
Citation: Zhao, P.; Xu, Z.; Chen, J.;

Ren, Y.; King, I. Single Cell Self-Paced

Clustering with Transcriptome

Sequencing Data. Int. J. Mol. Sci.

2022, 23, 3900. https://doi.org/

10.3390/ijms23073900

Academic Editor: Abdelnaby

Khalyfa

Received: 6 March 2022

Accepted: 29 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Single Cell Self-Paced Clustering with Transcriptome
Sequencing Data
Peng Zhao 1 , Zenglin Xu 2,3,*, Junjie Chen 2, Yazhou Ren 1,4,* and Irwin King 5

1 School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; penn201@std.uestc.edu.cn

2 School of Computer Science and Technology, Harbin Institute of Technology Shenzhen,
Shenzhen 518055, China; junjiechen@hit.edu.cn

3 Center of Artificial Intelligence, Peng Cheng National Lab., Shenzhen 518066, China
4 Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
5 Department of Computer Science and Engineering, Chinese University of Hong Kong,

Hong Kong 999077, China; king@cse.cuhk.edu.hk
* Correspondence: xuzenglin@hit.edu.cn (Z.X.); yazhou.ren@uestc.edu.cn (Y.R.)

Abstract: Single cell RNA sequencing (scRNA-seq) allows researchers to explore tissue heterogeneity,
distinguish unusual cell identities, and find novel cellular subtypes by providing transcriptome
profiling for individual cells. Clustering analysis is usually used to predict cell class assignments
and infer cell identities. However, the performance of existing single-cell clustering methods is
extremely sensitive to the presence of noise data and outliers. Existing clustering algorithms can
easily fall into local optimal solutions. There is still no consensus on the best performing method.
To address this issue, we introduce a single cell self-paced clustering (scSPaC) method with F-norm
based nonnegative matrix factorization (NMF) for scRNA-seq data and a sparse single cell self-paced
clustering (sscSPaC) method with l21-norm based nonnegative matrix factorization for scRNA-seq
data. We gradually add single cells from simple to complex to our model until all cells are selected.
In this way, the influences of noisy data and outliers can be significantly reduced. The proposed
method achieved the best performance on both simulation data and real scRNA-seq data. A case
study about human clara cells and ependymal cells scRNA-seq data clustering shows that scSPaC is
more advantageous near the clustering dividing line.

Keywords: sequencing data; scRNA-seq; clustering; self-paced learning; nonnegative matrix factorization

1. Introduction

Single cell RNA sequencing (scRNA-seq) is a powerful new approach for studying
the transcriptomes of cell lines, tissues, tumors and disease states. The use of scRNA-seq
has already yielded key biological insights and discoveries, such as a better knowledge of
cancer tumor heterogeneity [1]. In recent years, advances in scRNA-seq have promoted
the study of computational methods for analyzing transcriptome data from single cells.
Since the information about sequential cells is only partial, cluster analysis is usually used
to discover cell subtypes or to distinguish and better characterize known cell subtypes [2].
However, the analysis methods are typically complex, and the user is often simply given a
visual representation of the data with no assessment of the robustness of the groupings.

Unlike bulk RNA-seq data, single cell RNA-seq data are more sparse and have a high
dropout rate, which makes clustering very challenging. Recently, several methods and
tools have been developed for single cell RNA-seq clustering. K-means is used in several
approaches for evaluating scRNA-seq data. In rounds of grouping single cells, single cell
analysis via iterative clustering (SAIC) [3] combines K-means and analysis of variance,
followed by signature gene identification. Single cell clustering using bifurcation analysis
(SCUBA) [4] divides cells into two groups at each time point using K-means, and then
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utilizes gap statistics to locate bifurcation occurrences. The method in [5] uses non-negative
matrix factorization to incorporate information from a larger annotated dataset and then
applies transfer learning to perform the clustering. Clustering through imputation and
dimensionality reduction (CIDR) uses hierarchical clustering to do data imputation before
clustering a principal component analysis (PCA)-reduced representation [6]. Semisoft
clustering with pure cells (SOUP) can handle both pure and transitional cells and computes
soft cluster memberships using the expression similarity matrix [7]. Maaten et al. [8]
introduced a novel embedding algorithm named the t-distributed stochastic neighbor
embedding (t-SNE) algorithm. The t-SNE is a dimensionality reduction method that
may also be used to classify single cells. The spectral clustering (SC) algorithm finds a
low-dimensional embedding of data by calculating the eigenvectors of the constructed
Laplacian matrix [9] and is one of the most widely used algorithms for data clustering.
Hu et al. [10] proposed a new low-rank matrix factorization model for scRNA-seq data
clustering based on sparse optimization. Wang et al. [11] developed a novel single cell
interpretation via multi-kernel learning (SIMLR) method to construct the similarity matrix
by fusing multiple Gaussian kernel functions, and it clusters the single cells by applying
the spectral clustering algorithm to the similarity matrix. To characterize the sparsity
of scRNA-seq data, Part et al. [12] improved the SIMLR method by integrating doubly
stochastic affinity matrices and sparse structure constraints to cluster single cells.

