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Abstract: Hereditary hearing loss (HHL) is a common genetic disorder accounting for at least 60% of
pre-lingual deafness in children, of which 70% is inherited in an autosomal recessive pattern. The
long tradition of consanguinity among the Qatari population has increased the prevalence of HHL,
which negatively impacts the quality of life. Here, we functionally validated the pathogenicity of
the c.178G>C, p.E60Q mutation in the MYO6 gene, which was detected previously in a Qatari HHL
family, using cellular and animal models. In vitro analysis was conducted in HeLa cells transiently
transfected with plasmids carrying MYO6WT or MYO6p.E60Q, and a zebrafish model was generated
to characterize the in vivo phenotype. Cells transfected with MYO6WT showed higher expression of
MYO6 in the plasma membrane and increased ATPase activity. Modeling the human MYO6 variants
in zebrafish resulted in severe otic defects. At 72 h post-injection, MYO6p.E60Q embryos demonstrated
alterations in the sizes of the saccule and utricle. Additionally, zebrafish with MYO6p.E60Q displayed
super-coiled and bent hair bundles in otic hair cells when compared to control and MYO6WT embryos.
In conclusion, our cellular and animal models add support to the in silico prediction that the p.E60Q
missense variant is pathogenic and damaging to the protein. Since the c.178G>C MYO6 variant has a
0.5% allele frequency in the Qatari population, about 400 times higher than in other populations, it
could contribute to explaining the high prevalence of hearing impairment in Qatar.

Keywords: sensorineural hearing loss; MYO6; whole-genome sequencing; zebrafish; hair cells

1. Introduction

Autosomal recessive non-syndromic hearing loss (ARNSHL) accounts for more than
70% of hereditary deafness, with risk alleles traced to more than 65 loci in the human
genome, including multiple sites of myosin-encoding genes [1]. Myosins are a superfamily
of proteins that bind to actin and hydrolyze ATP for energy production. Myosin proteins
are commonly composed of head, neck, and tail domains, which bind to actin and generate
movement via the catalytic activity of the head domain. Members of the myosin superfamily
follow a unified mechanoenzymatic cycle that utilizes hydrolyzed ATP for movement along
actin filaments [2–4]. Briefly, the mechanoenzymatic cycle starts with the strong binding
of actin to myosin to form the actomyosin complex in the absence of ATP. Once the ATP
binds to myosin, this causes the dissociation of actin and the hydrolysis of ATP to ADP and
inorganic phosphate (Pi). Then, actin rebinds to myosin in a weak binding state that causes
a mechanical interaction. Later, the hydrolysis products ADP and Pi are released, resulting
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in conformational changes in the motor domain, which causes myosin to move over the
actin filament [5].

The gene encoding the MYO6 protein is located in the long arm of chromosome
6 (6q14.1) and consists of 35 exons. Mutations in MYO6 are associated with autosomal
recessive (DFNB37) and autosomal dominant (DFNA22) hearing loss [6,7]. More than
19,000 variants have been reported in MYO6; however, only 79 variants are thought to be
pathogenic and associated with deafness or other phenotypes (Deafness Variation Database
(http://deafnessvariationdatabase.org/) (accessed on 3 January 2022). Myosin 6 (MYO6)
is expressed in the inner hair cells of the cochlea and is required to maintain its normal
structure and function [8,9]. MYO6 is a member of unconventional myosins, which are
known to be associated with non-syndromic hearing loss (NSHL) [6,7,10–12]. Strong
evidence has shown that mutations in MYO6 are responsible for causing both autosomal
recessive (DFNB37) and autosomal dominant (DFNA22) forms of NSHL [6,7]. Currently,
the functional characterization of hearing loss mutations is studied in several different
animal models, including Drosophila, mouse, and zebrafish [13–15]. The association of
Myo6 mutations with hearing loss was first characterized in Snell’s waltzer mice [16], where
defects in hearing, as well as some abnormalities in the vascular endothelial cells of the
heart and lung, were detected [14,17].

