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Abstract: Ovarian cancer is the most malignant gynecological tumor. Previous studies have reported
that metabolic alterations resulting from deregulated lipid metabolism promote ovarian cancer
aggressiveness. Lipid metabolism involves the oxidation of fatty acids, which leads to energy
generation or new lipid metabolite synthesis. The upregulation of fatty acid synthesis and related
signaling promote tumor cell proliferation and migration, and, consequently, lead to poor prognosis.
Fatty acid-mediated lipid metabolism in the tumor microenvironment (TME) modulates tumor cell
immunity by regulating immune cells, including T cells, B cells, macrophages, and natural killer
cells, which play essential roles in ovarian cancer cell survival. Here, the types and sources of fatty
acids and their interactions with the TME of ovarian cancer have been reviewed. Additionally, this
review focuses on the role of fatty acid metabolism in tumor immunity and suggests that fatty acid
and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.
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1. Introduction

Fatty acids are important energy sources and structural components of cells in most
species, including humans. Fatty acid oxidation, a lipid metabolic process, is essential
for adenosine triphosphate (ATP) production and synthesis of new lipid metabolites [1].
Previous studies have reported that dysregulation of fatty acid metabolism is the etiological
factor for various diseases, such as arteriosclerosis, diabetes, and fatty liver [2]. In particular,
upregulated levels of fatty acids are associated with an increased risk of developing cancer
because they regulate several biological functions, including maintaining the structure of
cancer cell membranes and transducing oncogenic signals.

The fatty acid synthase (FASN or FAS) levels and the de novo synthesis of fatty acids
are upregulated in several malignancies, such as breast [3], gastric [4], lung [5], liver [6],
prostate [7,8], pancreatic [9], esophageal [10], and ovarian cancers [11], to maintain the
uncontrolled growth and the increased survival rate of cancer cells. For example, free
fatty acids promote estrogen receptor-alpha-positive breast cancer cell proliferation and
aggressiveness through the activation of the mTOR pathway [12]. Previous studies have
reported that upregulated FASN levels in several cancers are associated with increased
fatty acid synthesis and poor prognosis [13]. FASN, a lipogenic enzyme, catalyzes the
synthesis of new fatty acids using malonyl-CoA and acetyl-CoA as substrates [13]. Gouw
et al. demonstrated that KRAS activated FASN promotes lung cancer cell proliferation [5].
One study evaluated 60, 20, and 10 squamous cell carcinoma, adenocarcinoma, and healthy
esophageal tissue samples, respectively. The expression of FASN was detected in 90–95%
of squamous cell carcinoma and adenocarcinoma samples, but not in healthy esophageal
tissue samples. Additionally, FASN expression was positively correlated with esophageal
cancer cell growth, migration, and tumorigenesis [10].
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In cancer, fatty acid oxidation also contributes to oncogenic signal transduction, energy
production, and cancer cell membrane architecture. MYC or JAK/STAT3-regulated fatty
acid oxidation promotes triple-negative breast cancer (TNBC) cell growth, stemness, and
chemoresistance, and provides novel therapeutic targets for TNBC [14–16]. D-bifunctional
protein (DBP) is upregulated in prostate cancer and promotes fatty acid oxidation. Thus,
DBP-mediated fatty acid oxidation is considered a potential oncogenic metabolic change
that contributes to tumor progression [17]. Additionally, fatty acid oxidation promotes
tumor chemoresistance and cell survival under hypoxic conditions. The inhibition of fatty
acid oxidation increases the sensitivity of chemo-resistant cancer cells to mTORC1 inhibitors
and paclitaxel in lung adenocarcinoma and chronic lymphocytic leukemia [18–20]. These
studies suggested that fatty acid oxidation is a promising target for overcoming drug
resistance in cancer treatment.

