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Abstract: Background: For decades, the rate of solving new biomolecular structures has been
exceeding that at which their manual classification and feature characterisation can be carried
out efficiently. Therefore, a new comprehensive and holistic tool for their examination is needed.
Methods: Here we propose the Biological Sequence and Structure Network (BioS2Net), which is a
novel deep neural network architecture that extracts both sequential and structural information of
biomolecules. Our architecture consists of four main parts: (i) a sequence convolutional extractor,
(ii) a 3D structure extractor, (iii) a 3D structure-aware sequence temporal network, as well as (iv) a
fusion and classification network. Results: We have evaluated our approach using two protein fold
classification datasets. BioS2Net achieved a 95.4% mean class accuracy on the eDD dataset and a
76% mean class accuracy on the F184 dataset. The accuracy of BioS2Net obtained on the eDD dataset
was comparable to results achieved by previously published methods, confirming that the algorithm
described in this article is a top-class solution for protein fold recognition. Conclusions: BioS2Net is
a novel tool for the holistic examination of biomolecules of known structure and sequence. It is a
reliable tool for protein analysis and their unified representation as feature vectors.

Keywords: deep neural network; feature vector; protein; protein fold classification

1. Introduction

The era of structural biology began with the application of X-ray crystallography and
nuclear magnetic resonance spectroscopy (NMR) to resolve the structure of biomolecules,
such as nucleic acids and proteins. Recently, another powerful tool has been added to the
arsenal of structural biologists, cryo-electron microscopy (cryo-EM), which has vastly accel-
erated the collection of three-dimensional structures of biomolecules and their complexes,
achieving even atomic-level images of proteins at the resolution of 1.20–1.25 Å [1,2]. The
largest repository of such data is the Protein Data Bank (PDB) [3], which contains proteins
of both known and unknown function. With fast developing methods for resolving protein
structures and rapid increase in the number of protein structures in the PDB, the need for
automatic tools for structural analysis and annotation has also increased. Here, we present
a novel deep learning-based bioinformatic tool called the Biological Sequence and Structure
Network (BioS2Net). BioS2Net is a neural network designed for studying biomolecules of
known structures represented as point clouds, where each point is represented by 3D spatial
coordinates and can hold additional information, such as structural, physicochemical, and
evolutional features.

BioS2Net is composed of four main parts: (i) a sequence convolutional extractor, (ii) a
3D structure extractor, (iii) a 3D structure-aware sequence temporal network, as well as (iv)
a fusion and classification network. Our approach allows the extraction of both structural
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and sequential information embedded in protein point clouds and then merges extracted
information together to deliver robust predictions.

Overall workflow of the BioS2Net is as follows. At first, we run the temporal con-
volutional neural network to extract contextual features for each point of a cloud. Then,
we extract 3D structure information from the input point cloud augmented with features
extracted in the first step. Then, we apply our 3D structure-aware sequence temporal con-
volutional network. We fuse information together to produce a global feature vector, which
is finally used for protein fold classification. It is worth emphasising that each point in the
input of the 3D structure-aware sequence temporal network is aware of its structural and
sequential surroundings, thus significantly leveraging the learning capabilities of BioS2Net
(Figure 1).

Figure 1. Summary of the BioS2Net architecture. Structural data obtained from a PDB-style file
serve as a basis for generation of a protein point cloud. Sequential data is analysed by a sequence
convolutional extractor with five inception modules. After features concatenation with a point
cloud, merged data are interpreted by 3D structure extractor (PointNet++) in a hierarchical way by
running a series of simplified PointNets. From the first set abstraction layer arises the 3D structure-
aware sequence temporal network which takes as an input 512 points with raw features as well
as those learnt by both extractors. It consists of six inception modules, followed by Max Pooling
or Global Average Pooling. From both PointNet++ and the temporal network feature, vectors are
obtained. Finally, a global feature vector is extracted and MLP is used to perform the classification.
For readability, two classification heads, which introduce auxiliary losses, are omitted. Feature
concatenation, which takes place while creating an input to the temporal network, is also not shown.

