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Abstract: Acute myeloid leukemia (AML) is a complex hematological malignancy characterized
by extensive heterogeneity in genetics, response to therapy and long-term outcomes, making it a
prototype example of development for personalized medicine. Given the accessibility to hematologic
malignancy patient samples and recent advances in high-throughput technologies, large amounts
of biological data that are clinically relevant for diagnosis, risk stratification and targeted drug
development have been generated. Recent studies highlight the potential of implementing genomic-
based and phenotypic-based screens in clinics to improve survival in patients with refractory AML.
In this review, we will discuss successful applications as well as challenges of most up-to-date high-
throughput technologies, including artificial intelligence (AI) approaches, in the development of
personalized medicine for AML, and recent clinical studies for evaluating the utility of integrating
genomics-guided and drug sensitivity testing-guided treatment approaches for AML patients.

Keywords: high throughput; drug screening; AI; leukemia; personalized medicine

1. Introduction

Acute myeloid leukemia (AML) is the most common myeloid neoplasm. The condition
is characterized by abnormal clonal expansion and aberrant differentiation of immature
clonal myeloid cells (Figure 1). Increasing prevalence, ineffective treatment and poor
prognosis of AML are growing concerns, particularly in patients with refractory disease.
Clinical management has remained largely unchanged since 1970s. The core therapeutic
principles involve the standard regime of multiple courses of induction chemotherapy,
allogenic hematopoietic stem cell transplantation or palliative care [1]. However, the
treatment outcome varies considerably in the different genetic and biological subtypes
of AML. Cytogenetic and sequencing analyses have revealed the complex heterogeneity
in de novo and relapsed AML. There are at least 11 genetic and 20 biological subsets,
considering differentiation states in leukemic blast cells [2,3]. In addition, deep sequencing
has revealed approximately 2000 somatically mutated genes across a 200-patient dataset. In
one AML sample, there are more than 400 mutations [4,5]. Several driver mutations have
been highlighted. These include NPM1, FLT3, CEBPA, DNMT3A, TET2, RUNX1, ASXL1,
IDH1 and IDH2 [6]. Many of the recurrent somatic mutations demonstrate prognostic
value and are associated with specific drug targets [2,7,8].
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Figure 1. Acute myeloid leukemia (AML). AML is originated from malignant haematopoietic stem 
cell and is characterized by abnormal clonal expansion and aberrant differentiation of immature 
clonal myeloid cells. AML progresses with the acquisition of new genetic and/or epigenetic abnor-
malities in response to chemotherapy and displays substantial heterogeneity. This figure is created 
in BioRender.com (Available online https://biorender.com/, last accessed on 25 February 2022). 

Extensive efforts over the past decades have expanded our knowledge in the func-
tional genomic landscape and molecular events that lead to initiation, progression and 
resistance of AML. This further adds guidance for treatment decisions to match prognos-
tic factors and treatment responses, that result in better risk stratification and survival 
outcomes for patients. A small number of targeted therapies aimed at specific mutations 
and essential molecules involved in leukemogenic pathways has been developed and ap-
proved for AML patients with the aim of improving clinical outcomes. These include FLT3 
inhibitors (e.g., midostaurin and gilteritinib), CD33 monoclonal antibody (e.g., 
gemtuzumab ozogamicin), IDH2 inhibitors (e.g., enasidenib), IDH1 inhibitors (e.g., ivo-
sidenib), BCL2 inhibitors (e.g., venetoclax) and hedgehog signalling inhibitors (e.g., 
glasdegib) [8]. Although these drugs have proven to display initial clinical benefits when 
combined with conventional therapy, most patients experience disease relapse and ulti-
mately succumb to the disease. This is largely due to conditions where (1) there are more 
than one driver mutation [9]; (2) disease progresses with the acquisition of new genetic 
and/or epigenetic abnormalities in response to chemotherapy; (3) substantial heterogene-
ity exists between AML patients. 

There is a shift in therapeutic strategies from conventional combination chemother-
apy regimens to a more personalised treatment approach based on individual patient-
specific characteristics, i.e., precision medicine. Besides the epidemiological and clinical 
information, precision medicine largely relies on genetic information provided by high 
throughput sequencing technologies. A plethora of pre-clinical and clinical studies are 
currently evaluating the outcomes of genomics-guided, phenomics-guided and genomics-
phenomics-guided treatment approaches. This significantly benefits relapsed leukemia 
patients and those unable to tolerate aggressive chemotherapy [10]. 