Since the early 1980s, zebrafish have been described as an excellent model to study
the developmental and genetic features of vertebrates, including the auditory system [18].
The complete genome sequencing of zebrafish revealed that 71% of human genes have at
least one zebrafish ortholog [19], and another highly analogous shared characteristic is the
similarity of the auditory system between humans and zebrafish.

Several previous studies have sought to characterize the role of MYO6 in zebrafish
and its association with different phenotypes, including hair cell development and arterial
morphogenesis [15,20,21]. Because the inner ear of the zebrafish closely resembles the
human ear structure, zebrafish have become an ideal model to study the development
and pathology of the human inner ear [22,23]. The zebrafish inner ear consists of three
semicircular canals that contain one sensory patch in each canal called a crista. The cristae
consist of both sensory epithelial hair cells and supporting cells. Zebrafish inner ears also
contain two additional sensory patches known as maculae and an associated stone-like
structure known as the otolith. These sensory patches function as detectors for both motion
and sound. The lateral line is another sensory organ that contains mechanosensory hair
cells called neuromasts, which are analogous in development and differentiation to the
hair cells of the inner ear [24]. The inner ear is used for the detection of sound and motion,
whilst the lateral line senses water flow over the body’s surface.

In our previous study, we identified several novel variants in patients diagnosed with
autosomal recessive NSHL [25]. These included the missense variant c.178G>C in the
MYO6 gene, which was identified in two affected siblings from a consanguineous Qatari
family. Currently, very few studies have sought to evaluate the pathogenicity of missense
variants identified in the MYO6 gene and their association with hearing loss [8,26,27].
Therefore, in order to validate the predicted pathogenicity of the c.178G>C missense
variant, we utilized several different functional validation strategies, including in vitro, in
silico, and zebrafish models, to characterize in detail the missense variant c.178G>C in the
MYO6 gene and its downstream effects on auditory pathology.

2. Results
2.1. Prevalence of the Novel MYO6 Variant p.E60Q in Qatari Population

As we described previously [25], the novel MYO6 variant is predicted to be pathogenic
and is located near the ATP binding site in the motor domain of the MYO6 protein
(Table 1 and Figure 1B,C). To assess the prevalence of the novel variant p.E60Q within
the Qatari population, we used the genomic sequence of the participants from the Qatar
Genome Program (QGP) dataset [28]. The QGP is a population-level genome project that

http://deafnessvariationdatabase.org/
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aims to sequence all Qatari nationals, with the goal of developing personalized medicine
for the prevention, diagnosis, and treatment of diseases.

Table 1. Pathogenicity and frequencies of p.E60Q MYO6 variant in the Qatari population.

Mutation Prediction Tools Allele Frequencies (%)

MutationTaster 1 1 Qatar Genome Program 0.5
SIFT 2 0.01 GME 7 0.15

Polyphen-2 3 0.994 genomAD—Exomes 0.0012
CADD 4 24.2 genomAD—Genomes [29] 0.0007
PhyloP 5 9.444 ExAC 0.0008

GERP++ 6 5.92 TopMed 0.0015
1 MutationTaster: closer to 1 is more likely to be damaging. 2 SIFT: closer to 0 is more damaging. 3 Polyphen-2: >0.85
is probably damaging, 0.85–0.15 is possibly damaging, and <0.15 is benign. 4 CADD: >10 is predicted to be
deleterious. 5 PhyloP: >0.95 is conserved, and <0.95 is not conserved. 6 GERP++: >0 is generally conserved. 7 The
Greater Middle East (GME) Variome Project [30].

Figure 1. Mutation analysis of c.178G>C MYO6 variant. (A) Sanger sequence of heterozygous and
homozygous missense c.178G>C variant in exon 3 of MYO6. (B) Schematic diagram of myosin
VI protein. (C) MYO6 ontology across multiple species highlighting the conserved E60 residue.