Recently, a point cloud has drawn a lot of attention as an object representation method
for deep learning [4]. There are many applications that involve neural networks learning
from point clouds, such as (i) 3D shape classification, (ii) 3D object detection, and (iii) 3D
point cloud segmentation, which includes semantic segmentation, instance segmenta-
tion, and part segmentation. To address those problems, several approaches have arisen.
Guo et al. [4] have distinguished four major types of point cloud-centred neural network
architectures: (i) pointwise multilayer perceptron (MLP) networks, (ii) convolutional-based
networks, (iii) graph-based networks, and (iv) data indexing-based networks.

One of the first point cloud and deep learning-based architectures is PointNet [5]. It
takes a set of points from Rn space as input and applies a neural network for 3D classifica-
tion and segmentation. This approach is invariant to the order of points, as well as to linear
transformations, such as rotations and translations.

PointNet learns features by applying MLP to each point. Then, the approach performs
the transformation using the symmetric max pooling function to aggregate information
from each point and obtain a global feature vector. This allows the network to become
invariant to the order of points. Finally, in case of classification problem, the global feature
vector is mapped into output prediction using ordinary MLP layers.

There is a very limited number of papers which take advantage of representing
molecules, such as proteins, as point clouds in the context of neural networks, without
employing points voxelization. DeFever et al. [6] implemented PointNet in the modelling
of molecular structures, although they focused rather on identifying local environments in
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molecular simulations. In the same work, the assessment of protein surface hydrophobicity
was carried out by predicting whether a water molecule was localized in a hydrophobic or
hydrophilic environment and projecting these predictions onto the protein surface.

Another approach based on PointNet was shown by Benhabiles et al. [7], which focuses
on addressing the protein shape indexing problem. The authors used points representing a
protein surface as inputs to the network and applied PointNet solely as a feature vector
extractor. Weights in their PointNet were taken from the model pre-trained on generic,
manmade objects, which share very limited similarity to the structure of protein surfaces.
Additionally, unlike our solution, voxelization on point clouds was applied.

Recently, Toomer [8] applied the deep graph convolutional neural network (GCNN)
to predict protein functional sites, claiming competitive results as compared to other
approaches. However, he used several physicochemical features only to include more
information about the atoms, thus not using the full potential of such an architecture.
A similar solution was implemented by Nguyen et al. [9], where GCNN was used to model
chemical bonds between atoms within chemical compounds and drug candidates, while the
protein was represented as a sequence of amino acids without any additional information.

To summarise our approach in the context of the above-mentioned works, here we
propose a novel deep neural network architecture that extracts both the sequential and
structural information of biomolecules, and we use PointNet++ [10], the successor of
PointNet, as the data representation model for structural analysis.

2. Results
2.1. Classification

The learning capabilities of this network have been verified by predicting protein
folds, based on structural, physicochemical, and evolution-based information. It should be
stressed here that it is not simply yet another approach to solve the protein fold recognition
(PFR) problem [11–16]. The architecture presented in this work is rather a flexible tool for
squeezing sequence- and structure-based data of biological structures into a feature vector
that represents a protein in a reliable way. This can be further used for tasks such as PFR, as
presented in this paper, but BioS2Net might be applied to solve other problems involving
structural and sequential features of biomolecules.

We performed a classification on two widely used datasets: the eDD, consisting of
3397 proteins and 27 folds, and the F184, consisting of 6451 proteins and 184 folds. Our
network achieves 95.4% mean class accuracy for the former and 76% for the latter with a full
model trained on 1024 input points (Figure 2). Moreover, our network is able to properly
classify protein folds even with a very limited number of atoms. Our full model with
256 input points achieves only a 2% accuracy drop on the eDD dataset, while the number
of atoms was reduced four times. This property is highly essential from the perspective of
involving our network in other applications due to the fact that biological structural data
significantly vary in size and quality, so tools for studying them should be invariant to
data incompleteness. Further analysis of the accuracy of our approach with respect to the
number of input atoms is presented in Supplementary Figure S1.