Self-paced learning (SPL) [13] is a novel machine learning framework that has recently
gained a lot of interest. The concept is based on the principle that individuals learn better
when they begin with simple knowledge and work their way up to more complicated
knowledge. Bengio et al. presented curriculum learning to define this method in machine
learning (CL) [14]. After that, Kumar et al. [13] suggested using SPL for curriculum
design purposes by including an SPL regularization term in the objective function. The
learning difficulty of the instances (either simple or complex) depends on the loss of the
current parameter values. The capacity of SPL to avoid undesirable local minima and so
have superior generalization ability has been empirically shown [13,15–18]. The authors
of [19] used SPL to solve non-convex problems caused by feature destruction techniques.
Traditional clustering algorithms are either easily caught in local optima or susceptible to
outliers and noisy data [20–23]. Ren et al. [22] proposed a unique self-paced multi-task
clustering (SPMTC) method to address these issues in multi-task clustering. Yu et al. [23]
offered a self-paced, learning-based K-means clustering method. To deal with the non-
convex problem in multi-view clustering, DSMVC [24] uses self-paced learning. Therefore,
SPL is often used to find better solutions for non-convex problems.

Due to the non-convexity of nonnegative matrix factorization (NMF) models for
scRNA-seq clustering, these models easily obtain a bad local solution. In this study, we
introduce a single cell self-paced clustering (scSPaC) model and a sparse (l21-norm based)
single cell self-paced clustering (sscSPaC) model. Specifically, single cells are gradually
incorporated into the NMF process from simple to complex, which draws on the advantages
of SPL and has been shown to help models avoid falling into local minima. In our other
model, i.e., sscSPaC, l2,1-norm is used, which reduces the effects of noise and outliers. In
order to verify the effectiveness of the introduced methods, we conducted comparative
experiments on simulation data and real scRNA-seq data. The workflow of this study is
shown in Figure 1, including data preprocessing, clustering and visualization.
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Figure 1. Workflow for single cell self-paced clustering (scSPaC) and sparse single cell self-paced
clustering (sscSPaC), which included data preprocessing, clustering and visualization. The pentagram
in the figure represents the cluster center. The number of clusters is searched within a reasonable
range (determined by an existing tool, SCANPY), and we discuss the impact of the cluster number
on model performance in Section 3.3.

2. Materials and Methods
2.1. Datasets

To illustrate the efficacy of the two novel scRNA-seq clustering algorithms in further
detail, on simulated and real single cell data, we compared the performances of these two
clustering algorithms and baselines. We generated simulated data to evaluate the clustering
performance of scSPaC. Splatter [25], a tool commonly used to generate scRNA-seq data,
was utilized to generate the experimental data. Simulation data were obtained from two
classes with 100 single cells per class. Each cell contains 22,002 genes. The real datasets are
described in the following: baron [26], kolodziejczyk [27], pollen [28], rca [29], goolam [30],
zeisel [31], and cell lines [32], which includes a mixture of 1047 cultured human BJ, H1,
K562 and GM12878 cells. The statistical information of all datasets used in this study is
shown in Table 1. The datasets contain 2–14 cell types, and the number of cells in each
dataset ranges from 124 to 3500. The number of genes in each of these datasets exceeds
10,000. The maximum is 32,316 genes.

Table 1. A summary of the scRNA-seq datasets used in this study.