Recent studies on the interaction between fatty acids and tumor microenvironment
(TME) have revealed that fatty acids play an important role in cancer cell survival by
influencing tumor immunity. Fatty acid metabolism-stimulated tumor-infiltrating T lym-
phocytes enhanced the efficacy of melanoma immunotherapy [21]. Additionally, recent
studies have demonstrated that regulatory T cells within tumors exhibit upregulated lipid
contents, which resulted from the upregulation of glycolysis to support fatty acid synthesis
and cell expansion [22]. These findings suggest that fatty acids alter tumor immunity by
modulating the TME, which may be a promising therapeutic target in cancer immunother-
apy. This review focuses on the role of fatty acid metabolism and its interaction with the
TME of ovarian cancer. The therapeutic potential of fatty acid-associated lipid metabolism
for ovarian cancer has also been discussed.

2. Fatty Acids
2.1. Source of Fatty Acids

Fatty acid metabolism is markedly altered in rapidly proliferating tumor cells, which
results in increased ATP production [23,24]. Although most healthy cells prefer an ex-
ogenous source of fatty acid, tumor cells synthesize new fatty acids. Fatty acids are a
major structural component of biological membranes and a component of complex lipids,
such as triacylglycerols, membrane phospholipids, and signaling intermediates, including
diacylglycerol, phosphoinositols, sphingosine, and phosphatidic acid [25]. These complex
lipids are derived from acetyl-CoA, a building block for the de novo synthesis of fatty
acids [1]. In the mitochondria, acetyl-CoA is generated from various nutrients, including
sugars, proteins, and dietary fats.

2.2. FASN

Functional mammalian FASNs comprise homodimers with a conventional ‘head-to-
tail’ structure. Each protein subunit comprises three catalytic domains at the N-terminus
(ketoacyl synthetase [KS], malonyl acetyltransferase [MAT], and dehydratase) and four
core domains at the C-terminus (enoyl reductase, ketoacyl reductase, acyl carrier protein
[ACP], and thioesterase [TE]) [26,27]. The active arrangement of two identical proteins was
mainly deduced from experiments with 1,3-dibromo-2-propanone that can crosslink the
KS active site (Cys161 thiol) in one monomer with ACP (4′-phosphopantetheine thiol) in
the other monomer [28,29]. Additionally, analysis of the catalytic activity of heterodimeric
FASN, in which one subunit harbors mutations in all seven functional domains and the
structural proximity between KS and MAT within the subunits of FASNs, revealed the
formation of two coils in an overlapping arrangement [30,31].

In addition to the typical functions, human FASN plays important roles in the de novo
biosynthesis of long-chain fatty acids, such as acetyl-CoA, malonyl-CoA, and 16 carbon
(C16) palmitate from NADPH; the TE domain of FASN; and chain length-specific fatty acids,
which leads to the release of palmitate through hydrolysis of the acyl-S-phosphopantetheine
thioester [32]. The structure of the FASN TE domain is well conserved across species. Cryo-
electron microscopy analysis has revealed the high specificity of TE for C16 to C18 fatty acyl
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substrates [33]. Human TE2, a type II thioesterase, regulates an FASN that promotes the
premature release of short fatty acids during hydrolysis. Structural analysis revealed that
human TE2 selectively interacts with the ACP domain of FASN, followed by interaction
with a 4′-phosphopantetheinyl moiety attached to the ACP structure [34].

