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Abstract: Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting var-
ious organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy 
type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In 
both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and se-
quester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although cer-
tain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms 
underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifesta-
tions, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble 
premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to 
play a key role in DM cellular pathophysiology. In particular, several senescence inducers including 
telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers 
such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, 
and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical 
similarities between DM and aging, and summarize the involvement of cellular senescence in DM 
and the potential application of anti-aging DM therapies. 
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1. Introduction 
Myotonic dystrophy (DM) is the most common adult form of muscular dystrophy 

[1]. Patients with DM present with multi-systemic symptoms, including myotonia, muscle 
weakness, cataract, cognitive impairment, and frontal baldness [2]. In particular, various 
clinical manifestations of DM, such as muscle wasting, cataract, and hearing loss, share 
similar characteristics with accelerated aging, implying that aging is involved in the DM 
process [3]. Hence, understanding the aging mechanisms could lead to a better compre-
hension of DM pathogenesis. Aging comprises a gradual decline in physiological func-
tions with advancing age. A potential contributor to aging is cellular senescence, defined 
by permanent cell cycle arrest [4]. Therefore, senescence inducer dysregulation leads to 
early cellular senescence, potentially contributing to the accelerated aging that character-
izes DM. Although accelerated aging-like symptoms in DM have been clinically reported 
for years, the involvement of cellular senescence in DM pathogenesis remains unclear. 

In this review, we describe the common clinical features of DM and accelerated aging. 
Moreover, we highlight the cellular senescence-related DM pathogenesis and the poten-
tial of novel therapeutic strategies targeting senescent cells. 

1.1. Genetics and Clinical Features of DM 
Based on gene mutations, two DM types can be distinguished. Myotonic dystrophy 

type 1 (DM1) is caused by CTG repeat expansions in the 3′-untranslated region (UTR) of 
the myotonic dystrophy protein kinase gene (DMPK) [5], while myotonic dystrophy type 
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2 (DM2) is the result of CCTG tetranucleotide expansion in the CCHC-type zinc finger 
nucleic acid binding protein gene (CNBP) intron 1 [6]. 

Although DM1 and DM2 share major clinical manifestations, such as myotonia, mus-
cle weakness, hearing impairment, and cataracts, certain multi-systemic symptoms, in-
cluding cognitive dysfunction, daytime sleepiness, primary hypogonadism, and frontal 
baldness are predominantly DM1-related [7]. Patients with DM1 represent a broad spec-
trum of clinical severity and symptom onset, and the CTG repeat length correlates with 
the age of onset [8]. Therefore, based on the time of onset and CTG repeat length, DM1 is 
classified into mild, classic, childhood/juvenile phenotypes, and it also displays a congen-
ital form (CDM). Above all, patients with classical DM1, the most typical DM1 phenotype, 
suffer from various systemic symptoms such as cataracts, frontal baldness, sleep disturb-
ance, and fatigue with advancing age, either in parallel with muscle weakness or without 
skeletal muscle involvement [9–11]. CDM is the most severe form of DM, characterized 
by severe hypotonia and muscle weakness at birth. In adulthood, patients with CDM pre-
sent classical DM1-like symptoms, including cataracts, frontal baldness, and testicular at-
rophy [12]. In addition, CDM exhibits developmental delays and intellectual disabilities 
not observed in other DM1 phenotypes. In contrast to DM1, no congenital form has been 
found in DM2. 

1.2. DM Pathogenesis (Spliceopathy) 
So far, DM pathogenesis has been characterized as an RNA toxic gain of function due 

to expanded repeats. Both in DM1 and DM2, the expanded repeats are transcribed into 
RNA, and the aberrant RNA with the expanded repeats forms foci in the nucleus [13]. 
RNA containing expanded repeats affect several RNA-binding proteins, including MBNL 
and CELF1, which regulate alternative splicing. MBNL is depleted by sequestration in the 
RNA foci [14], while CELF1 is stabilized by phosphorylation [15]. As a result, the dysreg-
ulation of these RNA-binding proteins leads to alternative splicing abnormalities. The ab-
errant splicing contributes to the pathogenicity of DM, referred to as spliceopathy. 

1.3. Aging and Cellular Senescence  
Aging is characterized by a gradual decline in organ function with advancing age. At 

the cellular level, cells in aging tissue undergo irreversible growth arrest in response to 
various stimuli. The process is referred to as cellular senescence. Although aging pro-
gresses through dynamic and complex biological processes, the excessive accumulation 
of senescent cells plays a key role in tissue aging [16]. In particular, the accumulation of 
senescent cells results in tissue atrophy and loss, denervation, hypertrophy, and de-
creased responsiveness to external stress [17]. The accumulation of senescent cells in local 
tissues causes progressive functional decline such as osteoarthritis [18], dementia [19], and 
bone loss [20]. This local dysfunction compromises the healthspan. In addition, the accu-
mulation of senescent cells can affect chronic diseases such as metabolic dysfunction [21], 
atherosclerosis [22], and cardiac disease [23]. These chronic disorders shorten the lifespan. 