Datasets # Clusters # Cells # Genes Cluster Size Reference

simulated data 2 200 22,002 100 + 100 Splatter [25]

baron 14 1937 20,125
110 + 51 + 236 + 872 + 214

+120 + 130 + 13 + 70
+14 + 8 + 92 + 5 + 2

GSE84133 [26]

kolodziejczyk 3 704 32,316 295 + 159 + 250 E−MTAB−2600 [27]

pollen 11 301 20,367
22 + 17 + 37 + 26
+8 + 16 + 54 + 42
+40 + 15 + 24

SRP041736 [28]

rca 7 561 20,949
74 + 55 + 165 + 96
+51 + 47 + 73 GSE81861 [29]

goolam 5 124 26,670 6 + 16 + 6 + 64 + 32 E−MTAB−3321 [30]

zeisel 9 3005 13,845
198 + 948 + 175 + 26 + 290

+98 + 60 + 820 + 390 GSE60361 [31]

cell lines 4 1047 18,666 325 + 203 + 381 + 138 GSE126074 [32]
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2.2. Data Preprocessing

Raw scRAN-seq read count data are sparse and high-dimensional, which makes
further subsequent statistical analysis challenging [33]. Therefore, we needed to pre-
process the raw matrix data. The raw data were pre-processed by the Python package
Scanpy [34] as follows:

Step 1: Genes with no count in any cell were filtered out.
Step 2: We filtered genes that were not expressed in almost all cells.
Step 3: The top N high variable genes (HVGs) were selected. One thousand highly

variable genes were selected by default. In Section 3.2. We discuss the influence
of different N values for the experimental accuracy.

Step 4: The last step was to take the log transform and scale of the read counts, so that
count values follow unit variance and zero mean.

The pre-processed read count matrix was treated as the input for our scSPaC model
and the other algorithms.

2.3. scSPaC Model

Consider a log-transformed count matrix X = [x1, x2, · · · , xn] ∈ Rm×n, where n is the
number of cells and m is the number of genes. Nonnegative matrix factorization (NMF) [35]
aims to find two nonnegative matrices U ∈ Rm×r and V ∈ Rr×n, which minimizes the
following objective function:

J1 = ‖X−UVT‖p

s.t. U ≥ 0, V ≥ 0,
(1)

where ‖ · ‖p is p-norm. Xij in X denotes the gene expression of the i-th gene in the j-th cell.
V can be regarded as the new representation of the original data with respect to the new
basis U. r represents the components of U and V. Lee et al. [35] proposed an algorithm
for iteratively updating U and V to optimize the objective (Equation (1)). It adopts the
Frobenius norm (F-norm) NMF model, which is sensitive to noisy data [36,37]. Recently,
the authors of [36] proposed robust NMF methods with l2,1-norm. Compared with the
F-norm NMF, the l2,1-norm NMF is robust to noisy data, since the non-squared residuals
{‖xi −Uvi‖2}|ni=1 reduce the effects of outliers [36].

To mitigate the tendency of NMF model to fall into a local optimum solution, we
introduce a SPL regularization term to NMF model for scRNA-seq clustering.

min
U,V,w

‖diag(w)(X−UVT)‖p + f (λ, w)

s.t. U ≥ 0, V ≥ 0, w ∈ [0, 1]n,
(2)

where diag(w) denotes a diagonal matrix with the i-th diagonal element being wi. One of
the simple regular functions f (λ, w) is shown in Equation (3). Kumar et al. [13] proposed
to let w ∈ {0, 1} and define f (λ, w) as

f (λ, w) = −λ
n

∑
i=1

wi, (3)

Then, the optimal w∗ can be calculated by

w∗i =

{
1, if li < λ
0, otherwise

. (4)

Since wi (i = 1, . . . , n) is either 1 or 0, the strategy mentioned above can be treated
as hard weighting. λ > 0 is initially tuned to a small value such that the single cells with
small loss values can be selected to clustering model. With the increasing of λ, more and
more cells will be selected until all cells are chosen.
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In Equation (2), if the p-norm is specific to the F-norm, we name the single cell clustering
model scSPaC. This strategy has been successfully applied in the field of face recognition [38].
If the p-norm is specific to the sparse l2,1-norm, the model is named sscSPaC.

The core idea of scSPaC and sscSPaC introduced in this work is to gradually select
cells for decomposition from simple to complex.