2.3. Fatty Acid-Binding Proteins (FABPs)

Studies examining the effect of fatty acids on cells have demonstrated that fatty acids
regulate gene expression, growth and survival pathways, and linked signaling pathways for
the metabolism of nutrient resources and mediate inflammatory responses [35–37]. FABP, a
conserved protein, plays a pivotal role in lipid transport and metabolic reactions in various
tissues and organs [38]. The FABP family comprises at least nine homologous proteins with
specific tissue distribution patterns. These proteins are named primarily according to the
tissue in which they are expressed. FABP family members include liver-specific, intestine-
specific, heart-specific, adipocyte-specific, epidermis-specific, ileum-specific, brain-specific,
myelin sheath-specific, and testis-specific FABPs [39]. The main functions of the cytoplas-
mic FABPs are to maintain the dynamic processes of cellular lipid metabolism, including
lipolysis and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated adipo-
genesis. The roles of adipose-specific FABP (A-FABP) and epidermal-specific FABP in the
pathogenesis of obesity-related diseases have been previously reported [40]. The expression
of A-FABP, which is the best-characterized isoform, is regulated during adipocyte differen-
tiation. Additionally, fatty acids, PPARγ agonists, and insulin regulate the transcription of
A-FABP [41,42]. Previous studies focused on the development of high-affinity and selective
chemicals targeting A-FABP have demonstrated that A-FABP functions as adipokines in
obesity-associated breast cancer and mutant tumor cells with high A-FABP expression
levels [43,44]. This indicates that targeting A-FABP is a potential therapeutic strategy for
metabolic diseases.

2.4. Fatty Acid Transport Proteins (FATPs)

FATP, a transmembrane transport protein, allows long-chain fatty acids into cells,
which, in turn, enhances fatty acid uptake. CD36, a member of FATP, has an extracellular
binding site for fatty acids, an intracellular acyl-CoA synthetase active site and an ATP bind-
ing domain [45]. Fatty acids transported by CD36 are converted to secondary metabolites
such as ceramides, diacylglycols, and inositol phospholipid derivatives. These metabolites
play important roles in many biological functions, such as insulin resistance and cholesterol
synthesis [46,47]. In addition to its fatty acid transport function, CD36 functions as a recep-
tor for long-chain fatty acids. In taste cells, CD36-mediated linoleic acid inhibits serotonin
and dopamine secretion by modulating Src kinase [48]. CD36 has also been implicated in
some metabolic diseases, such as diabetes, Alzheimer’s disease, and cancer. For example,
blockade of CD36 prevents atherosclerosis progression in high-fat diet mice [49,50]. In
breast cancer, CD36 is highly expressed, and some studies have found that CD36 plays an
essential role in cancer progression, migration and metastasis by regulating cell cycle and
ERK1/2 signaling [51]. This suggests that CD36 could be a potential therapeutic target for
treating CD36-related diseases.

3. Alteration of Fatty Acid Metabolism in Ovarian Cancer
3.1. Fatty Acid Metabolism in Ovarian Cancer

Ovarian cancer is one of the most common and malignant cancers among women.
Epithelial ovarian cancer, which is the most common type of ovarian cancer that is initiated
at the fallopian tube epithelium [52], is generally diagnosed at an advanced stage and is the
most common cause of gynecological-related death [53]. Germ cell and stromal cell tumors
of ovarian cancer are rare types of non-epithelial tumors, accounting for approximately
5–10% of all ovarian cancers [54,55]. These rare tumors are diagnosed at an early stage
in young women and are associated with an improved 5-year survival rate [56,57]. High-
grade serous ovarian cancer (HGSOC) is the most common histological type of ovarian
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cancer [58–60]. RNA sequencing (RNA-seq) and microarray data analysis of patients with
HGSOC from The Cancer Genome Atlas revealed the following four subtypes of HGSOC
based on the gene expression profiles: mesenchymal, immune response, proliferation, and
differentiation [60,61]. HGSOC is often characterized by germline mutations in genes, such
as those encoding p53 and BRCA. The mutated genes are genetic risk factors for ovarian
cancer development [62,63]. Advances in targeted therapies, combination therapies, and
immunotherapeutic agents have not markedly contributed to decreasing the death rates of
ovarian cancer.