Figure 1. Acute myeloid leukemia (AML). AML is originated from malignant haematopoietic stem
cell and is characterized by abnormal clonal expansion and aberrant differentiation of immature
clonal myeloid cells. AML progresses with the acquisition of new genetic and/or epigenetic abnor-
malities in response to chemotherapy and displays substantial heterogeneity. This figure is created in
BioRender.com (Available online https://biorender.com/, last accessed on 25 February 2022).

Extensive efforts over the past decades have expanded our knowledge in the functional
genomic landscape and molecular events that lead to initiation, progression and resistance
of AML. This further adds guidance for treatment decisions to match prognostic factors
and treatment responses, that result in better risk stratification and survival outcomes for
patients. A small number of targeted therapies aimed at specific mutations and essential
molecules involved in leukemogenic pathways has been developed and approved for AML
patients with the aim of improving clinical outcomes. These include FLT3 inhibitors (e.g.,
midostaurin and gilteritinib), CD33 monoclonal antibody (e.g., gemtuzumab ozogamicin),
IDH2 inhibitors (e.g., enasidenib), IDH1 inhibitors (e.g., ivosidenib), BCL2 inhibitors (e.g.,
venetoclax) and hedgehog signalling inhibitors (e.g., glasdegib) [8]. Although these drugs
have proven to display initial clinical benefits when combined with conventional therapy,
most patients experience disease relapse and ultimately succumb to the disease. This is
largely due to conditions where (1) there are more than one driver mutation [9]; (2) disease
progresses with the acquisition of new genetic and/or epigenetic abnormalities in response
to chemotherapy; (3) substantial heterogeneity exists between AML patients.

There is a shift in therapeutic strategies from conventional combination chemotherapy
regimens to a more personalised treatment approach based on individual patient-specific
characteristics, i.e., precision medicine. Besides the epidemiological and clinical informa-
tion, precision medicine largely relies on genetic information provided by high throughput
sequencing technologies. A plethora of pre-clinical and clinical studies are currently evaluat-
ing the outcomes of genomics-guided, phenomics-guided and genomics-phenomics-guided
treatment approaches. This significantly benefits relapsed leukemia patients and those
unable to tolerate aggressive chemotherapy [10].

Emerging approaches in precision medicine using high-throughput technologies, such
as sequencing analysis and drug screening, play essential roles in generating datasets that
are valuable for stratifying patients for treatment and guiding drug discovery. In addition,
artificial intelligence (AI) has recently garnered attention in cancer therapy due to its ability
in enhancing drug discovery, development and administration [11]. In this review, we
will discuss the progress and challenges of using these high-throughput technologies in
improving AML patient outcomes, focusing on the development of leukemia therapy.

https://biorender.com/
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2. High-Throughput Technologies-Based Targeted Therapies

The applications of genomics, epigenomics, transcriptomics, proteomics and metabolomics
are attributed to recent advances in next generation genome sequencing, bioinformatics,
proteomic analytic tools, along with high-throughput technologies. This is a powerful
tool that provides deep and robust data, and has led to a rapid discovery of biomarker
candidates in the field of oncology. Furthermore, extended research from these discoveries
have provided potential therapeutic targets. This in turn will set a systematic approach to
devise strategies to guide therapies, address disease risks, and predict clinical outcomes.
The main challenges to bring these assays from bench to bedside are mainly due to high
costs, long turnaround times and difficulty in data interpretation.

2.1. Integration of Genomice Sequencing

Next generation sequencing (NGS) yielding billions of reads in a single run has
allowed unparalleled efficiencies, unlike conventional Sanger sequencing. Using this
technology, this has allowed faster interrogation of whole genomes, and extended towards
transcriptome sequencing to understand protein profiles and interactions. With the efforts
of multiple cancer centres and sequencing laboratories, related patient centric databases
have been set up in the public domain. This included the Cancer Genome Atlas Research
Network among many others. The database has transformed the understanding of leukemia
and uncovered multiple genetic alterations and epigenetic modifications. Deep analysis
and prediction models have elucidated information pertaining to the disease molecular
subtypes, aid therapy selection, identify targets for improve drug delivery and novel
molecular targets in drug discovery.