Cellular senescence occurs upon various damaging stimuli, such as telomere erosion, 
oxidative stress, and oncogene activation. First, exposure to these stimuli induces sus-
tained DNA damage. Next, DNA damage, including base lesions, oxidative lesions, sin-
gle-strand breaks (SSBs), abasic sites, and double-strand breaks (DSBs), activate the DNA 
damage response (DDR). DDR then promotes H2AX phosphorylation. Finally, it inter-
feres with cell cycle checkpoint inhibitors such as p16 and p53, resulting in cellular senes-
cence [24]. 

2. Common Clinical Features of DM and Aging  
DM displays various tissue dysfunctions similar to premature aging. In particular, 

classical DM1 is characterized by multiple aging-related symptoms such as muscle wast-
ing, cognitive dysfunction, and frontal balding. Patients with DM2 also present with 
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aging-related symptoms such as cataracts and hearing loss. Furthermore, these acceler-
ated aging-related dysfunctions in DM are clinically significant. Various age-related 
symptoms, such as cognitive dysfunction, cataracts, hearing loss, and muscle weakness, 
interfere with the quality of life and impede social participation, leading to a reduction in 
the activities of daily living. Given the similarity of symptoms between DM1 and acceler-
ated aging, we propose that premature aging induced by expanded CTG repeat leads to 
some multi-systemic symptoms of DM in addition to the conventional understanding of 
DM pathogenesis as spliceopathy. To systematically understand the multi-system mani-
festations of DM, we summarize each clinical DM feature, especially focusing on DM1, 
from the premature aging aspect (Figure 1). 

 
Figure 1. Multi-systemic symptoms in DM. DM has various clinical manifestations in diverse tissues 
and organs. The symptoms could be closely related to misregulation of alternative splicing, aging, 
or both. 

2.1. Skeletal Muscle Involvement 
The primary DM manifestation is skeletal muscle involvement, for example, myoto-

nia, muscle weakness, and muscle atrophy. Myotonia is the most common initial DM 
symptom, defined by delayed muscle relaxation after voluntary contraction [7]. Never-
theless, patients with DM become less concerned about myotonia as muscle weakness 
progresses [25]. In fact, unlike most multi-systemic symptoms, the incidence of myotonia 
decreases with advancing age [26]. The clinical course of myotonia implies its weak rela-
tion to aging. Myotonia is reportedly caused by the aberrant splicing of CLCN1 (predom-
inant exon 7a inclusion) [27] instead of aging. 

Patients with classical DM1 present with distal dominant muscle weakness and atro-
phy, which progresses slowly with advancing age. CDM causes a floppy appearance in 
newborn infants with hypotonia and severe muscle weakness. In early childhood, chil-
dren with CDM improve their muscle weakness and acquire the ability to walk; then mus-
cle strength does not deteriorate until adolescence. However, in adulthood, CDM leads to 
progressive muscle weakness, similar to classical DM1 [12,28]. Here, we focus on the 
slowly progressive muscle weakness and atrophy commonly seen in adult patients with 
DM to clarify the aging-related muscle weakness mechanisms. Various studies focusing 
on mis-splicing have been reported to clarify the pathogenesis of muscle weakness and 
atrophy in DM. In the previous studies, many splicing misregulation mechanisms of the 
cytoskeleton- and calcium homeostasis-related genes, such as DMD [29], DTNA [30], BIN1 
[31], RYR1 [32], CACNA1S [33], and ATP2A1 [32], have been identified in the DM-affected 
skeletal muscle. These mis-splicing events are proposed to cause skeletal muscle dysfunc-
tion in DM1. However, the aberrant splicing events directly causing progressive muscle 
atrophy and muscle wasting have not been identified. 

Aging-related skeletal muscle involvement includes muscle atrophy and loss of mus-
cle mass and function. The muscle decline is one of the most significant factors of aging-
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associated changes. The muscle mass, muscle strength, and physical function reduction 
due to accumulated stress over time are referred to as sarcopenia [34]. 

Muscle wasting in DM is similar to sarcopenia [35,36]. For example, both disorders 
could be characterized by a similar distribution of skeletal muscle loss. For example, the 
atrophy of the temporalis and masseter muscles elicits the characteristic facial appearance 
of DM1 such as myopathic face or hatchet face [7], one of the most important indicators 
of sarcopenia [37,38]. Moreover, DM and sarcopenia share histological features such as 
increased fiber size variation and nucleus internalization [39,40]. 