Accumulating studies indicate that plasma levels of fatty acid composition represent
potential biomarkers for ovarian and other gynecological cancers [64,65]. Furthermore,
recent studies have suggested that alterations in fatty acid metabolism may play a unique
role in ovarian cancer pathogenesis and aggressiveness (Figure 1). FASN, which is upreg-
ulated in ovarian cancer tissues, is associated with poor prognosis and survival [66]. In
ovarian clear cell carcinoma, cancer grade was significantly correlated with FASN expres-
sion [66]. Grunt et al. reported that cell membrane FASN-mediated phospholipids interact
with receptor tyrosine kinases, including ErbB2 (HER2/neu), which are upregulated in
ovarian cancer [67]. This interaction activates the phosphoinositide-3-kinase (PI3K)-mTOR
pathway, which promotes the proliferation and survival of ovarian cancer cells [66–68]. The
upregulated expression of FASN ovarian cancer cell lines and primary cultures increases de
novo fatty acid synthesis, cell growth, and cell viability, and enhances chemoresistance to
cisplatin [69,70]. These studies suggest that FASN is a metabolic marker for ovarian cancer
development and progression.
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inducible kinase 2; MCP-1, monocyte chemoattractant protein-1; TIMP-1, tissue inhibitor of metal-
loproteinase-1; and TGF-β1, transforming growth factor β1. 
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mote the release of saturated fatty acids by stimulating lipolysis in adipocytes. These sat-
urated fatty acids activate TLR4 signaling in macrophages, which leads to the stimulation 
of the production of pro-inflammatory mediators involved in conferring chemical re-
sistance to the tumor cells [80,81]. 

Adipokines, such as IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), tissue 
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cytes [76]. In addition, adipokines were involved in ovarian follicle development and can-
cer by regulating PI3K/AKT, AMP-activated protein kinase (AMPK), and peroxisome pro-
liferator-activated receptor (PPAR) signaling pathways [82]. Additionally, polyunsatu-
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ported that activated PPARβ/δ is a master regulator of adipocyte differentiation and that 

Figure 1. Fatty acid metabolism in the TME of ovarian cancer. Fatty acid-mediated lipid metabolism in
TME is well controlled by cancer cells, adipocytes, and stromal cells with complex processes, leading
to ovarian cancer metastasis and drug resistance. CAF, cancer-associated fibroblast; NK cell, natural
killer cell; TAM, tumor-associated fibroblast; DC, dendritic cell; SREBP-1, sterol regulatory element
binding protein 1; FABP, fatty acid binding protein; FASN, fatty acid synthase; SIK2, salt-inducible
kinase 2; MCP-1, monocyte chemoattractant protein-1; TIMP-1, tissue inhibitor of metalloproteinase-1;
and TGF-β1, transforming growth factor β1.

Stearoyl-CoA desaturase-1 (SCD1) is an endoplasmic reticulum enzyme that catalyzes
the synthesis of saturated fatty acids (e.g., oleates and palmitolates) from mono-unsaturated
fatty acids (e.g., stearoyl-CoA and palmitoyl-CoA). Previous studies have demonstrated
that SCD1 is a biochemical hallmark of cancer cells and that it modulates fatty acid composi-
tion in cancer [71]. The expression of SCD1 is upregulated in ovarian cancer stem cells [72].
Treatment with SCD1 inhibitors suppresses the growth of ovarian cancer stem cells in a
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mouse model. Mechanistic studies revealed that NF-kB can directly regulate the transcrip-
tion of SCD1 [73]. Additionally, upregulated SCD1 expression levels protected ovarian cells
against ferroptosis, an iron-mediated oxidative damage that inhibits the growth of ovarian
cancer cells [74,75]. This suggested that targeting SCD1 is a potential therapeutic strategy
for ovarian cancer.

Exogenous fatty acid metabolism induced by human adipocytes is also strongly asso-
ciated with cancer progression and metastasis. Co-culture of human omental adipocytes
with ovarian cancer cells promoted the growth, homing, migration, and invasion of ovarian
cancer cells by providing fatty acids [76,77]. In omental metastases, FABP4, a type of
lipid chaperones, was detected at the interface between adipocytes and tumor cells [78].
FABP4 modulates lipid metabolism of ovarian cancer cells by destroying tumor-infiltrating
dendritic cells, thereby interfering with anti-tumor immunity, resulting in poor prognosis
of ovarian cancer [76,78]. These studies suggested that FABP4 functions as a key mediator
between adipocytes and cancer progression. Thus, FABP4 is a potential therapeutic target
for ovarian cancer.