Our full approach, including sequence, structural, as well as temporal networks,
achieves 75.9% on the F184 and 95.4% on the eDD datasets using 1024 points and out-
performs the remaining models on both datasets. To understand the impact of various
elements on the accuracy of our approach, we performed the ablation study and analysed
the mean class accuracy over models with various numbers of sampled points (Table 1).
The most significant part of BioS2Net is the 3D structure-aware sequence temporal network,
followed by the structural extractor, and finally the sequence extractor. When each is
removed from the full model, the accuracy decreases by 7.94%, 3.29%, and 0.58%, respec-
tively (Table 1). This confirms our assumption that sequential analysis of proteins is very
important but misses crucial 3D structure information. Thus, the combination of both
significantly improves recognition capabilities.
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Figure 2. Ablation study on eDD and F184 datasets: mean class accuracy with standard deviation
with regard to the number of sampled points using 20 algorithm executions.

Table 1. Ablation study: mean class accuracy decreases over various models.

Dataset

BioS2Net without: eDD F184 Both

Sequence convolutional extractor −0.65% −0.52% −0.58%
3D structure extractor −1.91% −4.68% −3.29%

3D structure-aware sequence temporal network −2.22% −13.66% −7.94%

The temporal network performs better than PointNet++, which suggests that the
sequential data might be more important than 3D protein structure in protein fold classifi-
cation and/or that PointNet++ is suboptimal for the structural analysis of biomolecules.
However, it is highly important to emphasise that PointNet++ is able to manage unordered
sets of points in contrast to temporal networks. Nonetheless, the full approach combining
the above-mentioned approaches outperforms the mean class accuracy, which confirms the
effectiveness of BioS2Net (for more details, see Supplementary Tables S3 and S4).

We then studied the impact of selected features on the model’s accuracy. Our experi-
mental results confirm that the combination of both structure- and evolution-based features
is crucial to obtain high classification accuracy (Figure 3). Mean top three class accuracy is
provided in Supplementary Figure S2.

Figure 3. Impact of selected features on test accuracy. The number of points in the input are the same
as those from the best full model from the particular dataset (1024 points for each). Mean taken from
the last 20 epochs after the model reached a plateau. Whiskers represent standard deviations of test
accuracy measures.
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2.2. Embedding Protein Structures into R2

In order to better understand what was learnt by our model, we extracted global fea-
ture vectors for proteins from the eDD test set. Then, we applied a T-distributed stochastic
neighbor embedding (t-SNE) approach [17], which is a machine learning algorithm for
dimension reduction and visualization, to present proteins on an R2 plane (Figure 4).

Figure 4. t-SNE embedding of global feature vectors retrieved from test proteins from the eDD
dataset onto an R2 plane. Proteins from the same structural class (such as all α proteins) are shown
with similar colours (panel (C)). Side panels (A,B,D,E) show zoomed proteins from b.47, b.42, b.6,
and c.69 folds, respectively, which are set within dashed rectangles on panel (C). All proteins within
each group were structurally superimposed over one central protein of that group using PyMOL
software [18], which was also used for rendering protein images.

We noticed that after t-SNE proteins with similar structures (belonging to the same
fold) were placed next to each other, while proteins of different structures (belonging to
different folds) were placed far away. We argue that BioS2Net is capable of mapping input
point clouds to feature vectors, which seems to be in accordance with the structural division
of proteins provided by SCOP. Despite the fact that learning was performed to obtain a fold
classification, BioS2Net was able to represent proteins in such a way that feature vectors
from proteins of the same structural class were located near each other. This also suggests
that distinguishing structural classes in SCOP [19] is well-motivated. t-SNE embedding of
the F184 dataset is shown in Supplementary Figure S3.