Sarcopenia could potentially be caused by the functional impairment of muscle sat-
ellite cells, the skeletal muscle stem cells [41]. Although satellite cells are normally quies-
cent in the adult muscle, they get activated in response to muscle damage, proliferate and 
differentiate into myoblasts to efficiently regenerate the skeletal muscle [42]. The muscle 
satellite cell number decreases with advancing age, resulting in impaired muscle regener-
ation, potentially contributing to sarcopenia pathogenesis [43]. In addition to the age-re-
lated decline in satellite cell proliferation, the pathological conditions cause repetitive 
muscle injury, inducing premature stem cell aging, leading to the reduced proliferative 
and regenerative capacity of the skeletal muscles [44,45]. For example, Duchenne muscu-
lar dystrophy (DMD), a progressive dystrophin mutation-related muscle-wasting disease, 
increases sarcolemmal membrane fragility and causes muscle damage even under mild 
stress [46]. Persistent muscle damage due to stress-related vulnerability requires continu-
ous satellite cell regeneration [47]. However, satellite cells fail to meet the increasing de-
mand for regeneration and eventually lose their regeneration ability, leading to muscle 
atrophy in DMD [47,48]. 

Although the symptoms and pathogenesis of DMD and DM are not similar, satellite 
cell dysfunction similar to DMD has been reported as one of the causes of skeletal muscle 
involvement in DM1. Histopathological distal muscle analysis in DM1 exhibited a two-
fold increase in satellite cell numbers and reduced satellite cell proliferative ability in vitro 
[49]. Moreover, muscle satellite cells in DM1 exhibited premature growth arrest before the 
exhaustion of their proliferative capacity [50]. These studies suggest that the satellite cell 
proliferative capacity in DM1 is reduced due to exhaustion secondary to excessive regen-
eration and premature senescence [49]. Little loss of cell membrane integrity was observed 
in DM1, unlike DMD [51]. In addition, telomere-independent delayed cell proliferation 
occurs in DM1 satellite cells [50]. These studies suggest that premature senescence is re-
sponsible for satellite cell dysfunction of DM1. The molecular mechanism of premature 
senescence in DM1 remains to be elucidated, and the potential pathways will be discussed 
in Section 3. 

2.2. Cardiac Involvement 
The most common cardiac manifestations in DM involve cardiac conduction abnor-

malities, including atrioventricular block and ventricular arrhythmias, potentially leading 
to sudden death [52]. Recently, SCN5A mis-splicing was identified in the DM-affected 
heart and is considered to cause cardiac conduction defects [53]. 

Among other cardiac features, the incidence of chronic heart failure is increased with 
the progression of DM, although it remains less frequent than arrhythmias [54]. In fact, 
latent cardiac systolic dysfunction, detected by physiological examination, is relatively 
common in DM, and exercise limitation due to muscle weakness might mask clinical heart 
failure symptoms [55]. However, the mechanism behind heart failure in DM remains un-
known. Other than SCN5A splicing dysregulation, splicing abnormalities, including DMD 
[29], DTNA [30], LDB3 [53], TNNT2 [56], and TTN [57], have been previously reported in 
DM1-affected hearts, and other splicing misregulations have been identified by RNA-seq 
analysis [53,58], but no splicing abnormalities have been directly linked to heart failure. 
Although aging and aberrant splicing seems mutually exclusive, the fact that no mis-splic-
ing event responsible for heart failure in DM has been found does not allow us to conclude 
that aging is the cause. However, heart failure incidence generally increases with 
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chronological aging, and it is associated with cardiovascular aging, caused by cardiomy-
ocyte and vascular endothelial cell senescence [59]. Despite the low proliferative capacity 
of the cardiomyocytes, their turnover peaks in childhood and diminishes with age [59]. In 
particular, telomere length-independent DNA damage due to aging-related mitochon-
drial dysfunction and increased oxidative stress is reported to induce cardiomyocytes se-
nescence, leading to heart failure [60]. Based on these results, it has been conjectured that 
premature cardiomyocyte senescence causes heart failure in DM as senescent muscle stem 
cells lead to muscle wasting, yet the factors causing heart failure in DM remain unclear. 
Additional aging-related work using DM cardiomyocytes is needed.  

2.3. Cognitive Dysfunction 
The involvement of the central nervous system in classical DM1 is characterized by 

cognitive dysfunction, depression, excessive daytime sleepiness, and fatigue [61]. Cogni-
tive impairment is more severe with aging in the case of DM1 than under healthy condi-
tions [62–65]. Pathologically, neurofibrillary tangles (NFTs) are observed in DM-affected 
brains, suggesting that DM-related cognitive dysfunction can be regarded as a form of 
tauopathy [66]. Tauopathy encompasses clinically heterogeneous neurodegenerative dis-
orders, such as Alzheimer’s disease and frontotemporal lobar degeneration, characterized 
by the brain deposition of the microtubule-associated protein tau, observed as NFTs [67]. 
In the DM-affected brain, several mis-splicing events have been identified. In particular, 
aberrant splicing of MAPT, encoding microtubule-associated protein tau, potentially 
causes tauopathy [68,69]. However, the underlying mechanism of how MAPT mis-splic-
ing triggers tauopathy remains elusive [70]. Moreover, amyloid β precursor protein (APP) 
is mis-spliced in DM1, but no pathological features could be observed related to the aber-
rant transcripts [71]. 