3.2. Fatty Acid Metabolism in the TME of Ovarian Cancer

Adipocytes in the TME serve as a major source of fatty acids. In the TME, adipocyte-
derived lipids, including fatty acids, affect cancer cells and various peripheral cells, such
as cancer-associated fibroblasts, dendritic cells, macrophages, and immune cells. Cancer
cells stimulate adipocytes with inflammatory cytokines, which are closely related to lipid
production. Yu et al. demonstrated that interleukin-17A (IL-17A), a pro-inflammatory
cytokine, promoted the growth and metastasis of ovarian cancer by regulating fatty acid
metabolism in adipocytes, especially regulating fatty acid uptake by cancer cells. Human
recombinant IL-17A induces fatty acid uptake by upregulating FABP4 expression in OvCa
cells and consequently contributes to the progression and metastasis of ovarian cancer
cells [79]. Specifically, IL-17A activated STAT3 phosphorylation to promote FABP4 expres-
sion, thereby increasing ovarian cancer cell proliferation. Immune cell-derived cytokines,
including IL-1β and transforming growth factor β1 (TGF-β1), are reported to promote
the release of saturated fatty acids by stimulating lipolysis in adipocytes. These saturated
fatty acids activate TLR4 signaling in macrophages, which leads to the stimulation of the
production of pro-inflammatory mediators involved in conferring chemical resistance to
the tumor cells [80,81].

Adipokines, such as IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), tis-
sue inhibitor of metalloproteinase-1 (TIMP-1), and adiponectin in the ovarian cancer mi-
croenvironment can promote cancer cell growth by activating fatty acid production in
adipocytes [76]. In addition, adipokines were involved in ovarian follicle development and
cancer by regulating PI3K/AKT, AMP-activated protein kinase (AMPK), and peroxisome
proliferator-activated receptor (PPAR) signaling pathways [82]. Additionally, polyunsatu-
rated fatty acids, such as linoleic acid accumulated in the ovarian cancer microenvironment,
can activate peroxisome proliferator-activated receptor β/δ (PPARβ/δ) signaling in tumor-
associated macrophages (TAMs) [83]. Activation of PPARβ/δ, which belongs to the nuclear
receptor group, is one of the hallmarks of cancer [84]. Previous studies have reported that
activated PPARβ/δ is a master regulator of adipocyte differentiation and that it modulates
fatty acid storage and glucose metabolism [85]. In ovarian cancer, TAMs regulate metabolic
function through PPARβ/δ and some signature genes (e.g., LRP5, CD300A, MAP3K8, and
ANGPTL4) associated with immune regulation and tumor progression that correlate with
short relapse-free survival in serous ovarian cancer [83].

Adipocyte-associated molecules are reported to regulate cancer metastasis by regu-
lating cancer cell metabolism. Miranda et al. demonstrated that salt-inducible kinase 2
(SIK2) has an essential role in adipocyte-induced ovarian cancer metastasis [86,87]. SIK2,
which is upregulated in adipocyte-rich metastatic deposits, regulates both phosphatidyli-
nositol 3-kinase (PI3K) and acetyl-CoA carboxylase 1 (ACC1)-mediated fatty acid oxidation
and consequently promotes omental metastasis [86]. These studies suggested that lipid
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metabolism in the TME is regulated by cancer cells, lipid cells, and surrounding cells
through a complex process. Therefore, elucidation of the interactions between ovarian
cancer cells and surrounding stromal cell types in the ovarian cancer microenvironment
will provide useful insights for the development of novel therapeutic approaches for
ovarian cancer.