There is strong evidence that genomic alterations could be identified as molecular
targets. One successful example is the identification of all-trans retinoic acid (ATRA) and
arsenic trioxide therapy for acute promyelocytic leukemia (APL). The majority (~95%) of
APL is characterized by a t(15;17) (q22; q21) translocation resulting in the fusion gene tran-
script promyelocytic leukemia-retinoic acid receptor alpha (PML-RAR-α). The discovery of
this translocation has clinical significance due to its responsiveness to arsenic trioxide and
ATRA which promote degradation of PML-RAR-α [12]. ATRA and arsenic trioxide therapy
can achieve complete remission in 85% to 90% of patients with not only newly diagnosed
but also relapsed APL [13].

Another successful example is the identification of mutations of FMS-like tyrosine
kinase 3 (FLT3) receptor in AML [14]. FLT3 mutations occur either as internal tandem
duplications (FLT3/ITD, 24% of AML) or as point mutations resulting in single amino
acid substitutions within the activation loop of the tyrosine kinase domain (FLT3/TKD,
7% of AML), resulting in a constitutively active kinase [15,16]. Midostaurin is an oral
multi-kinase inhibitor with activity against FLT3 kinase. The addition of midostaurin to
existing standard-of-care regimes as first line therapy benefits younger AML patients with
FLT3 mutations. Midostaurin is approved by USA Food and Drug Administration (FDA)
for the treatment of newly diagnosed FLT3-mutated AML [17]. In the management of
AML with FLT3 mutations, a number of potential drugs have been investigated including
quizartinib (highly selective to FLT3; NCT02039726 and NCT02668653), crenolanib (against
both ITD and TKD mutations; NCT02400255) and gilteritinib (potent FLT3/AXL inhibitor;
NCT02927262) [18]. Although identification of genetic abnormalities have significantly
advanced AML treatment, patients who are not assigned to such specific subtypes do
not benefit from genomic sequencing technologies. In addition, most mutations occur
infrequently and remain non-targetable.

A significant finding from genomic sequencing in AML is the discovery of mutations
frequently localized to genes with epigenetic functions. These include DNMT3A, TET2,
IDH1, IDH2, CBP, KAT6A, HDAC2, HDAC3, EZH2, NSD1, ASXL1 and ASXL2 [19]. Epi-
genetic modifications are similarly important as genetic abnormalities in contributing to
AML aggressiveness and more importantly are pharmacologically reversible. Epigenetics
regulate gene expression through histone acetylation, and histone and DNA methylation
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via epigenetic modifiers (e.g., BET, HDAC, DNMT and IDH) [20]. This provides opportu-
nities for targeted treatment using these specific inhibitors. DNMT inhibitors, azacitidine
and decitabine, have been approved for AML treatment. These drugs show significant
improved response rates in patients when combined with existing chemotherapy [21–23].
IDH inhibitors, ivosidenib and enasidenib, also achieved high response rates in refractory
AML patients. These inhibitors have recently been approved for IDH-mutated relapsed
AML [24,25]. Other inhibitors targeting epigenetic modifiers are either in pre-clinical or
clinical stages of development [19].

Although epigenetic drugs display great therapeutic potential by targeting multiple
pathways simultaneously, its indication for use is still limited and in its infancy. Larger
scale randomized control trials and long-term studies are needed to address the prognosti-
cation and predictive capabilities and address any potential adverse events when used in
combination with chemotherapy. Various clinical trials are currently ongoing to evaluate
genomics-guided treatment approaches in either relapsed or refractory AML. However,
the genomic technologies fail to evaluate changes in signalling pathways or proteins that
could more directly facilitate risk stratification, predict chemoresistance and aid selection
of therapy, independent of mutational status.