One can think of this embedding as an alternative or extension of PDB-Explorer [20],
but instead of mapping proteins to shape space, we mapped them to sequence and structure
space. Additionally, in contrast to PDB-Explorer, our approach allows for acquiring more
clustered groups of proteins, which might be more desirable in some cases, such as PFR.

3. Discussion

In this study, we present a novel, extendable and flexible tool for studying biomolecules
with known and well-defined sequences and structures. The idea of representing biological
molecules as points clouds has not been widely exploited until now. There are only a few
references to this approach in the literature in the context of neural networks [8,21] despite
its having enormous potential, especially in cases of extensive and dynamic progress in
point cloud learning [4]. To demonstrate the capabilities of our BioS2Net architecture, we
trained it to recognise protein folds based on point clouds with rich biological information.
Our experiments confirm the discriminative power of our representation and show that it
can represent biomolecules in a reliable manner.
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We argue that our approach could be useful for supporting the manual as well as
automatic classification of newly solved protein structures in the SCOPe database. How-
ever, in this case, one can face the problem of classification to ca. 1200 of folds and ca.
2000 superfamilies. This may be solved by training hierarchical classifiers to properly
predict folds and subsequently superfamilies. We believe that SCOPe may substantially
benefit from our solution since its automatic annotation is mainly based on a simple BLAST
algorithm [22] that is run against the SEQRES-based sequences from SCOP and SCOPe
databases [19]. This approach does not involve any structural information. Additionally, to
maintain a satisfactory level of error rate, rigorous conditions are set (further consideration
is needed only for BLAST alignment with an E value less than 10−4). Moreover, BLAST
is ineffective for domains with low sequence similarity to other proteins in SCOPe but
which have high structural-level similarity. Such an approach causes a huge decrease in
the number of domains being further analysed. In the face of the constantly increasing
number of entries being deposited in PDB and limited human resources, a new approach is
strongly advisable. BioS2Net’s accuracy obtained on the eDD dataset compared to results
achieved by previously published methods indicates that the algorithm described in this
report provides a top-class solution for protein fold recognition (Table 2).

Table 2. Comparison with the different strategies for solving the protein fold recognition problem on
the eDD dataset.

Method Accuracy References

PFPA (2015) 92.6% [23]
ProFold (2016) 93.2% [24]

PHMM-DP (2016) 92.9% [25]
Xia et al. (2017) 94.5% [14]
MV-fold (2019) 94.8% [26]
MT-fold (2019) 97.1% [26]

Refahi et al. (2020) 91.2% [27]
Qin et al. (2021) 93.5% [28]

BioS2Net 95.4% This work

Besides the methods listed in Table 2, the structure alignment methods represented
by DALI and its stand-alone version, DaliLite, enables protein classification based on the
structural similarities between the query structure and the one matched to it from the
database [29]. The performance of the latest DaliLite v.5 is the best among competitors for
protein classification at the fold- and superfamily-level [30]. The protein fold recognition
benchmark has not been performed on DaliLite with the datasets used by us; thus, a
direct comparison of accuracies would be inappropriate. However, together with the
development of the ultra-fast computational method for protein structure search [31],
structure alignment-based methods in the protein fold classification problem will become
more and more accurate and efficient.

Interestingly, after training our model, we recognised pairs of folds classified in SCOPe
as distinct which, according to our output data, could be reclassified as belonging to a
common metagroup (Figure 5). All examples represent overall structural similarities within
the SCOPe class, which is not surprising, because folds categorised in the same class share
secondary structures. The pairs of structures shown in Figure 5 differ in terms of the folding
of backbones, although the overall 3D structures are similar enough to be identified by
BioS2Net as belonging to the same group. Such proteins may fulfil a common function,
for example, providing an interaction surface for other molecules, including proteins. An
example of such structural convergence of the protein surface landscapes has been delivered
by the comparison of small β-barrel SH3 and OB superfolds [32,33]. These structures are
topologically distinct, yet overall 3D structures are close enough to play similar biological
roles in nucleic acid metabolism [34].
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Figure 5. Examples of proteins from two distinct folds sharing a similar overall structure.
Five different examples are shown in panels (A–E). In the middle of every panel, there is a structural
superimposition of two proteins that are displayed on the left and right sides. The fold of every
protein, as well as its stable domain identifier, are provided underneath the rendered images. For
clarity, superimposed proteins are coloured with green and red. All pairs were detected by analysing
t-SNE embedding, as presented in Figure 4.