The allele frequency of the c.178G>C variant was determined to be 0.5% in the Qatari
population, which is significantly higher than any other population previously studied
(Table 1). All identified carriers in the QGP dataset of the homozygous missense p.E60Q
variant were subsequently validated by Sanger sequencing (Figure 1A). The phenotype–
genotype correlation shows that <50% of the participants carrying the p.E60Q variant
self-reported that they suffer from hearing difficulties that require the use of a hearing aid.
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2.2. MYO6 Variant Is Predicted to Reduce ATPase Activity by In Silico Protein Modeling

To investigate the impact of the p.E60Q variant on protein structure, we produced a
molecular model of the motor domain region of MYO6 (Figure 2A). The motor domain
of human MYO6 showed that the structure is mainly constructed of α-helices. The core
region of the myosin VI motor provides the site for ATP/ADP binding (Y87, P99, N98, E159,
F163, and Y107). This site was mapped using experimental evidence of myosin VI motor
structures (PDB ID: 2V26, 2VB6, and 2X51), which suggest that a conformational adjustment
in the motor domain is important for actin detachment and the hydrolysis of ATP. Notably,
the location of the p.E60Q mutation is in the vicinity of the ATP site of MYO6. As such,
p.E60Q is predicted to change the negatively charged side chain residue glutamic acid (E)
to the polar residue glutamine (Q) with an amine group at the end, which can impact the
interaction network and thus affect local stability. The identified key contact residues (T88,
Y89, and P125) also appear to act as an interaction bridge between the mutation site and
the nucleotide binding site.

Figure 2. (A) Molecular protein structure of the motor domain of MYO6 showing E60 and the
p.E60Q variant. (B) ATPase activity assay of whole-cell lysates from transfected HeLa cells with
plasmids carrying human MYO6WT and MYO6p.E60Q. Enzyme activity was measured using a mala-
chite green-based colorimetric assay. Values are represented as the mean ± SEM from independent
experiments. Statistically significant differences were assessed by unpaired t-test, * p < 0.05.

We hypothesized that the p.E60Q mutation indirectly affects the ATP binding site
via the inter-linking residues and thus alters the ATPase activity. To confirm this hy-
pothesis, an ATPase activity assay was performed using protein extracts from transfected
HeLa cells with human wild-type (MYO6WT) and mutated (MYO6pE60Q) MYO6. The
MYO6p.E60Q-transfected cells showed a reduction in ATPase activity when compared to
the MYO6WT-transfected cells (p < 0.005) (Figure 2B). This finding supports our molecular
modeling results, which indicated that the missense variant would affect the ATP binding
site of the MYO6 protein.

2.3. MYO6p.E60Q Variant Alters Cellular Protein Trafficking

MYO6 is a cellular protein predominantly expressed in the plasma membrane of most
cell types [31]. Therefore, to investigate the effect of the missense variant (p.E60Q) on
protein trafficking, we utilized plasmids carrying either human MYO6WT or MYO6p.E60Q

to overexpress the proteins in the HeLa cell line. Western blotting of protein extractions
from whole-cell lysate and cell membrane enrichment was performed to confirm the
overexpression and localization of MYO6 in the cellular membrane (Figure 3). When
comparing the MYO6 expression ratio of the membrane protein over the whole-lysate
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protein, MYO6p.E60Q-transfected cells showed a significant reduction in MYO6 protein
compared to MYO6WT-transfected cells (Figure 3A,B). To determine whether there were any
protein trafficking defects, immunofluorescent co-localization of MYO6 with pan-cadherin,
which is a membrane and nuclear marker, was performed (Figure 3C–E). The relative
intensity of MYO6 in both transfected cells (MYO6WT and MYO6p.E60Q) was significantly
higher compared to control cells (Figure 3D), which confirms the overexpression of MYO6.
In comparison, the ratio of MYO6/pan-cadherin was significantly higher in MYO6WT

compared to the control group, whereas there was no significant difference in MYO6p.E60Q

levels (Figure 3E). Together, these results demonstrate that the MYO6p.E60Q variant leads to
a significant alteration in the cellular protein trafficking and localization of MYO6.