2.2. Integration of Proteomics

The two most frequently used high-throughput proteomics technologies in leukemia
research are mass spectrometry (MS) and antibody-based reverse phase protein array
(RPPA), which allow distinguishing protein isoforms, post-translational modifications,
and amino acid changes. MS is often used as a de novo discovery platform as it is un-
biased towards the protein targets of interest whereas RPPA uses validated monoclonal
antibodies to measure protein expression. RPPA is more suitable than MS for direct clinical
applications with actual primary samples as it uses less amount of samples. Proteomics
technologies used in leukemia studies are helpful to identify protein markers that stratify
patients on their prognosis or response to treatment, through comparing protein profiles
between leukemia patients and healthy volunteers, between pre and post treatment sam-
ples, between drug-resistant and -sensitive cell lines, between leukemia stem/progenitors
and bulk cells [26–29]. For example, BCL2 level is an independent predictor of remission
duration and AML patients with high BCL2 expression have shorter overall survival [30].
In addition, this approach could guide therapy selection, via identification of proteins that
could facilitate rational drug combination.

Strategies that analyze and integrate net effects of multiple signalling transduction
pathways on the entire spectrum of protein effectors and actuators will provide a more
complete view of the functions of the leukemic cell population. Large-scale proteomics
enable the system-wide characterization of signalling events in the context of functionally
related protein groups. This is important as targeting essential signalling pathways has
been proven to be effective in improving AML patients’ clinical outcome. BCL-2 is an
anti-apoptotic enzyme and prevents leukemia cell death triggered by intrinsic apoptotic
mitochondrial pathway [31]. Venetoclax, an inhibitor of BCL-2, has been approved for
combination with azacitidine or decitabine or low-dose cytarabine for the treatment of AML
patients aged 75 years and above who are not suitable for intensive chemotherapy [32].
Glasdegib, a hedgehog inhibitor is another approved drug used in combination with
low-dose cytarabine for treatment of newly-diagnosed AML [33].

The application of proteomics technologies in leukemia has been limited to identi-
fication of diagnostic and prognostic biomarkers rather than therapeutic targets in the
research laboratories. The critical need is to translate these biomarker discoveries to rou-
tine clinical use at an affordable cost. Classification of protein signatures in patients may
provide potential drug targets. The challenges to the routine clinical use of proteomics
technologies are to develop protein assessment kits that could rapidly enable classification
of the protein signature. The ability of utilizing these signatures to evolve as new drugs is
also needed [34,35].
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2.3. Integration of Metabolomics

Similar to genomics and proteomics, metabolic profiling revealed by metabolomics
analysis are useful in diagnosis, risk stratification and targeted therapy in AML. The
strategy for targeting metabolic activities in AML patients has been employed since cytara-
bine was used as a standard therapy. Its mechanism of action interferes with nucleotide
metabolism [36]. Analytic technologies including proton nuclear magnetic resonance spec-
troscopy (1H NMR) and MS are used as the primary platforms to enable the identification
of metabolites and other small molecules in biological samples. Substantial evidence has
revealed the unique feature of leukemia cells in the context of cell energy, nucleic acid
precursors, amino acids and lipids [37–40]. The enzymes isocitrate dehydrogenase 1 and 2
(IDH-1 and IDH-2) play critical roles in the citric acid cycle via catalysing the conversion
of isocitrate to alpha keto glutarate (αKG). AML patients with IDH1/2 mutations are
responsive to ivosidenib (IDH-1 inhibitor) and enasidenib (IDH-2 inhibitor) [24,25]. This
illustrates how IDH1/2 are examples of translating metabolomics findings to successful
therapeutic targets.

Preclinical and clinical studies highlight the therapeutic potential of several metabolic
targets in AML, such as fructose, nucleotide biosynthesis and oxidative phosphoryla-
tion [41]. However, it is challenging to achieve a comprehensive characterization of the
metabolome. This is largely due to the complexity of metabolite classes and rapid dynamic
changes [42]. Standardization of sample preparation and statistical power to account for
inter-individual variability are needed for metabolomic studies to maximize sensitivity,
specificity and reproducibility. Metabolic interrogation will continue to uncover new in-
sights into AML. However, metabolomics data is complex and metabolites are challenging
to annotate. Data reproducibility is another issue due to variability in methods between
labs. As a burgeoning field, the gap to be able to adopt metabolomic technology in routine
clinical use will need cost reduction of assays and standardization in operating procedures
for sample preparation, data processing and analytical platforms.