Sadowski and Taylor reported that some members of distinct SCOP folds share iden-
tical topological descriptions [35]. In this analysis, topologies of protein folds were first
represented as TOPS cartoons [36] and then transformed into topology strings which were
finally clustered. Within clustered domains, there were c.2 and c.23 folds, among others.
Strikingly, our classification made by BioS2Net located some members of c.2 and c.23 folds
very close to each other on the t-SNE embedding. Taking these findings into account, we
assume that additional fine-tuning of the annotation process of newly characterised protein
structures (for instance, adding another meta-classification group) might be beneficial for
the scientific community.

On the other hand, it should be noted that proteins with structurally distinct folds
may be involved in the same biological activity [37]. Thus, although the current protein
fold classification, such as SCOPe, is based on structural features, alternative approaches
should also be considered.

The origin of such approaches may be found in the ideas behind Enzyme Commission
numbers for the classification of enzymes or Gene Ontology. These classifications are made
according to the function of biomolecules regardless of their 3D structures. Although
Petrey and Honig have even suggested the avoidance of protein classification due to the
multifunctionality and structural diversity of proteins [38], a recent report by Fontove and
Del Rio clearly showed that the development of machine learning techniques enables the
integration of structural and functional classifications of proteins [39].

BioS2Net can obviously be generalised and applied to other structured biological
molecules, such as RNAs, peptides, or small chemicals, e.g., potential drugs. In general,
our approach and its components are applicable wherever there is a well-defined sequence
and/or structure. We hypothesise that, using confocal microscopy, one can visualize fluo-
rescently labelled chromosome territories within cell nuclei [40]. Such stacked images can
be represented as a point cloud and be fed into a PointNet-like network. As chromosome
territories tend to be quite stable as well as cell- and tissue-specific [41], it might be useful
to detect specified abnormalities (such as chromosome aberrations) or help to classify cells
as normal or cancer-like [42].

Using BioS2Net, one can map complex, uneven, and comprehensive protein data onto
small, fixed, and concise feature vectors. This information can subsequently be used for
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protein indexing, as shown by Benhabiles et al. [7], or similarity determination, i.e., by
hierarchical clustering.

4. Materials and Methods
4.1. Architecture

Our approach consists of four main elements:

1. Sequence convolutional extractor;
2. 3D structure extractor;
3. 3D structure-aware sequence temporal network;
4. Fusion and classification network.

The first and third elements are temporal networks and they depend on the order of
input points, whereas the second element extracts 3D structural patterns and is invariant
with respect to the order of points. The last element combines the above-mentioned
networks and makes the final prediction.

4.1.1. Sequence Convolutional Extractor

The first part of our architecture is a convolutional extractor, which is designed to
detect and extract sequence-based patterns and assign to each atom its sequential context.
It takes raw point cloud with provided features as input. It is made up of five simplified
1D inception modules [43] with kernel sizes of 1, 3, 5, and 7 to detect patterns of varying
length. The result is then concatenated with the input and together they are used as
an input to the following modules (structure extractor and 3D structure-aware sequence
temporal network).

4.1.2. 3D Structure Extractor

The structural network is based on PointNet++. It is responsible for extracting struc-
tural patterns from the input and for their further mapping to a feature vector by abstracting
selected local regions by their centroids. In our approach, we use three set abstraction
layers, which map input point clouds to a new set of points with fewer elements but each
of higher dimensionality so that each point becomes more general and reflects the wider
structural context.