Recent studies also commonly reported tau deposition in autopsies of elderly pa-
tients with normal to mild cognitive impairment, namely primary age-related tauopathy 
(PART) [72], implying the contribution of tauopathy to aging. These observations lead to 
the hypothesis that cognitive dysfunction in DM may be caused by aging-associated tau 
accumulation. However, since tauopathy is widely recognized in various neurodegener-
ative diseases, it remains unclear whether the tau accumulation in the DM brain is due to 
the aging process. Recent studies have shown that the aging brain also includes senescent 
cells, and glial cell senescence is particularly involved in aging-related inflammation in 
the brain [73]. Thus, elucidating the appearances of senescence and inflammation in DM 
neuron cells will provide insights into the relationship between cognitive dysfunction in 
DM and aging. 

In summary, brain pathology in DM is presumed to be caused by the interaction of 
RNAopathy, spliceopathy, and tauopathy [74]. Both aging and splicing abnormality-re-
lated neurodegeneration could possibly affect the DM-related neurological symptoms. 

2.4. Endocrine Dysfunction 
Endocrine and metabolic dysfunctions, such as diabetes mellitus, hyperparathyroid-

ism, hypertriglyceridemia and thyroid dysfunction, are common in DM1 with advancing 
age [75,76]. Above all, the increased incidence of diabetes mellitus in DM could result 
from specific splicing dysregulation. INSR splicing abnormalities (exon 11 exclusion), 
leading to increased insulin resistance were reported in the DM1-affected skeletal muscle 
[77]. The increased insulin resistance in the skeletal muscle could lead to diabetes mellitus 
in DM. 

On the other hand, aging alters the activities of various endocrine systems through 
the hormone secretion pattern mainly related to the hypothalamus and the pituitary gland 
[78]. Interestingly, metabolic dysfunctions in DM are limited to mainly insulin resistance 
and hypertriglyceridemia, while hypertension, central obesity, and metabolic syndrome 
are less common in DM1 [79]. Considering that the specific endocrine factors are clinically 
disturbed in DM, it has been proposed that the cause of endocrine abnormalities is more 
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related to splicing dysregulation than to aging, leading to general hormone secretion 
changes. Clinically, hormone concentrations vary widely among individuals. In addition, 
the secretion of hormones is affected by various physiological factors, including inflam-
mation and nutritional status. Hence, it is difficult to elucidate the molecular mechanisms 
underlying the endocrine disorders of DM. Future studies need to identify DM-specific 
mis-splicing events in hormone-secreting organs and tissues by removing these confound-
ing factors that affect endocrine function. 

2.5. Ophthalmologic Abnormalities 
Among the ocular manifestations, cataracts occur in more than 50% of the patients 

with DM1, and are mainly characterized by early onset posterior subcapsular cataract 
(PSC) [9,80]. In particular, patients with DM suffer from cataracts at an earlier age than 
those with age-related cataracts [7], and cataracts are occasionally the initial symptom in 
classical DM1 [9]. 

The senescence of human lens epithelial cells (HLECs) has been reported to play an 
important role in age-related cataracts. In general, HLEC reduction is attributed to the 
declining stem cell proliferative activity within HLECs, namely that of human lens stem 
cells (HLSCs). In other words, senescent HLSCs cannot replenish new HLECs, and senes-
cent HLECs reside in the lens. The numbers of senescent HLSCs and HLECs increase with 
advancing age, and PSC severity possibly correlates with the number of senescent HLECs 
[81]. Furthermore, previous studies using cataract-derived HLECs in patients with DM 
exhibited reduced cell density and impaired HLEC proliferation [82,83]. These results sug-
gest that HLEC proliferative dysfunction by senescent HLSCs is possibly an underlying 
mechanism of cataracts in patients with DM. In fact, HLECs in DM1 alter innate immune 
response- and interferon signaling-related gene expression [84], a feature consistent with 
senescent cells. In summary, DM comprises a high risk of cataracts, which is potentially 
attributed to premature senescence-related stem cell depletion. 

In addition to cataracts, DM1 reportedly causes changes in the retinal pigment epi-
thelium and the epiretinal membranes, common features of the aging retina, suggesting 
that DM1 might cause premature retinal aging [85]. 

2.6. Hearing Impairment 
Hearing loss is a common symptom in DM1, characterized by sensorineural defects 

[86–88]. Although the hearing impairment mechanism in DM is not sufficiently well un-
derstood, transient-evoked otoacoustic emissions, detecting the minute movements of 
outer hair cells (OHCs) in the cochlea, are markedly impaired in patients with DM, even 
in patients with healthy hearing, indicating that hearing impairment in DM might be due 
to OHC dysfunction [87]. In the case of healthy aging, the loss of OHCs is among the most 
important factors in hearing loss due to the poor OHC regenerative capacity [89]. Alt-
hough hearing loss in DM has been called “precocious presbyacusis” [90], few studies 
have examined the involvement of aging in hearing loss in DM.  