3. High-Throughput Drug Screening-Based Therapies

Although the recurrent genetic/epigenetic/proteomic alterations in acute leukaemia
have been linked to actionable targets, identification of these targets in patients using these
newer technologies does not always lead to effective therapies. A strategy to circumvent
this issue is to use an unbiased drug screening approach, such as high-throughput screening
(HTS). HTS plays a pivotal role in the early stages of cancer drug-discovery. The size, quality
and content of the compound library are important factors in determining successful HTS
screens. Clinically available drug libraries are often used for HTS. Disease models are
developed for HTS, including immortalized cell lines, engineered cell systems (eg. reporter
cell lines and isogenic cell lines) and co-culture conditions (e.g., cell type 1 vs cell type 2
competition) and patient-derived cells (PDCs).

3.1. Drug Sensitivity Testing (DST)

Substantial evidence has shown that DST-guided therapy demonstrates clinical bene-
fits in cancer patients. Chia et al. demonstrated that using monotherapy of gefitinib resulted
in significant cancer regression within 6 weeks of treatment in a patient with recurrent oral
squamous cell carcinoma [43]. This target was identified as the top candidate through HTS.
Swords et al. screened 12 patients with refractory AML using a DST platform with a panel
of 215 approved compounds using cell viability assay and evaluated the clinical benefits
based on DST results. Among three of four DST-treated patients, treatment responses
were achieved. All non-DST-guided patients progressed during treatment [44]. Of note,
they demonstrated that DST can be completed in a clinical setting within 10 days which
is comparable to standard treatment planning in the non-DST-guided therapy of AML
patients [44].

DST on consecutive liquid biopsy samples from the patients allows the physician to
rapidly adapt treatment plans in response to drug resistance. Pemovska et al. reported
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that DST was predictive of clinical response, and therapy based on DST resulted in clinical
responses that met the European LeukemiaNet criteria. These included morphological
leukemia free state and complete remission [45]. By performing DST on 28 AML and
7 healthy bone marrow samples as normal control using cell viability assay, they assessed
leukemia-selective effects of 187 approved drugs by comparing drug effects in AML cells
with those of healthy donors. In this study, signal transduction inhibitors such as AML-
selective drugs were identified. Although drug sensitivity patterns were heterogeneous,
the taxonomy of AML and cancer drugs was established based on the comprehensive
drug-response profiles. Monitoring the progression under DST-guided therapies with
consecutive DST, and together with mutational and gene expression profiling in patient
samples will provide insights into disease evolution, and the relationship between genomic
changes and drug response.

Using DST-based HTS platform, a number of recent studies identified combinatory
anti-cancer therapies. Drenberg et al. found that gemcitabine and cabazitaxel may be
useful for treating pediatric AML [46]. Focusing on a library of natural products, Sweeney
et al. identified a synergistic combination of dimethylaminoparthenolide, a sesquiterpene
lactone extracted from Tanacetum parthenium, and shikonin, a naphthoquinone found in
the root of Lithospermum erythrorhizon, in pediatric precursor-B cell acute lymphoblastic
leukemia [47]. Kurtz et al. performed ex vivo sensitivity profiling of 122 patient samples
from myeloid- and lymphoid-derived hematologic malignancies against a panel of 48 drug
combinations and identified that the CDK4/6 inhibitor, palbociclib, and the BCL-2 inhibitor,
venetoclax displays improved combinatory efficacy [48].

Apart from using microplate readers for readout in DST assay mentioned above, high-
throughput flow cytometry has also been used in DST assay. Using 54 patient samples
in a large panel of approved and investigational drugs, Spinner et al. demonstrated the
utility of a fully automated ex vivo DST platform using high-throughput flow cytometry to
identify potential therapeutic drugs for patients with refractory myeloid neoplasms [49].
Drug treated hematopoietic cells were stained with antibodies against CD19, CD3, CD38,
CD33, CD34, CD45, CD14, CD66B and HLA-DR prior to high-throughput, multi-parametric
flow cytometry to analyse blast viability and differentiation. This platform has been val-
idated to generate results within a clinically actionable time frame and could accurately
predict clinical response in vivo [49]. High-throughput flow cytometry has been recently
developed in a 96- or 384-well formats to support HTS. Although flow cytometry provides
multiparametric analysis and identifies populations of cells in a heterogeneous sample, it
has only recently moved into HTS domain. Upgrading existing flow cytometers with HTS
functionalities require both hardware and analytical tools [50]. Using a high-throughput
flow cytometry-based phenotypic differentiation screen against more than 330,000 small
molecules on engineered AML cells, Lewis et al. identified ML390, dihydroorotate dehy-
drogenase inhibitor, as an inducer of AML differentiation [51].