Reference [39] proposed that Equation (2) with l2,1-norm can be written as follows in
simple algebra.

min
U,V,w

Tr
((

X−UVT
)

W
(

X−UVT
)T
)
+ f (λ, w)

s.t. U ≥ 0, V ≥ 0, VTV = I, w ∈ [0, 1]n,
(5)

where W is a diagonal matrix and Wii = wi.

2.4. Optimization

We utilize an iterative updating algorithm to solve the optimization problem of scSPaC
and sscSPaC. Specifically, we iteratively optimize each variable in the objective function
while fixing the other variables.

Step 1: Fix w, update U and V.

When we fix w, f (λ, w) in Equation (2) is a constant. Solving Equation (2) is equivalent
to solving the original NMF model Equation (1). Thus, we can update the model parameters
U and V iteratively.

(a) Update U and V for the scSPaC model.
For Equation (1), Lee et al. [35] proposes an algorithm for iteratively updating U and

V to optimize the objective.

U(a)
ij ← Uij

(XV)ij

(UVTV)ij
, (6)

V(a)
ij ← Vij

(XTU)ij

(VUTU)ij
. (7)

(b) Update U and V for the sscSPaC model.
For Equation (5), we propose update rules for U and V as follows [39]:

U(b)
ij ← Uij

√
(XWV)ij

(UVTWV)ij
, (8)

V(b)
ij ← Vij

√√√√ (WXTU)ij

(WVVTXTU)ij
. (9)

Step 2: Fix U and V, update w.

With the fixed parameters U and V, the weight matrix diag(w) is updated by

w∗ = arg min
n

∑
i=1

wili + f (λ, w), (10)

where the loss function li = ‖xi −Uvi‖2 in Equation (2) is a constant. We can observe from
Equation (3) that SPL chooses single cells based on their loss values and a parameter λ.

We consider assigning weights and gradually choosing single cells from simple to
complex. For the single cell clustering problem, we define a new method for computing
the hard and easy samples in self-paced learning. We define this single cell close to its own
clustering center (i.e., far from other clustering centers) as a single cell that is easy to cluster
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and will be preferentially selected for the clustering model. We chose to utilize a new SPL
regularization term.

The regularization term is defined as

f (λ, w) = −
n

∑
i=1

ζ ln(wi + ζ/λ), (11)

and the optimal w∗ is computed by

w∗i =


1, if li ≤ ζλ/(ζ + λ)
0, if li ≥ λ
ζ/li − ζ/λ, otherwise

. (12)

Equation (12) is a soft weighting strategy. According to [40], Equation (12) is also
called mixture weighting. We set ζ = 0.5× λ for simplicity in our experiments.

Now, we have all the update rules done. We optimize the model in an iterative way;
i.e., steps 1 and 2 are iteratively repeated until the model convergence. We increase λ to
select more single cells to the factorization process. Specifically, we initialize λ such that
more than half (the default value is sixty percent) the cells are picked in the first iteration.
In the following iteration, λ is increased such that 10% more cells can be added. As a
consequence, λ is automatically determined. The model repeats until all the single cells
are chosen. Finally, K-means clustering is applied to the matrix V after iteration, and the
clustering results of scRNA-seq data are obtained. The clustering results will be evaluated
and analyzed in the experimental section.

2.5. Evaluation Metrics

All clustering results are measured by adjusted rand index (ARI), purity and nor-
malized mutual information (NMI). These cluster evaluation indicators will be briefly
introduced here.

2.5.1. ARI

Rand index (RI) [41] is a measure of similarity between two clusters. We can use it to
compare actual class labels C and predicted cluster labels Y to evaluate the performance
of a clustering algorithm. The adjusted rand index (ARI), described in formula (13), is the
corrected-for-chance version of the rand index [42].

ARI(C, Y) =
∑ij (

nij
2 )− [∑i (

ai
2 )∑j (

bj
2 )]/(

N
2 )

1
2 [∑i (

ai
2 ) + ∑j (

bj
2 )]− [∑i (

ai
2 )∑j (

bj
2 )]/(

N
2 )

. (13)

Here, N represents the number of all cells. nij represents the number of cells that
are in class i after clustering and should actually be in class j. ai denotes the logarithm of
elements of the same cluster in both clusters C and true classes Y. bj denotes the logarithm
of elements of different clusters in both clusters C and true classes Y. (m

k ) is standard
m-choose-k notation. ARI ranges from −1 to 1. Perfect labeling is scored 1; bad clustering
has negative or close to 0 scores. A larger value means that the clustering results match the
real cell types better.