Figure 3. Cellular analysis of novel MYO6 variant. (A) Western blot of whole-cell lysates and
membrane proteins from HeLa cells transfected with plasmids carrying human MYO6WT and
MYO6p.E60Q. (B) Quantification ratio of the normalized integrated density of MYO6 expression
from membrane/whole proteins. (C) Representative immunofluorescence staining images of HeLa
cells labeled by MYO6 (red), pan-cadherin (green), and DAPI (blue). (D) Quantification of the relative
fluorescence intensity of MYO6. (E) Quantification of the ratio of the normalized relative fluorescence
intensity of MYO6/pan-cadherin. All values are represented as the mean ± SEM from independent
experiments. Statistically significant differences were assessed by (B) unpaired t-test, * p < 0.05
or (D,E) one-way ANOVA followed by Tukey’s multiple comparisons, * p < 0.05; *** p = 0.0001;
**** p < 0.0001.

2.4. Functional Validation of MYO6 Variant in the Zebrafish Model

To investigate the effect of the human MYO6p.E60Q variant in zebrafish, we analyzed
both morphological and behavioral phenotypes in the zebrafish model system. We gener-
ated a null zebrafish (ZF_myo6a_MO) model and rescued it with co-injections of synthetic
human MYO6 RNA of the wild type (MYO6WT) and the variant (MYO6p.E60Q). The survival
and hatching rates were measured at 24 hpf and 72 hpf, respectively (Figure S1). Although
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no significant differences in the survival rate were observed between the different groups,
there was a delay in the hatching rate of the injected groups when compared to the unin-
jected control group. After 72hpf, the development of the zebrafish inner ear was evaluated
by assessing ear morphology, hair cell structure, and swimming behavior.

2.4.1. Human MYO6p.E60Q Variant Results in Zebrafish Ear Morphological Defects and
Abnormal Inner Ear Hair Cell Development

Measurement of the overall ear capsule perimeter showed no difference in ear size
between the uninjected group and the group rescued with MYO6WT and MYO6p.E60Q

(Figure 4A,D). On the other hand, ZF_myo6a_MO resulted in significantly reduced ear size
compared to the MYO6WT-injected embryos and a reduction in the size of the two otoliths,
the saccule and utricle (Figure 4D), which are responsible for hearing and balance, respec-
tively [32]. MYO6p.E60Q and ZF_myo6a_MO showed a significantly smaller anterior utricle
area in comparison to the MYO6WT group (Figure 4D). Additionally, the posterior saccular
area was reduced significantly in both MYO6p.E60Q and ZF_myo6a_MO in comparison with
MYO6WT.

Figure 4. Detection of ear morphological defects in zebrafish models. (A) Dorsal view of zebrafish at
72 hpf. (B) Lateral view of the posterior otolith at 72 hpf zebrafish (black arrow). (C) Closeup view of
zebrafish ear morphology (black dashed circle). (D) The perimeter length of zebrafish ear, utricle, and
saccule area in µm2. The total number of experiments was 3, and the number of embryos analyzed
was 31, 18, 19, and 36 for control, ZF_myo6a_MO, MYO6WT, and MYO6p.E60Q groups, respectively.
One-way ANOVA using GraphPad Prism software (version 8.0) and Tukey’s multiple comparisons
test with p-values of * p < 0.05, ** p < 0.01, *** p < 0.001.

To examine the hair cell morphology and abundance, we stained the injected 72 hpf ze-
brafish with fluorescent acetylated tubulin to visualize the hair bundles (Figure 5). While the
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hair bundles of the control embryos exhibited a long and straight appearance (Figure 5A),
the hair cells of ZF_myo6a_MO embryos appeared bent, coiled, and shortened (Figure 5B).
Additionally, the hair cells of the MYO6p.E60Q-injected zebrafish were less abundant and
super-coiled compared to the hair cells rescued with the MYO6WT injection (Figure 5C,D).