3.2. Data Analysis

To harness the power of high throughput screening, the choice of data analysis meth-
ods and subsequent computational approaches are crucial. Initial analysis with the use of
readout can range from as simple as relative drug inhibition scores or half maximal effective
concentration (EC50) to more complex methods, such as drug sensitivity scoring (DSS).
DSS is a recently developed method to quantitatively score differential drug sensitivity
for individual anti-cancer therapies. This can be widely applied to experimental settings
regardless of technical variability [52]. Compared to IC50 which is a conventional semi-
quantitative parameter to indicate drug response, DSS is a more robust scoring approach
that integrates multiple dose-response relationships in HTS drug testing studies. Ryall
et al. have integrated data from high-throughput drug screening, drug-kinase binding,
and transcriptomics using an algorithm named Kinase Addiction Ranker (KAR) [53]. This
predicts the dependence of cancer cells to kinases by generating lists of kinases correlated to
a specific cellular phenotype i.e., proliferation. KAR has shown that leukemia cells tend to
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be highly reliant on EPHA5, EPHA3 and BTK kinases, to name a few. This allows potential
key cellular targets to be identified and drugged [53].

4. Artificial Intelligence (AI) in Cancer Therapy

AI is poised to disrupt how big data is analysed and will benefit cancer manage-
ment, including new drug discovery, drug repurposing and optimum dose administration
(Figure 2). AI accelerates the process of research, reduces the cost and risk related to clinical
trials, harnesses different assays to match patients and aids personalized cancer ther-
apy [11]. Advanced AI-based machine learning plays a pivotal role in targeting novel drugs
by analysing and integrating multidisciplinary databases including the Cancer Genome
Atlas, DrugBank, PubChem, Protein Data Bank [54]. In addition, AI has successfully pre-
dicted drug behaviour, quantified through IC50 values, by using cell genomic features and
drug chemical properties [55]. Using an algorithm that tests all possible drug combinations
at varying doses, the selection of drug can be made. In each candidate treatment regime, AI
aims to identify the best drugs combination, together with the right doses that will result in
minimum toxicity or adverse events.
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Figure 2. Identification of personalised therapy therapy using artificial intelligence in cancer. Overall
framework for the identification of targeted therapy through network-based machine learning.
Multidisciplinary databases and drug sensitivity testing (in vitro and in vivo) are used as inputs
to train the machine learning model. Parabolic response surface-based map is reproduced with
permission from Dr. Edward Chow [56]. This figure is created in BioRender.com (Available online:
https://biorender.com/, accessed on 25 February 2022).

A number of studies have demonstrated that the new AI technology, quadratic pheno-
typic optimization platform (QPOP), which uses high order polynomial relationships to
model complex biological events is very useful in optimizing drug combination therapy
design by remarkably reducing the number of experiments needed [56,57]. This platform
is able to identify from a pool of possible drug candidates, the drug composition and doses
that collectively mediate the best possible treatment outcomes, without reference to molec-
ular mechanisms or predetermined drug synergy data. QPOP successfully predicted an
optimal salvage regimen for a patient with refractory lymphoma [57]. Using ex-vivo testing
on primary tumor samples followed by QPOP, a highly synergistic interaction between
bortezomib and panobinostat was identified. This led to the prediction that the patient
would respond better to bortezomib and panobinostat combination than other possible

https://biorender.com/


Int. J. Mol. Sci. 2022, 23, 2863 8 of 13

combinations evaluated. After two cycles of bortezomib and panobinostat, the patient
achieved complete remission with no evidence of residual disease [57].

CURATE.AI, an AI-derived, indication-agnostic and mechanism-independent technol-
ogy platform to provide a dynamic dosing optimisation throughout the course of treatment,
has been recently developed based on data collected exclusively from the treated individ-
ual [58]. Its application for a prospective, single-drug optimization was demonstrated in
the management of immunosuppression after liver transplant [59]. Its ability to continually
recalibrate personalised profiles was demonstrated to allow for dynamic dose optimisation
in a metastatic prostate cancer patient [60].