3.3. Fatty Acid-Mediated Ovarian Cancer Immunity

Fatty acids secreted by tumor-associated stromal cells, including adipocytes, may exert
tumor-promoting effects on various immune cells, such as macrophages, natural killer (NK)
cells, dendritic cells, neutrophils, and T cells recruited to the TME. Reprogramming of lipid
metabolism in tumor cells caused by these interactions may provide cells with a survival
advantage during cancer progression and metastasis. For example, T cell activation or
differentiation is closely related to fatty acid synthesis and oxidation via the mTOR-sterol
regulatory element binding protein (SREBP) pathway [88]. Some recent studies have
demonstrated that aberrant activation of FASN can impair the anti-tumor immunity in
cancer immunotherapy [89]. Jiang et al. reported upregulated levels of unsaturated fatty
acids, saturated fatty acids, and triacylglycerols in the ascites of ID8 (mouse ovarian surface
epithelial cell line)-bearing mice exhibiting FASN overexpression. In the TME, aberrant
lipid accumulation impairs tumor-infiltrating dendritic cells, which leads to the inhibition
of anti-tumor T cell infiltration [89]. This suggested that aberrant overexpression of FASN
is correlated with immunosuppressive status in ovarian cancer.

The infiltration and differentiation of TAMs are positively correlated with all stages of
tumor progression, angiogenesis, and metastasis because they secrete various cytokines
and chemokines and regulate the anti-tumor immune responses of T and NK cells [90,91].
Previous studies have revealed a correlation between obesity and ovarian cancer inci-
dence, progression, and metastasis [92]. Liu et al. demonstrated that obesity promotes
ovarian cancer metastasis by increasing lipogenesis and decreasing the infiltration of M1
macrophages that initiate an immune response against bacteria and viruses [93,94]. In
obesity, the expression of SREBP-1, a transcription factor involved in fatty acid synthesis
in ovarian cancer cells, is upregulated, which leads to increased accumulation of new
fatty acids and enhanced fatty acid transport [93]. De novo fatty acid synthesis promoted
ovarian metastatic potential by increasing vascularity and downregulated the infiltration
of M1 macrophages. These findings are not consistent with the previously reported role
of macrophages. However, the inverse correlation between M1:M2 ratio of TAMs and
tumor stage was reported to be associated with poor overall survival [95]. Further studies
are needed to investigate fatty acid and related macrophage-based immune responses in
ovarian cancer.

4. Fatty Acid Metabolism-Targeted Therapeutic Strategies for Ovarian Cancer
4.1. FASN Inhibitors

Most cancers depend on the synthesis of new fatty acids. Hence, FASN is a potential
therapeutic target for cancer. Previous studies have reported that the inhibition of FASN ex-
erts growth-inhibitory effects on ovarian cancer [96,97]. Treatment with C75 and G28UCM,
which are the synthetic inhibitors of FASN, decreased ovarian cancer cell growth, and
induced apoptosis [98]. Mechanistic studies revealed that C75 markedly inhibited lipogen-
esis and downregulated the oncogenic PI3K-AKT signaling pathway [67,99]. Cerulenin, a
specific FASN inhibitor, suppresses the expression of HER2/neu in cancer [100]. Treatment
with cerulenin markedly inhibited fatty acid biosynthesis in a tumor xenograft model of
ovarian cancer and increased the survival rates [101]. Additionally, treatment with ceru-
lenin potentiated the anti-tumor immune responses of cytotoxic T cells and consequently
inhibited tumor growth in the xenograft models of ovarian cancer [89]. Thus, cerulenin
has potential applications in ovarian cancer immunotherapy. Orlistat, a potent pancreatic
lipase inhibitor that was approved by the Food and Drug Administration in 2010 to treat
obesity, prevents the absorption of fat from the diet in humans [102]. Previous studies have
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reported that orlistat exerts growth-inhibitory effects against various cancers by inhibiting
FASN [13]. Papaevangelo et al. reported that orlistat inhibited fatty acid metabolism in
ovarian cancer cells and that orlistat potentiated the growth-inhibitory effects of cisplatin
against platinum-resistant ovarian cancer cells in vivo by inducing apoptosis and necro-
sis [70]. C93, a FASN inhibitor, inhibited the growth of carboplatin/paclitaxel-resistant
ovarian cancer cells [103]. Treatment with C93 induced apoptosis and mitigated cisplatin
resistance in ovarian cancer cells [69]. These results suggest that FASN is a potential
therapeutic target for ovarian cancer.