Each set abstraction layer consists of three sublayers: sampling layer, grouping layer,
and PointNet layer. Having an input point cloud with N points and D associated features
(including coordinates in metric space R3), the sampling layer chooses a subset S out of
N points as centroids. Then, for each centroid, the grouping layer selects K neighbouring
points, resulting in S local regions. The output of this layer is of size S × K × D. Finally,
we use PointNet, which applies MLP to each point in local regions and expands its feature
vector to size F. For each local region, K × 1 max pooling is performed and a tensor S × F
is obtained. This, in turn, results in representing each local region by its centroid. The
last set abstraction layer has only one centroid, thus the output of this layer is a single
1024-dimensional feature vector. For more information, see Supplementary Table S1.

4.1.3. 3D structure-Aware Sequence Temporal Network

The main goal of this component is to process a set of centroids that have merged both
sequential and structural information and map them onto the feature vector. The temporal
network starts from the output of the first set abstraction layer. It takes M centroids
(M = 512 in our experiments) as an input, where each centroid has E associated features:
from raw input and those learnt by sequence and 3D structure extractors. Then, it applies
a series of 1D inception convolutions with a mix of filters of sizes 1, 3, 5, and 7, followed
by 2 × 1 max pooling. The dilation rate is set to 3 to increase the receptive field. After the
last convolutional layer, global average pooling is applied to obtain global feature vector
representation. For more information, see Supplementary Table S2.

The main motivation for using this network is to combine the power of inception
modules and the embedding of rich structural information learnt by PointNet++. Each input
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point of the temporal network contains information about its structural neighbourhood,
as well as information from the atoms, which can be far away in the amino acid sequence.
Therefore, the 3D structure-aware sequence temporal network is an important element of
our approach.

4.1.4. Fusion and Classification Network

At the final stage, the feature vector from the 3D structure extractor and the 3D
structure-aware sequence temporal network are concatenated together as the global feature
vector, which is then used as an input to our dense classification neural network. We use
an auxiliary loss function for the 3D structure extractor and another auxiliary loss function
for the temporal network to stabilize the training procedure. To properly manage updates
of weights during the backpropagation, we use weighted auxiliary losses as follows: 0.5 for
the prediction from the global feature vector, 0.35 for the prediction from the feature vector
learnt by the 3D structure extractor, and 0.15 for the prediction from the feature vector
learnt by the temporal network. See Supplementary Data, Section S1 for more details.

4.1.5. Information Flow

The 3D structure extractor captures the 3D structural patterns of proteins but is invari-
ant with respect to the order of points. Thus, we use the sequence convolution extractor to
provide information about sequence-based patterns to the 3D structure extractor, which
then provides information about 3D structural patterns to the 3D structureaware sequence
temporal network. Finally, we fuse information from the 3D structure extractor and 3D
structure-aware sequence temporal network, which provide complementary information
to each other, to further improve the accuracy and allow network components to focus on
different functions (Figure 1). Note that each architecture element has its advantages, but
also limitations: sequence-based elements focus on sequence-based patterns and ignore
structural information, whereas the structural component focuses on 3D structural pat-
terns and ignores sequence-based information. In the proposed method, we combine the
above-mentioned elements and their advantages to mutually strengthen them and create
the superior classification method.

4.2. Datasetes

We performed protein fold classification based on structural, physicochemical, as well
as evolutionary features. We evaluated our approach on two commonly used protein fold
recognition (PFR) datasets: extended DD (eDD) [44] and F184 [14]. The former comprises
3397 domains from the SCOP 1.75 [19]. Proteins are classified into 27 folds, and each pair
of proteins has less than 40% sequence identity. The latter is derived from SCOPe 2.06 [19].
The dataset contains 6451 domains from 184 folds with less than 25% pairwise sequence
identity. In each group of folds, there are at least 10 proteins.

To test the accuracy of our neural network, we randomly divided each dataset into
non-overlapping train and test sets. The number of proteins in the test set was 20 for
groups with more than 100 proteins, and at least 30% of all proteins in the group have
fewer than 30 observations. Linear and continuous interpolation was applied for the
remaining groups.