Figure 5. Inner ear hair cell characterization. Representative image of inner ear hair bundle phenotype
of zebrafish larvae at 72 hpf of (A) Control, (B) ZF_myo6a_MO total knock-out, and the rescue with
(C) wild type MYO6p.E60Q and (D) MYO6p.E60Q mutation. Representative image of inner ear hair
bundle phenotype of zebrafish larvae at 72 hpf. F-actin-rich hair bundles were visualized using
fluorescent acetylated tubulin and visualized using Airyscan confocal microscopy at a magnification
of 100×.

2.4.2. Human MYO6p.E60Q Variant Resulted in Altered Zebrafish Auditory Responses

As myo6a in zebrafish is expressed in the hair cells of the inner ear and lateral line,
we can assess the auditory-sensory behavioral response in zebrafish larvae [33]. Here,
the MYO6p.E60Q embryos demonstrated less locomotive behavior in response to a tapping
stimulus compared to both control and MYO6WT embryos (Figure 6A). In comparison, the
MYO6WT zebrafish showed similar swimming activity to that in the control group. To
rule out the effect of sensory stimuli on zebrafish movement, we measured the swimming
activity in both light and dark conditions without tapping stimuli. No significant changes in
swimming activity behavior were found between the different zebrafish groups examined
(Figure 6B).
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Figure 6. Auditory-sensory behavioral response in zebrafish larvae was examined by assessing
locomotive behavior recorded through the presentation of light–dark cycles over time intervals of
30 min and tapping. The total distance moved by zebrafish larvae was calculated using Ethovision
software (Noldus). (A). Auditory-sensory behavioral response. (B). Visual-sensory behavioral
response. Representative behavior and response activity to auditory-sensory stimuli of zebrafish
groups measuring movements over time for the examined zebrafish groups; movement is shown
by the drawn red lines. The number of experiments n = 4; values represent mean with standard
deviation. Statistical analysis was performed with one-way ANOVA followed by Tukey’s multiple
tests for multiple comparisons, **** p < 0.0001.

3. Discussion

In this study, we identified the carrier frequency and functionally characterized the
pathogenicity of a c.178G>C, pE60Q MYO6 variant that was previously identified in one
Qatari family [25]. Upon screening for the variant in the Qatari population, we found
the carrier frequency of the variant to be 0.5% in the population, which was determined
to be significantly higher than that present in other population-level genetic screening
studies [29,30].

The variant p.E60Q is located in the motor domain of the protein near the ATP binding
site, and our in silico modeling suggested mutation-dependent changes in ATPase activity
(Figure 2A). Our study showed that the p.E60Q variant affects protein trafficking to the
plasmatic membrane and reduces ATPase activity (Figure 2B), suggesting the presence of a
dysfunctional MYO6 protein that might affect anchoring or walking across actin filaments,
causing impaired hair cell function. This result is concordant with the findings of the



Int. J. Mol. Sci. 2022, 23, 3369 9 of 14

studies by Herzano et al. [8], where the p.D179Y variant in a mouse model, located in the
same motor region as p.E60Q, also led to a decrease in steady-state ATPase rates.

Here, the phenotypic effect of the human missense variant c.178G>C MYO6 in ze-
brafish embryos showed auditory dysfunction, including otic morphological defects and
decreased and coiled inner ear hair, in addition to a decreased auditory response in swim-
ming behavior. The analysis of ear and otolith morphology is a distinct characterization
method that is used to screen for any otic defects in zebrafish [34]. In this study, the human
missense variant c.178G>C caused a reduction in the size of the zebrafish saccule when com-
pared to the size in MYO6WT and control groups (Figure 4). Another important finding was
the observation that the hair cells in the inner ear of the mutant embryos were super-coiled
when compared to those of the MYO6WT-injected zebrafish. These findings are similar to
the results of Seiler et al., who concluded that mutations in MYO6 caused irregular and
disorganized hair bundles [15]. Interestingly, the auditory response swimming behavior
assay showed a remarkable defect in fish injected with MYO6p.E60Q in comparison with
MYO6WT and control embryos (Figure 6).