No splicing abnormalities causing the auditory disturbance in DM1 have been iden-
tified up until now. However, since some abnormalities in alternative splicing have re-
cently been reported as a possible cause of hereditary hearing loss [91,92], splicing dysreg-
ulation may also be associated with hearing impairment in DM1. Thus, further studies 
including aging and/or splicing analyses are needed to elucidate the molecular mecha-
nisms of hearing loss in DM1. 

2.7. Infertility 
Infertility is often a clinical concern in DM, particularly in male patients with DM1 

[76]. Patients with DM1 are likely to develop azoospermia due to testicular atrophy and 
low testosterone levels [93–96], and sperm motility is inversely proportional to the CTG 
repeat numbers [97]. Prevalence and determinants of infertility are similar in DM and age-
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related physiological dysfunction. With advancing age, semen volume and sperm motility 
decline, and the duration of infertility is prolonged in DM [98]. 

Meanwhile, research has focused less on female infertility than that occurring in men, 
being potentially associated with dysmenorrhea, irregular menstruation, and poor re-
sponse to ovarian stimulation in patients with DM [25,99]. More importantly, female pa-
tients with DM exhibit a high risk of pregnancy complications such as miscarriage, prem-
ature birth, preeclampsia, and prolonged delivery [100,101]. The preterm delivery of DM 
might result from CDM effects. However, considering that stillbirth and preeclampsia in-
crease with advancing age [102] and reportedly result from premature uterine and pla-
cental senescence [103], these pregnancy-related complications in DM seem to be caused 
by the maternal aging-like mechanisms.  

In short, the reproductive and perinatal problems occur commonly in both DM and 
aging, but it remains unclear whether these problems with DM are attributed in part to 
accelerated aging. 

2.8. Skin Changes 
Patients with DM are well-known to display characteristic frontal balding [2]. In the 

clinical examination of skin appendages, patients with DM have fine hair with reduced 
follicular density, similar to androgenetic alopecia (AGA) [104] that is generally closely 
related to aging. In a previous study using dermal papilla cell (DPC) cultures from balding 
and non-balding scalps, balding DPCs grew slower in vitro than non-balding DPCs. The 
reduced proliferative capacity of balding DPCs was linked to senescence-related morpho-
logical changes and increased senescence-associated β-galactosidase activity [105]. In ad-
dition to frontal balding, several patients with DM also exhibit skin aging, such as severe 
skin dryness, thin skin, and loss of elasticity [104]. Therefore, skin changes in DM are 
likely related to aging.  

2.9. Higher Risk of Cancer 
The increased risk of cancers, including thyroid, uterus, skin, colon, testes, and pros-

tate cancer, has been reported in DM1 [106–109]. Basically, aging is characterized by cell 
proliferation suppression, whereas cancer, which is uncontrolled cell growth, increases 
with age [110]. Although these two concepts seem to be contradictory, advances in cellular 
senescence research clarified their relationship. While senescent cells suppress tumorigen-
esis to prevent damaged cell increase, senescent cells promote tumorigenesis by creating 
a cell-nonautonomous, pro-inflammatory microenvironment [111,112]. The senescence-
associated increase in the secretion of pro-inflammatory cytokines, called senescence-as-
sociated secretory phenotype (SASP), acts as a potent tumor promoter. Although the acti-
vation of various SASP factors is deeply associated with DM (described below in detail), 
direct evidence that tumorigenesis in DM represents a form of aging is lacking. 

2.10. Gastrointestinal Symptoms 
Gastrointestinal (GI) symptoms are frequent in DM1, especially the upper gastroin-

testinal tract symptoms including dysphagia, gastric reflux, and dyspepsia, and the lower 
gastrointestinal tract symptoms including abdominal pain, bloating, diarrhea, and consti-
pation [113,114]. Dysphagia, gastric reflux, and chronic constipation, in addition to the 
increased incidence of gastrointestinal cancer, are commonly known as aging-related GI 
symptoms. Although complicated mechanisms including gut bacteria contribute to gas-
trointestinal aging, recent studies revealed that aging-related changes in individual gas-
trointestinal cells, such as intestinal neurons, smooth muscle cells, and intestinal epithelial 
stem cells, lead to GI symptoms [115,116]. However, since the pathomechanism of GI 
symptoms in DM remains unclear, studies at the level of individual cells in the GI tract 
are needed to better understand the involvement of aging. 
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2.11. Reduction of Serum IgG Level 
IgG is secreted by plasma cells and is involved in humoral immune processes. A de-

creased serum IgG level has been clinically reported in DM [117]. However, the mecha-
nism of the decrease in IgG is unclear, and the clinical implications caused by the serum 
IgG decrease in DM, for example, immunological diseases, have not been reported. 
Changes in IgG glycosylation have been observed with advancing age [118], but no asso-
ciation with DM has been found. 