2.5.2. Purity

Purity [43] is quite simple to calculate. It is applied to measure the extent to which
each cluster contains data instances from primarily one class. The purity of a clustering
result is computed by the weighted sum of each cluster purity values and can be defined
as follows:

Purity(C, Y) =
1
N ∑

k
max

j

∣∣∣ck
⋂

yj

∣∣∣, (14)
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where C = {c1, c2, ...cK} represent K different clusters, and Y =
{

y1, y2, ..., yJ
}

represent
J different true classes. For Purity ∈ [0, 1], the higher the value, the better the clustering
result.

2.5.3. NMI

Normalized mutual information (NMI) [44] measures the amount of information ob-
tained about one partition through observing the other partition, ignoring the permutations:

NMI(C, Y) =
2I(C, Y)

[H(C) + H(Y)]
, (15)

where H(.) is the entropy, and I(Y, C) measures the mutual information between Y and C.

3. Results and Discussion
3.1. Experimental Performance on All Datasets

The recently published benchmark article, Qi et al. [45], tested five representative
clustering methods (SC3, SNN-Cliq, SINCERA, SEURAT, and pcaReduce) of the most
advanced scRNA-seq tools and showed that SC3 had the highest clustering accuracy under
default parameters. Seurat performed well in the mixture control experiment reported by
the recently published benchmark article [46]. Scanpy is a widely used python package
for single cell analysis [47]. Therefore, we only compared our scSPaC and sscSPaC with
SC3, Scanpy and Seurat, three basic NMF models; and the K-means method. To ensure
that comparisons between algorithms were based on the same criteria, we used the same
gene-filtering and normalization steps for all these algorithms. The main steps of data
preprocessing are shown in Section 2.2.

To evaluate the performances of the proposed scSPaC and sscSPaC, we compared
them with several closely related nonnegative matrix factorization (NMF) methods and
scRNA-seq clustering tools:

1. K-means [48], the classical K-means algorithm.
2. NMF [35], the standard NMF clustering with Frobenius norm (F-norm).
3. ONMF [49], the orthogonal NMF for clustering.
4. l2,1-NMF [36], the sparse NMF clustering with l2,1-norm.
5. Scanpy [34] is a Python-based toolkit for analyzing single cell gene expression data.

Scanpy was downloaded from https://github.com/theislab/scanpy (accessed on 3
March 2022). It includes clustering and is used as the comparison algorithm in the
experiment. We ran Scanpy with default parameters, for example, n_neighbors = 20
and resolution = 1.0.

6. Seurat3 [50] is a graph-based clustering tool. For all datasets, Seurat was performed
with default parameters and downloaded from https://github.com/satijalab/seurat
(accessed on 3 March 2022). We set the number of neighbors to 20 and the cluster
resolution to 0.8, and used the ScoreJackStraw() function and 0.05 (the bound of
P-value) to determine the number of principal components.

7. SC3 [51] is a single cell cluster tool combining multiple clustering solutions through a
consensus approach. SC3 was downloaded from https://github.com/hemberg-lab/SC3
(accessed on 3 March 2022) and ran with default parameters. For example, gene_ f ilter =
FALSE, pct_dropout_min = 10, pct_dropout_max = 9, d_region_min = 0.0 and
d_region_max = 0.07.

In scSPaC and sscSPaC, there are several parameters to be set, such as the top N HVGs,
the number of reduced dimensions r (the components in NMF), the number of clusters
K and the SPL parameters ζ and λ. In our experiment, we selected the top 1000 highly
variable genes by default to conduct clustering analysis. In Section 3.2, we discuss the
impact of high variable gene numbers on clustering performance in detail. Considering
that HVGs are chosen to reduce the dimensionality of the genes in this study, the effects
of the components in NMF on the results are not discussed in this study. The number

https://github.com/theislab/scanpy
https://github.com/satijalab/seurat
https://github.com/hemberg-lab/SC3
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of real cell classes in the dataset was used uniformly as the component dimension r of
NMF. In Section 3.3, we discuss the impact of number of clusters on the results of the
proposed scSPaC in this work. We use adjusted rand index (ARI), purity and normalized
mutual information (NMI) in Section 2.5 to evaluate the clustering results. The results of all
experiments are the means and standard deviations calculated from 20 repetitions.