5. A Streamlined Approach of Integrating Genomic Sequencing, HTS-Based DST and
AI Technologies for Personalized Treatment in AML

Precision medicine aims to achieve timely tailored medicine to be administered for
a particular patient [61]. Treatment options for blood cancer patients are increasingly
personalised. In contrast to solid tumors, which requires the expansion of cancer cells
from tumor biopsies, blood cancer cells and corresponding normal cells can be easily
obtained from peripheral blood or bone marrow for patient-specific drug sensitivity and
selectivity screening. PDCs as ex vivo models are advantageous because they can be used
to interrogate the efficacy of therapeutics or genetic vulnerabilities in the HTS format. In
monitoring disease progression, serial sampling can also be advantageous to address real
time changes in disease. HTS can be performed at multiple time points in a relatively short
time frame in blood cancer patients to predict the next line of therapy without delaying
patient treatment.

HTS-based DST has been recently employed to rapidly identify personalized therapies
for blood cancer patients and proved to be clinically implementable [44,49]. Several clinical
trials are currently investigating the diagnostic utility and treatment efficacy of DST- and
genomic-based precision medicine. In the treatment of 9 relapsed/refractory AML patients
based on HTS-based DST, 1 patient achieved complete remission (CR) with minimal
residual disease (MRD), 2 showed complete response with incomplete hematologic recovery
and 6 had reduced blasts in their bone marrow (NCT01872819). There are currently a
number of clinical studies investigating the feasibility of HTS-based DST and genomic data
in developing individualized treatment for relapsed/refractory acute leukemia patients,
multiple myeloma or plasma cell leukemia (NCT03389347 and NCT02551718).

The Beat AML clinical trial (NCT02927106) demonstrated the integrative use of NGS
to assign tailored treatment within 7 days for individual elderly AML patients. This is built
on the largest-to-date dataset that integrates sequencing data (2000 most variably expressed
genes) from 562 patients and DST data (122 small molecule library) from 363 patients. The
dataset encompasses the documentation of clinically relevant gene mutations and allows
the identification of potential therapeutics for AML patients [4]. The results show that
patients who selected assigned treatment had significant improved overall survival versus
those who elected for standard of care treatment. However, the data was not used to stratify
patients and the treatment was limited to pre-determined algorithm according to their
dataset on cytogenetic, molecular alterations and available targeted therapeutics for specific
AML subsets.

Combination therapies are critical to simultaneously target vulnerabilities in a cancer,
and reduce the incidence of therapy resistance. HTS-based DST using PDCs followed
by QPOP and CURATE.AI to identify optimal drug combinations and dosing, together
with incorporating genomic and transcriptomic profiling to the DST to create a functional
taxonomy based on comprehensive drug response and mutation profile will be an impor-
tant next step toward devising new treatment strategies in blood cancer (Figure 3). This
integrative approach will not only advance the understanding of the role of mutational
events and specific gene networks in drug response but will also be key in delivering novel
therapeutics with optimal combination regimens and dosing to patients.
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Figure 3. Personalized medicine strategy to tailor treatments for patients with chemotherapy re-
fractory blood cancer. The platform involves (1) in vitro high throughput screening on primary
cells from patient samples; (2) deep molecular and genomic profiling of the patients samples; (3) in-
tegrating drug sensitivity and sequencing data; (4) optimal drug combination and dosage using
experimental-analytic AI platform. Parabolic response surface-based map is reproduced with per-
mission from Dr. Edward Chow [56]. This figure is created in BioRender.com (Available online:
https://biorender.com/, accessed on 25 February 2022).