In conclusion, the emergence and application of tools associated with whole-genome
sequencing have led to swift advances in our ability to rapidly identify novel variants
associated with hearing loss in patients. Here, we identified the variant c.178G>C in
MYO6 to be extremely frequent in the Qatari population, with a prevalence of 0.5%, and
subsequently characterized the pathogenicity of the variant using in silico, in vitro, and
an in vivo zebrafish model system by developing a streamlined approach with broad
application for the further evaluation of additionally identified novel genetic variants
affecting the auditory system. Using this system, it was determined that the pE60Q
mutation affects ATP hydrolysis, which alters MYO6 movement across actin filaments,
and triggers altered hair bundle development. Recently, several gene therapy trials have
been conducted that target hair cells of the inner ear with the application of synthetic
adeno-associated virus therapies, with the goal of increasing transduction efficiency and
improving the auditory threshold in treated animals [35,36]. It is envisaged that strategies
aimed at rapid whole-genome sequencing for the identification and characterization of
pathogenic variants, as outlined in this study, in combination with advances in gene therapy
approaches, will allow for the enhanced diagnosis and treatment of patients suffering from
hearing loss in the near future, with the introduction of truly personalized approaches
to therapy.

4. Materials and Methods
4.1. Sanger Sequencing

To verify the missense variant in the Qatari samples, we performed Sanger sequenc-
ing using Applied Biosystem following the manufacturer’s protocol. The following
primers were used to amplify exon 3 of MYO6: 5′-TGCAACCAATTAAGCCCTTCTA-3′

and 5′TGCAAATGTGAGACAACATGGA-3′.

4.2. Cell Culture and In Vitro Analysis

HeLa cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)/high-
glucose medium with 10% fetal bovine serum and supplemented with penicillin–streptomycin–
glutamine. Cells were maintained in a humidified incubator at 37 ◦C and 5% CO2.
Twenty-four hours before transfection, cells were trypsinized and seeded into a 6-well
plate at a density of 3 × 105 cells per well to reach 60–80% confluency. The lipofectamine
2000 reagent protocol (Invitrogen Life Technologies) was used for transfecting cells with
4 µg of DNA plasmid carrying wild type and missense variant.

Total protein was extracted and loaded in SDS-PAGE gels as described previously, and
the membrane was blotted using MYO6 MYO6 (M0691, Sigma-Aldrich, St. Louis, MO, USA)
and (PA5-35054, Thermo Fisher Scientific, Waltham, MA, USA), and monoclonal anti-α-tubulin
(T5168, Sigma-Aldrich) antibodies.
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ATPase assays were performed by using a malachite green-based colorimetric assay
(MAK113, Sigma-Aldrich) according to the manufacturer’s protocol.

4.3. Immunofluorescent Staining, Confocal Microscopy Imaging, and Quantification

Confocal fluorescence images were acquired using the Zeiss LSM 880 Airyscan micro-
scope. For different HeLa cell transfections, immunofluorescent staining was performed
according to Abcam’s protocol. The antibodies used for the staining are: MYO6 (PA5-35054,
Thermo Fisher Scientific), pan-cadherin (CH-19), (ab6528, Abcam, Cambridge, UK), and
Alexa Flour secondary (A-11011 and A-11001 Thermo Fisher Scientific) antibodies. All
prepared slides were analyzed at the same time using the same acquisition parameters.
Quantification of the images was performed using ImageJ.

