliferation assays using the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay system (Promega) according to the manufacturer’s instructions. Briefly,
20 × 103 cells were plated into each well in a 96-well and 10 µL per well of CellTiter
96 AQueous One Solution reagent was added. After 1 h incubation in humidified 5%
CO2 atmosphere, absorbance at 490 nm was measured at 4, 24 and 48 h time interval
after exposure to b-LED using a SpectraMax 13 microplate reader. The experiment was
performed in triplicate and was repeated twice.

4.7. Scratch Assay

HaCaT cells were seeded on Culture-Insert 2 Well in µ-Dish 35 mm from ibidi (Mar-
tinsried, Germany) and were allowed to reach 100% confluency. Cells were then treated
with b-LED for 4 h. A scratch wound was created removing the culture-insert as in [51,52].
Cells were then fixed for 10 min with PFA 4%, stained with Rhodamine-phalloidin and
Hoechst 33342 (Invitrogen), and then imaged by confocal microscopy. The experiment was
performed in triplicate and was repeated twice.

Confocal images were acquired at the Olympus iX83 FluoView1200 laser scanning
confocal microscope using an UPLSAPO10x2, NA 0.40 air objective (Shinjuku, Japan).
Images were stitched using Olympus FluoView software.

4.8. Immunofluorescence

For the analysis of phospho-γ-2AX localization, HaCaT cells were fixed for 10 min
with PFA 4%, in PBS and permeabilized with 0.2% Triton X-100 (Sigma-Aldrich) in PBS.
Cy3-conjugated secondary antibody was from Jackson Immunoresearch (Philadelphia, PA,
USA). Coverslips were mounted in Prolong Gold antifade (Life Technologies) and examined
under a confocal microscope (Leica TCS SP2, Wetzlar, Germany). Digital images were
acquired with the Leica software and the image adjustments and merging were performed
by using the appropriated tools of ImageJ software. A minimum of 4 fields per sample (at
least 120 total cells per total) from two independent experiments were analyzed.

4.9. Western Blotting

Cells were lysed in Laemmli buffer, and Western blotting was performed as previously
described [53]. Monolayers of MCs were lysed in modified RIPA buffer containing: 50 mM
Tris-HCl, pH 7.4; 1% NP-40; 0.1% SDS; 0.25% Nadeoxycholate; 150 mM NaCl; 1 mM EDTA;
1 mM EGTA; 1 mM PMSF; 1µg/mL each of aprotinin, leupeptin and pepstatin; and 25 mM
NaF (all from Sigma). Equal amounts of protein were resolved by SDS-PAGE. Proteins were
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transferred to PVDF membranes (Millipore, Bedford, VA, USA) and probed with antibodies
using standard procedures. PVDF-bound antibodies were detected by chemiluminescence
with ECL (Amersham Life Sciences, Little Chalfont, UK).

4.10. Statistical Analysis

Statistical significance was determined with a t-test using GraphPad Prism version
8.0 (La Jolla, CA, USA). Differences were considered significant at *, p < 0.05; **, p < 0.01;
*** p < 0.001 and ns, not significant.
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