4.2. Fatty Acid Uptake Inhibitors

Exogenous fatty acid intake can promote cancer progression and metastasis. Most
of these processes are mediated by CD36, low-density lipoprotein receptor, and FABP in
the cancer cell membrane, which are potential therapeutic targets for cancer. Preclinical
studies have reported that treatment with anti-CD36 antibodies significantly exerted anti-
tumor or anti-metastatic effects [104]. Treatment with anti-CD36 monoclonal antibodies
decreased tumor burden in mouse xenografts of ovarian cancer [105]. Jayawardhana
et al. engineered fatty acid-like Pt(IV) prodrugs (FALPs), which inhibit CD36-dependent
fatty acid uptake [106]. FALPs exerted potent-growth-inhibitory effects against cisplatin-
resistant ovarian cancer cells by promoting mitochondrial damage [106]. BMS309403, a
small-molecule inhibitor of FABPs, including FABP4, competitively inhibits the binding of
endogenous fatty acids by interacting with the fatty acid-binding pocket [107]. In ovarian
cancer cells, BMS309403 significantly inhibited lipid accumulation and adipocyte-mediated
omental metastasis [76]. Additionally, treatment with the FABP4 inhibitor suppressed
ovarian cancer cell proliferation and omental colonization and increased the sensitivity of
cancer cells to carboplatin [108]. This suggested that targeting the free fatty acid uptake
pathway is a potential therapeutic strategy for ovarian cancer.

4.3. Other Inhibitors Targeting Fatty Acid Metabolism

A939572, a potent small-molecule inhibitor of SCD1, induces apoptosis and inhibits
the proliferation of cancer cells, including kidney, bladder, liver, colon, and thyroid cancer
cells [109–112]. SCD1, which protects the cancer cells against ferroptosis, is a potential
therapeutic target for ovarian cancer. Treatment with A939572 significantly potentiated the
growth-inhibitory effects of the ferroptosis inducers RSL3 and erastin on ovarian cancer
cells and in vivo xenograft models [75].

The expression of SIK2 is upregulated in adipocyte-rich metastatic deposits in ovarian
cancer and is strongly correlated with abdominal metastasis. Zhou et al. examined the
effects of ARN-3236, a small-molecule inhibitor of SIK2, on ovarian cell growth in vitro and
in vivo [86,113]. Treatment with ARN-3236 decreased ovarian cancer growth and enhanced
the response to paclitaxel chemotherapy [113]. This suggested that targeting SIK2 is a
potential therapeutic strategy for cancer.

Miranda et al. demonstrated that downregulated levels of AMPK promote peritoneal
metastasis of ovarian cancer by activating carnitine palmitoyltransferase 1 (CPT1) through
the regulation of acetyl-CoA carboxylase phosphorylation [86]. One study examined the ef-
ficacy of a metabolic inhibitor cocktail containing transforming growth factor beta-activated
kinase 1 (TAK1) (AMPK activator) and FASN synthase inhibitors against ovarian cancer
cells [97]. Treatment with the inhibitor cocktail decreased ovarian cancer metastasis and
aggressiveness by inhibiting the mTOR and TAK1 signaling pathways [97]. This indicated
that targeting AMPK-mediated lipid metabolism is a potential therapeutic strategy to
mitigate peritoneal metastasis in ovarian cancer (Table 1).
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Table 1. Therapeutic strategies targeting fatty acid metabolism for ovarian cancer.