6. Conclusions

Advances in high-throughput technologies have had a positive impact on several
facets of personalized medicine in AML and other cancers (Table 1). Several clinical
trials have demonstrated the feasibility of implementing genomic and/or drug sensitivity
profiling to stratify AML patients for personalized medicine without delaying treatment.
However, the utility of these high-throughput technologies for routine clinical use is limited
by a number of obstacles. These include the generation of cost-effective high-throughput
data, easier and standardized data interpretation, faster turnaround time to make timely
clinical decisions, and the need to have a multidisciplinary team. These obstacles can
be overcome, in part by using alternative approaches such as QPOP and CURATE.AI.
As high-throughput technologies continue to be validated and challenges addressed, its
potential to redefine the clinical standards of AML therapy will become evident.

https://biorender.com/
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Table 1. Pre-clinical and clinical studies integrating high throughput technologies in the development
of personalized treatment in AML and other cancers.

Study Name Approaches Cancer Type Outcome Year Reference

Ex vivo drug screening defines
novel drug sensitivity patterns

for informing personalized
therapy in myeloid neoplasms

DST-based HTS MDS

The platform had a positive
predictive value of 0.92, negative

predictive value of 0.82, and
overall accuracy of 0.85.

2020 [49]

Application of an ex-vivo drug
sensitivity platform towards

achieving complete remission in
a refractory T-cell lymphoma

QPOP
Co-clinical trial T-cell lymphoma

Patient achieved CR with an
actionable drug combination
identified within one week of

sample collection

2020 [57]

Ex Vivo Drug Sensitivity Testing
and Mutation Profiling

DST-based HTS
Genome

sequencing

Solid Tumors and
Leukemias Ongoing clinical trial 2019

ClinicalTrials.gov
Identifier:

NCT03860376

Precision medicine treatment in
acute myeloid leukemia using
prospective genomic profiling:

feasibility and preliminary
efficacy of the Beat AML Master

Trial

Genome
sequencing AML

Thirty-day mortality was less
frequent and overall survival was

significantly longer for patients
enrolled on the Beat AML

sub-studies versus those who
elected SOC

2017 [62]

Phenotype-driven precision
oncology as a guide for clinical
decisions one patient at a time

DST-based HTS
Co-clinical trial

head and neck
squamous cell

carcinomas

Can guide real-time therapeutic
decisions 2017 [43]

Beat AML Core Study genome
sequencing AML Not available 2016–2020

ClinicalTrials.gov
Identifier:

NCT02927106

High Throughput Drug
Sensitivity Assay and Genomics-

Guided Treatment of Patients
With Relapsed or Refractory

Acute Leukemia

DST-based HTS
genome

sequencing
AML Ongoing clinical trial 2015

ClinicalTrials.gov
Identifier:

NCT02551718

A distinct glucose metabolism
signature of acute myeloid

leukemia with prognostic value

Metabolomic
profiling with
GC-TOFMS.

AML

Suggests the use of serum
metabolites and metabolic

pathways as prognostic markers
and potential therapeutic targets

for AML

2014 [38]

Global phosphoproteome
analysis of human bone marrow

reveals predictive
phosphorylation markers for the

treatment of acute myeloid
leukemia with quizartinib.

MS based-
phosphoproteome

analysis
AML

A signature consisting of five
phosphorylation sites predicted

the response to quizartinib in
AML patients

2014 [26]

Individualized systems medicine
strategy to tailor treatments for
patients with chemorefractory

acute myeloid leukemia

DST-based HTS
genome

sequencing
Co-clinical trial

AML Can predict clinical responses 2013 [45]

Treatment for
Relapsed/Refractory AML Based

on a High Throughput Drug
Sensitivity Assay

DST-based HTS AML
Total 9 treated patients

1 CR with MRD
2 CRi

2013
ClinicalTrials.gov

Identifier:
NCT01872819

Phosphoproteomic analysis of
leukemia cells under basal and

drug-treated conditions identifies
markers of kinase pathway

activation and mechanisms of
resistance

LC-MS/MS-based
phosphoproteomic

analysis
AML

Provides valuable information to
personalize therapies based on

kinase inhibitors
2012 [29]

DIGE-based proteomic analysis
identifies nucleophosmin/B23

and nucleolin C23 as
over-expressed proteins in
relapsed/refractory acute

leukemia

DIGE-based
proteomic analysis AML

Upregulation of B23 and C23
could be related to resistance of

leukemia
2011 [27]

Identification of prognostic
protein biomarkers in childhood

acute lymphoblastic leukemia
Proteomic analysis AML PCNA as highly predictive of

prednisolone response in patients 2011 [28]
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