4.4. Zebrafish Care and Husbandry

As described previously, adult wild-type (AB) zebrafish (Danio rerio) were maintained
under standard environmental conditions: temperature of 28 ◦C, conductivity of 1000 µs,
and pH of 7.0 for 14 h [37]. Zebrafish experiments were approved by the IACUC Office of
Qatar University (QU-IACUC 26-2/2018-REN1).

4.5. Morpholino Design and Synthetic mRNA Injection

The myo6a morpholino (MO, 5′ CACCGGCTTTCCATCGTCCATTTCA 3′, Gene Tools,
Philomath, OR, USA) targeted against the translational start site was injected into embryos
at the one-cell stage to knock down endogenous zebrafish myo6a. MO antisense oligos
were dissolved to a final concentration of 2.0 µM. Injections were performed at the one-cell
stage using PLI-100 Picolitre injector, Harvard Apparatus, as described previously [37].
Embryos at the 1–2-cell stage were injected with 50 ng of ATG morpholinos to knock down
endogenous zebrafish and to generate null zebrafish (ZF_myo6a_MO). The ZF_MYO6_MO
model was rescued with co-injections of synthetic human MYO6 RNA of the wild type
(MYO6WT) and the variant (MYO6p.E60Q).

4.6. Head and Ear Imaging of Zebrafish Larvae

Zebrafish head morphology was examined when they were 3 days old. Images of the
head were captured by Zeiss Lumar 12 stereomicroscope. Zebrafish larvae were mounted
in 3% methylcellulose for stabilization throughout imaging time. The ear, utricle, and
saccule areas were measured using Danioscope software (version 1.1, Noldus, Wageningen,
The Netherlands).

4.7. Zebrafish Staining and Imaging

For zebrafish imaging, fixed whole zebrafish larvae were incubated at 37 ◦C overnight
with blocking and permeabilization solution (1% BSA, 1% FBS, and 0.3% TritonX in PBS).
Later, the larvae were incubated in the dark at 4 ◦C overnight with 1:200 dilution of Alexa
Fluor® 488 acetylated α-tubulin antibody (sc23950, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) in a mix of 1% BSA and 1% FBS solution and DAPI. After raising with PBS, the
larvae were washed 3 times with 15%, 50%, and 75% glycerol for 20 min each. Then, the
larvae were mounted onto dishes with fine glass, and confocal images were taken using
100× water lenses on Zeiss LSM 880 microscope.

4.8. Zebrafish Locomotor Behavior Measurements

The auditory-sensory behavioral response in zebrafish larvae was examined by the
assessment of locomotive behavior through the presentation of light–dark cycles over
time intervals of 30 min and tapping, as described previously [38]. The total distance
moved by zebrafish larvae was calculated using Ethovision software (Noldus, Wageningen,
The Netherlands).
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4.9. Protein Modeling

The 3D structural protein and the mutant were studied using molecular modeling.
The protein coded by the MYO6 gene was constructed from humans (MYO6 UniProt:
Q9UM54). The protein has no available 3D structure from X-ray crystallography or/and
NMR. Therefore, we used structural homologs of myosin 6 motors (PDB ID: 2BKI (Gallus
gallus, 98% identity, Reference [39], and 2V26 (Sus scrofa, 98% identity) [40]) to build
a human MYO6 3D model (residues 1–780). The quality of the modeled structure was
examined as previously described [36,41], which indicates the biological relevance of
the structure. The generated model of the wild type was subsequently used to create a
mutant (p.E60Q in MYO6) in Discovery Studio (Accelrys Inc., San Diego, CA, USA), as
explained previously [42,43], and we also mapped the functional sites (ATP/ADP binding
site), including the key residues. The model representations were produced using pyMOL
software (Schrödinger, NY, USA).

4.10. Statistical Analyses

All statistical analyses and graphs were performed using GraphPad Prism Software
version 9.3.1 (GraphPad, San Diego, CA, USA). All data are presented as the mean ± SEM.
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