There are six main classes of proteins distinguished in the SCOPe database: (a) all
α proteins, (b) all β proteins, (c) α and β proteins a/b, (d) α and β proteins a + b,
(e) multi-domains proteins, and (f) membrane and cell surface proteins and peptides. The
eDD dataset contains proteins from the first four classes, whereas the F184 contains proteins
from all of the above classes. In both datasets, two randomly selected amino acid sequences
have small pairwise sequence identity, which makes the classification problem difficult.

4.3. Features

To provide comprehensive yet possibly minimal information about protein structure,
physicochemical properties, and evolution, we represent each point, corresponding to a
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single atom of carbon, nitrogen, oxygen, and/or sulphur of a given protein, by 53 selected
features. These features represent global (atomic-level) and local (amino acid-level) proper-
ties of proteins; see Table 3.

Table 3. Features assigned to each point in the point cloud.

Index Feature Value Feature Type Feature Level

1 x R Coordinate Atomic
2 y R
3 z R
4 B factor [0, 1] Structural
5 Occupancy [0, 1]

6 Distance from
N-terminus [0, 1]

7 Is α-helix Boolean Amino acids
8 Is β-sheet Boolean
9 Accessible area [0, 1]

10–29 Amino acid Boolean
30 Charge [−1, 1] Physicochemical
31 Polarity [0, 1]
32 Polarizability [0, 1]
33 Hydrophobicity [0, 1]

34–53 PSSM [0, 1] Evolutionary

The features are as follows: three coordinates (x, y, z) in the Euclidean space. The fourth
feature is the B factor, also called the temperature factor, which describes the displacement
of the atomic position from an average position. For protein structures obtained by NMR
or cryo-EM, there is no B factor annotation. Thus, for such structures, we used 0 as a
B factor value to omit this component of the input data. Alternatively, algorithms for
B factor prediction may be used [45,46]. The fifth parameter is the occupancy, which
indicates whether there is an alternative conformation of a given atom. The fourth and
fifth parameters derive from the PDB file and indirectly reflect local flexibility, which can
be conservative within members of similar folds, especially if they are in the hydrophobic
protein core [47].

The sixth attribute reflects the amino acid residue number in the primary structure of
a protein in which the specific atom is located. It is calculated by dividing the atom number
by the total length of a given protein sequence, and its value is in the range [0, 1]. The
distance from the protein’s N-terminus defined in this way might seem to be redundant.
However, small and local subsets of atoms are being selected during the training. Those
atoms can capture structures or motifs which are comprised of amino acids from different
fragments of the polypeptide chain. Thus, information about physical contact of amino
acids or atoms from two distant parts of proteins might be crucial to recognise specific
motifs and structures necessary for classification. Without this feature, our network would
see only a bunch of atoms, which could be anywhere in the structure.

Moreover, we used two indicators describing whether an amino acid belongs to the
α-helix of a β-sheet. We used the DSSP [48] to assess the secondary structure, and to limit
the memory requirements, we divided structural classes from the DSSP into two groups:
(i) 310-helixes, α-helixes, and π-helixes, and (ii) β-sheets and β bridges. We assume that
these two are the most important features after coordinates because they hold almost all the
information about the secondary structure of proteins and are crucial to determine specific
protein folds. The ninth property is the accessible surface area of amino acids calculated
using the DSSP. Twenty consecutive logical features determine which amino acid each
atom belongs to. This input information about amino acid sequence is highly useful for
predicting folds and recognising motifs.

We also provided both physicochemical and evolution-based features proposed for
protein fold recognition (PFR) by Dehzangi et al. [49]. We use the following four physico-
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chemical features: charge (denoted as isoelectric point), polarity [50], polarizability [51], and
hydrophobicity [52]. We also use twenty properties holding evolution-based information
about the domain being learnt. We represent them by means of a position-specific scoring
matrix (PSSM), which is of size L × 20, where L is the length of a given amino acid sequence.
Each ij position of the PSSM specifies how probable is the substitution of the i-th amino
acid in the sequence by the j-th amino acid from the set of 20 basic amino acids. The PSSM
matrices are calculated by the PSI-BLAST algorithm [53] and were taken from Xia et al. [14]
(http://yanglab.nankai.edu.cn/TA-fold/benchmark; accessed on 5 July 2021).