3. Splicing Misregulation in DM and Aging 
Recently, it has been reported that alternative splicing and its regulation are associ-

ated with aging diseases and cellular senescence [119,120]. A previous study using a rat 
sarcopenia model showed that certain splicing abnormalities, such as Mbnl1 and Mbnl2, 
were common in DM and aging models [121], indicating the possibility that the mis-splic-
ing in DM might be related to aging. Moreover, previous research suggested that other 
aberrant splicing events in DM could be associated with aging pathogenesis. The splicing 
abnormalities of the CACNA1S, RYR1, and ATP2A1 genes encoding Ca2+ transporters and 
channels have been identified in DM [32,33]. Such splicing misregulation leads to calcium 
homeostasis disruption and endoplasmic reticulum (ER) stress signaling activation [122]. 
Therefore, these mis-splicing events in DM might induce premature senescence through 
ER stress and be responsible for muscle degeneration in DM [123]. However, aging-re-
lated splicing abnormalities, including TP53, IGF-1, SIRT1, and ING1 [124], have not been 
reported in DM. To date, no studies have shown whether specific splicing abnormalities 
could directly induce aging. In principle, RNA-binding proteins, such as MBNL and CELF, 
could affect alternative exons leading to developmental splicing switches. In other words, 
fetal splicing isoforms are commonly detected in adult DM. It is seemingly illogical that 
the fetal-type splicing abnormalities could cause aging-like symptoms. These arguments 
lead to the hypothesis that splicing abnormalities cannot fully explain accelerated aging 
pathogenesis in DM, and other aging-related mechanisms possibly contribute to DM. 

4. Relationship between Cellular Senescence and DM Pathogenesis 
The main characteristic of accelerated aging is senescent cell accumulation which is 

triggered by cellular senescence, a state of irreversible cell cycle arrest [125]. Cellular se-
nescence is a complex multistage process, with certain steps implicated in DM pathogen-
esis. In the following section, we discuss the cellular senescence mechanism in DM to clar-
ify the driver of accelerated aging-like symptoms in DM. 

4.1. Telomere Shortening 
Among the diverse senescence-inducing stimuli, telomere shortening has been par-

ticularly known to trigger cellular senescence [126]. Telomeres, the structures at the chro-
mosome ends, cannot be replicated entirely and get shorter with each replication. When 
telomeres become extremely short, the telomere capping function is lost, and critically 
short telomeres are recognized as DSBs, leading to DDR [127]. Several studies examining 
telomere length in DM showed that telomere shortening is accelerated, but senescence is 
induced before the length reaches the critical size [50,128,129]. These studies indicate that 
telomere shortening does not directly cause premature cell proliferation arrest, but it is 
likely to be the consequence of cellular senescence in DM. 

4.2. Activation of Cell Cycle Inhibitors 
DNA-damaging stimuli induce cellular senescence, which is mediated by the cell cy-

cle-regulating tumor suppressor genes. Above all, the representative cell cycle checkpoint 
genes include CDKN2A encoding p16, CDKN1A encoding p21, and TP53 encoding p53 
[16]. These proteins are involved in two important cell cycle regulatory pathways, the p53-
p21 and p16-pRB pathways. First, the p53-p21 pathway is upregulated upon DDR 
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activation, inducing senescence. p53 regulates p21 expression, then p21 binds to and in-
activates cyclin-CDK complexes, resulting in the G1 arrest of the cell cycle [130]. Second, 
the p16-pRB pathway is upregulated upon sustained stress and maintains senescence. p16 
inhibits RB phosphorylation, and unphosphorylated RB binds to the transcription factor 
E2F1, thereby inhibiting E2F1 release. E2F1 reduction prevents E2F1 target gene transcrip-
tion, which is responsible for cell cycle regulation [131]. 

Cells derived from patients with DM might alter cell cycle regulatory protein expres-
sion. CDM muscle satellite cells induce p16-dependent premature senescence [50], while 
DM2 myoblasts trigger p16-independent early growth arrest [128]. These results suggest 
that cellular senescence occurs in DM1 and DM2 myoblasts, but the mechanism of senes-
cence is different. This difference may be due to the different repeated sequence of DM1 
and DM2 or their surrounding sequences. However, how CTG and CCTG repeats affect 
accelerated aging has not been evaluated so far, and will be clarified in the future by de-
veloping cell models expressing different repeat sequences.  