Drug Effects and Features References

Fatty acid synthase
inhibitors

C75 Abrogating lipogenesis; downregulating PI3K-AKT
signaling pathway; antitumor effects [67,98,99]

G28UCM Decreasing cell growth and inducing apoptosis [98]

Cerulenin

Also known as an inhibitor of HER2/neu; inhibiting
fatty acid biosynthesis in a xenograft model;

enhancing antitumor immunity of T cells; inhibiting
tumor growth and increasing mice survival

[89,100,101]

Orlistat

Potent inhibitor of pancreatic lipase; FDA-approved
for anti-obesity; abolishing fatty acid metabolism;
combination treatment with cisplatin enhanced

in vivo efficacy

[13,70]

C93
Inhibiting growth of carboplatin/paclitaxel-resistant
ovarian cancer cells; re-sensitizing cisplatin resistant

cancer cells; antitumor effects in ovarian cancer
[69,103]

Fatty acid uptake
inhibitors

Anti-CD36 monoclonal
antibody

Significant anti-tumor or anti-metastatic efficacy in
preclinical studies; reduced tumor burden in mouse

xenografts of ovarian cancer
[104,105]

FALPs
Inhibiting CD36-dependant fatty acid uptake;

increased mitochondrial damage by FALPs decreased
cell growth in cisplatin-resistant ovarian cancer cells

[106]

BMS309403

Small molecule inhibitor of fatty acid binding proteins;
competitive inhibitors of the binding of endogenous

fatty acids; reducing adipocyte-mediated omental
metastasis; increasing the sensitivity of ovarian cancer

cells to carboplatin

[76,107,108]

Other inhibitors targeting
fatty acid metabolism

A939572

Potent small molecule inhibitor of SCD1; enhancing
the anticancer effects of the feroptosis inducers, RSL3

and erastin, on ovarian cancer cells and in vivo
xenograft models

[75]

ARN-3236
Small molecule inhibitor of SIK2; Inhibiting ovarian
cell growth in vitro and in vivo; showing improved

response to paclitaxel chemotherapy
[86,113]

TAK1
AMPK activator and fatty acid synthase inhibitor;
reducing ovarian cancer metastasis by inhibiting

mTOR and TAK1 signaling pathway
[86,97]

5. Conclusions and Perspective

Fatty acid-induced lipid metabolic reprogramming is associated with increased inci-
dence and aggressiveness of ovarian cancer. Several studies have elucidated the mecha-
nisms underlying fatty acid-mediated ovarian cancer progression, recurrence, and metasta-
sis. Adipocyte-derived fatty acids can alter tumor immunity by recruiting immune cells to
the TME. This fatty acid-mediated lipid metabolic reprogramming provides survival ad-
vantages to tumor cells during therapy and metastasis (Figure 2). Fatty acid metabolism in
ovarian cancer is a complex process that includes lipid absorption, lipid synthesis, and fatty
acid oxidation. The roles of enzymes involved in fatty acid synthesis and lipid absorption
in ovarian cancer pathogenesis and chemoresistance have been characterized. Thus, the
modulation of these enzymes is a potential, novel therapeutic strategy for ovarian cancer.
Several preclinical and clinical trials targeting these enzymes have demonstrated improved
treatment outcomes and prevention of further spread and progression of cancer. However,
some FASN inhibitors were associated with neuronal stem cell dysfunction and serious side
effects, including decreased food intake and weight loss in mice [114,115]. These findings
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indicate that regulated crosstalk between ovarian cancer cells and surrounding cells in the
TME can modulate lipid metabolic processes by reprogramming fatty acid metabolism
and consequently promotes ovarian cancer proliferation, invasion, metastasis, and drug
resistance. Although the clinical safety of fatty acid-targeted drugs is a concern, fatty acid
and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.
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