To normalise our data, we centred all proteins from both datasets and measured the
distance of each atom from the origin. Next, we scaled the coordinates of all atoms, so that
95% of them were within a unit sphere. This was due to the fact that some of the proteins
are non-globular and are thus treated as outliers in the dataset. This operation preserved
the scale between any two distinct proteins within the dataset. Additionally, each of the
non-coordinate features listed in Table 3 was normalised to be in the range [0, 1], with the
exception of charge, which was normalised to be in the range [−1, 1].

We performed point cloud augmentation, which comprises random rotation in three
axes by a random angle, random scaling, random translation, and slight point jittering. No
point shuffling in any sequence of points was performed to preserve the order of atoms
from PDB files.

4.4. Calculation of Accuracy

Simple accuracy was calculated as the number of correct classifications divided by
all classifications. Mean class accuracy was an average of simple accuracies for each class.
The latter was used to exclude the impact of unbalanced classes on model accuracy. All
calculations were made only on the test set that was not exposed to the network during
its training at any time. A test accuracy calculation was performed on the last 20 epochs
when the model reached a plateau. This approach enables capture of the variability of the
prediction accuracy on the stable model.

4.5. Computational Resources

Model parameters consumed up to 1 GB depending on the number of included
components. The training was performed on the Entropy computation cluster (Faculty of
Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland) with
the following GPU hardware: RTX 2080 Ti (MSI, Taipei, Taiwan), TITAN V, and TITAN X
(NVIDIA, Santa Clara, CA, USA). The performance of these GPUs was enough to run
the model.

The categorical cross-entropy cost function was minimised by Adam optimiser [54].

5. Conclusions

Here, we described BioS2Net, a novel tool for a holistic examination of biomolecules
of known structure and sequence. We represent biomolecules as point clouds and embed
sequential and structural contexts into each point. The possibility of adding to each point
any feature on any structural level (such as atomic, amino acid, or even whole protein)
makes our network highly extendable. Almost every component of BioS2Net can be run on
its own and achieve sensible results. Moreover, this architecture is invariant with respect to
the incompleteness of input data as well as to their random rotation and translation, as it
learns hierarchically on local regions within the point cloud.

Results obtained in this work show that BioS2Net is a reliable tool for protein analysis
and their unified representation as feature vectors. By comparing them, we also found
potential structural convergence between several pairs of proteins with folds classified to
distinct classes (Figure 5). Our solution might be used for global detection of such cases.

Feature vectors are useful in facing several bioinformatic problems. One of the most
promising applications of BioS2Net is proper and reliable indexing of biomolecules for
their comparison and analysis. For example, it will be possible to search a protein database

http://yanglab.nankai.edu.cn/TA-fold/benchmark
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with a query protein to find its equivalents that have similar features, such as presence
of an intrinsically disordered region or a specific structural motif. Proteins are charac-
terised not only in terms of 3D structure but also by physicochemical and evolutionary
features. Additionally, in many cases, they significantly differ in size. For this reason,
the above-mentioned database search would likely be a computationally intensive task.
The application of BioS2Net for mapping proteins to fixed-size vectors for their further
comparison seems to be an excellent alternative.

Note that this architecture can be easily extended to dense per-point regression and
classification tasks, which could be useful, e.g., for the analysis of binding and interaction
sites. Our approach is an alternative method to existing techniques, which are often based
on atom voxelization, U-Net architecture, and 3D convolutions [21,55]. Notably, it may be
further improved by employing one of the more sophisticated point cloud architectures
reported by Guo et al. [4] or by including more discriminant features indicated in a variety
of PFR-oriented approaches.
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