4.3. Senescence-Associated Secretory Phenotype (SASP) 
Cell cycle-arrested senescent cells in response to various stresses and damages, 

namely primary senescent cells, can induce senescence by communicating with surround-
ing non-senescent cells within the tissue microenvironment [111]. This phenomenon is 
referred to as secondary senescence. Mediators of secondary senescence include cytoplas-
mic bridges [132], small extracellular vesicles [133], and NOTCH/JAG1 signaling [134]. 
Furthermore, SASP is the most well-studied mechanism that induces secondary senes-
cence of surrounding cells by secreting signal proteins in a paracrine fashion [135]. These 
secreted components from senescent cells mainly include pro-inflammatory cytokines 
such as IL-6, CXCL8 (IL-8), and MCP1 (CCL2). Pro-inflammatory cytokine-related abnor-
malities have been reported in DM. For instance, CDM myoblasts produce high levels of 
IL-6 [136], and CDM satellite cells increase PGE2 secretion in vitro [137]. Moreover, NF-
κB activation, inducing pro-inflammatory transcription, has been described in DM1 mus-
cle cell [136] and DM1 glial cell [138] models, suggesting that NF-κB might increase SASP 
in DM. Regarding other SASP components, ECM-remodeling molecules, including MMPs, 
SERPIN, and TIMPs, reinforce the senescence program [139,140]. DM1 involves both the 
ECM composition and pro-inflammatory cytokines. Mice expressing expanded CUG re-
peats display ECM-related gene expression changes [141]. Similarly, we found that DM1 
model fibroblasts increase ECM-related gene expression, including MMP1 and ADAMTs, 
SASP component genes, including PAI-1, IGFBP3, and induce premature senescence (Has-
uike et al., manuscript submitted). These results suggest that the ECM composition imbal-
ance might promote senescence as a part of SASP in DM. In summary, the increased SASP 
factor secretion strongly affects the cellular senescence in DM. 

4.4. Mitochondrial Dysfunctions and Reactive Oxygen Species (ROS) 
SASP-mediated senescence is also a hallmark of mitochondrial dysfunction, referred 

to as mitochondrial dysfunction-associated senescence (MiDAS) [142]. Indeed, mitochon-
dria regulate SASP through multiple mechanisms, and morphological and functional mi-
tochondrial changes, such as increased mitochondrial mass and reduced membrane po-
tential, are senescent cell characteristics [143]. A recent study on mitochondria in DM re-
vealed the metabolic disturbance by impaired mitochondria in DM1 fibroblasts, poten-
tially leading to cellular senescence [144]. In addition, in a study using muscle magnetic 
resonance spectroscopy (MRS), analysis of DM1 skeletal muscle indicated impaired mito-
chondrial metabolism [145].  

The dysfunctional mitochondria impair DNA through ROS production and induce 
cellular senescence [146]. This ROS-mediated mechanism is called oxidative stress-in-
duced senescence [16]. Previous studies showed impaired antioxidant capacity in the se-
rum of patients with DM1 [147,148] and the increased mitochondrial ROS in DM1-affected 
fibroblasts [144]. Furthermore, ROS and mitochondrial dysfunction contribute to 



Int. J. Mol. Sci. 2022, 23, 2339 10 of 19 
 

 

apoptosis induction[149]. Previous studies showed apoptotic pathway activation in DM1 
myotubes [150]. Thus, mitochondrial dysfunction observed in DM possibly induces cellu-
lar senescence. 

4.5. Chromatin Reorganization and Nuclear Morphological Change 
Chromatin reorganization is a characteristic feature in senescent cells [151]. The most 

prominent chromatin change of aging is the formation of senescence-associated hetero-
chromatic foci (SAHF) [24]. More importantly, the interaction of chromatin and nuclear 
lamin plays a key role in aging. For example, nuclear envelope protein lamin B1 (LMNB1) 
levels are reduced in senescent cells [152]. LMNB1 knockdown promotes heterochromatin 
rearrangement around the nucleus and SAHF formation [153,154]. Therefore, nuclear 
membrane composition changes, including that of lamin B1, are among the hallmarks of 
cellular senescence [152,155]. Clinically, certain progeroid disorders are caused by muta-
tions in nuclear envelope proteins, leading to nuclear envelope structure disruption [3]. 
Similar to the progeroid syndromes, DM1 displays nuclear envelope organization 
changes. Fibroblasts of patients with DM1 alter emerin, as well as lamin A/C and B local-
ization, and the size and shape of the nuclei change accordingly [156]. Furthermore, lamin 
B1 downregulation occurs specifically in DM1-affected myoblasts, suggesting an effect on 
cell senescence [3]. DM2-affected myoblasts accumulate heterochromatin, a morphologi-
cal feature of senescent cells [157]. Thus, nuclear membrane organization and chromatin 
changes, common characteristics of senescent cells, may be involved in the DM phenotype 
resembling accelerated aging. 

4.6. MicroRNA 
MicroRNA (miRNA), a short non-coding RNA, is an important post-transcriptional 

regulator of cellular senescence [158,159]. Various miRNAs show dynamic expression 
changes with advancing age in multiple organs and tissues. In particular, some miRNAs 
play an important role in the above-mentioned two major senescence pathways, the p53-
p21 and p16-pRB pathways, and regulate cellular senescence [158]. 

Similar to aging, several miRNAs are differentially expressed in the serum and skel-
etal and cardiac muscle in DM [160–162]. Interestingly, we have found evidence for ex-
pression changes of senescence-related miRNAs such as miR-152 and miR-15a, in a DM1 
cell model (Hasuike and Nakamori, unpublished data). Since individual miRNA broadly 
regulates cellular senescence by targeting multiple genes and pathways [163], miRNAs 
might be key modulators in DM-related cellular senescence. 

5. Therapeutic Potential Targeting Cellular Senescence in DM 
Based on an RNA toxic gain of function, considered as a major DM pathogenic mech-

anism, the treatment targeting toxic RNA has been approached in several ways [164]. Alt-
hough about twenty drugs for DM1 in categories of small molecules, oligonucleotide-
based therapies, and gene therapies have shown promising results in preclinical models 
or human clinical trials [165], no curative treatment is available in patients with DM at 
present. 

In addition to DM1-specific therapies, anti-aging agents are also promising candi-
dates for the treatment of DM1, as some agents have already been shown to be safe in 
humans and can be applied to clinical practice rapidly. As described above, accelerated 
aging is deeply related to the clinical DM features, but no DM-related treatment focusing 
on cellular senescence has yet been developed. In general, eliminating senescent cells is 
beneficial, and novel strategies for removing senescent cells without genetic manipulation 
are attracting attention [4]. Here, we discuss the therapeutic targets of aging and the po-
tential applications in DM. 

Two major approaches have been proposed for cellular senescence treatment: 
senolytics and senomorphics [166]. Senolytics is a treatment specifically eliminating 
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senescent cells through apoptosis. For example, the BCL-2 family regulates cell death 
through apoptosis and autophagy, and targeting its activity allows apoptosis initiation in 
senescent cells [167,168]. In addition, the p53-p21 pathway is a promising anti-aging target. 
Inhibiting the interaction between p53 and FOXO4 induces intrinsic cell apoptosis, and 
the administration of a peptide interfering with FOXO4 and p53 binding improves senes-
cence [169]. Moreover, p21 knockdown induces cell death in senescent cells [170]. 

Senomorphics involves a treatment inhibiting SASP secretion without altering cell 
viability. For instance, rapamycin, an mTOR inhibitor, reduces SASP via the NF-κB tran-
scriptional activity inhibition and extends mouse lifespan [171,172]. Metformin inhibits 
NF-κB migration to the nucleus, limiting its transcriptional activity [173]. These drugs 
have been demonstrated to exhibit certain therapeutic effects in both a DM mouse model 
and cells. Indeed, rapamycin improves muscle relaxation and increases muscle strength 
in DM model mice without affecting the splicing regulation [174]. Metformin restores mi-
tochondrial dysfunction and cellular senescence in DM1 fibroblasts [144], and improves 
the exercise capacity and walking ability of patients with DM [175]. Therefore, treatments 
targeting cellular senescence might be effective in DM and propose promising novel tar-
gets for DM therapy. 

6. Conclusions 
Among the multi-systemic DM symptoms, especially muscle weakness, cognitive de-

cline, cataracts, infertility, and hearing impairment are similar to those observed in prem-
ature aging. In addition to splicing dysregulation, cellular senescence might contribute to 
the pathological process leading to various multi-systemic symptoms in DM. Cellular se-
nescence is regulated interactively by multiple cellular stresses [176]. In particular, the 
positive-feedback loop of mitochondrial damage, ROS production, and DDR activation 
via the p53-p21 pathway is important for maintaining senescence [177]. In addition, SASP 
promotes senescence through the autocrine positive-feedback loop [24]. Since certain 
feedback loop components have also been found in DM, complex senescence regulation 
might be involved in DM pathogenesis (Figure 2). Although the underlying mechanism 
of how expanded CUG repeats cause cellular senescence is not fully elucidated, under-
standing the senescence mechanism in DM could potentially provide new therapeutic tar-
gets. 
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Figure 2. Cellular senescence-related pathways in DM pathogenesis. Expanded repeat RNA possi-
bly induces cellular senescence partly directly and partly through splicing dysregulation. DM ex-
hibits various cellular senescence features. Senescence-inducers, such as telomere shortening, mito-
chondrial dysfunction, and oxidative stress, cause DNA damage and DDR, activating cell cycle in-
hibitors, leading to cellular senescence. These factors have been identified in the cells of patients 
with DM and model cells expressing expanded repeat RNA. In addition, DM exhibits senescent cell 
features such as SASP, chromatin reorganization, and miRNA changes. SASP and miRNAs might 
also induce cellular senescence. Splicing dysregulations, a major DM pathogenesis, might also be 
related to accelerated aging. 
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