Table 2 shows the clustering results on simulated datasets. For the simulation data,
our method achieved the highest purity, indicating that the cells can be well clustered into
some higher purity classes. For ARI and NMI, we also achieved the highest performance.
SC3 is a very competitive approach, having the best clustering performance among the
baseline algorithms.

Table 2. Evaluation of clustering performance on simulated data. The highest score for each dataset is
shown in bold and the second best score is underlined. The values in the table represent the (mean± std).

Datasets ARI Purity NMI

K-means 0.45 ± 0.93 52.45 ± 2.96 0.89 ± 1.07
NMF 9.92 ± 9.72 64.03 ± 7.78 8.20 ± 7.30

ONMF 0.47 ± 1.01 52.50 ± 3.00 1.00 ± 1.27
l2,1-NMF 0.64 ± 0.93 53.78 ± 2.74 1.29 ± 1.18

Seurat 0.00 ± 0.00 54.83 ± 0.06 0.10 ± 0.01
Scanpy 0.20 ± 0.00 57.52 ± 0.08 3.67 ± 0.13

SC3 10.79 ± 0.95 63.68 ± 5.72 9.26 ± 1.09

scSPaC 26.69 ± 15.44 74.35 ± 9.11 22.02 ± 12.16
sscSPaC 10.89 ± 10.40 64.70 ± 8.01 10.47 ± 8.67

We tested the results of our two methods, scSPaC and sscSPaC against the seven
benchmark methods on seven real scRNA-seq datasets. Clustering results for ARI on real
scRNA-seq data are shown in Table 3 and Figure 2. On most of the test datasets, we had a
3–4% improvement in ARI. In the zeisel dataset, we had close to 15 point improvements in
our evaluation metrics, which shows that our proposed algorithm works well on large-scale
datasets. Although SC3 was a very competitive method on both pollen and rca datasets.
Our sscSPaC model achieved the second best clustering performance. The results of the
other two evaluation indicators purity and NMI are shown in Tables 4 and 5. It can also be
confirmed from the tables that our method achieved the best or second best results in most
cases compared with the comparison methods.

baron goolam kolodziejczyk pollen rca zeisel cell_line

Datasets

0

0.2

0.4

0.6

0.8

1

A
R

I

K-means NMF ONMF l21-NMF Seurat Scanpy SC3 scSPaC sscSPaC

Figure 2. ARI for all test datasets in this study. Bar: average ARI; Errbar: standard deviation of ARI
values for 20 runs.
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Table 3. Clustering results for ARI on real scRNA-seq data. The highest score for each dataset is
shown in bold and the second best score is underlined. scSPaC and sscSPaC are based on the F-norm
and l2,1-norm NMF with a self-paced learning single cell selection strategy.

Datasets Baron Goolam Kolodziejczyk Pollen Rca Zeisel Cell Line

K-means 35.96 ± 4.44 15.73 ± 3.83 28.56 ± 15.33 62.55 ± 10.25 3.00 ± 0.22 10.12 ± 3.02 81.46 ± 4.36
NMF 49.73 ± 9.03 13.26 ± 6.60 37.38 ± 6.56 79.39 ± 4.88 11.33 ± 0.61 24.21 ± 2.96 79.85 ± 1.98

ONMF 50.03 ± 11.03 22.16 ± 4.48 40.73 ± 3.26 77.50 ± 4.51 6.83 ± 0.23 24.54 ± 4.89 80.29 ± 3.75
l2,1-NMF 43.21 ± 4.16 33.61 ± 5.34 39.48 ± 2.23 76.66 ± 4.92 7.70 ± 0.98 35.83 ± 4.17 82.53 ± 4.26

Seurat 61.82 ± 0.18 47.63 ± 0.08 50.97 ± 0.82 81.82 ± 0.12 52.41 ± 0.08 52.73 ± 0.82 69.73 ± 0.12
Scanpy 74.91 ± 0.24 54.25 ± 0.16 45.37 ± 1.22 84.91 ± 0.10 54.5 ± 0.16 48.46 ± 0.92 82.61 ± 0.10

SC3 79.62 ± 3.44 57.52 ± 2.38 47.57 ± 3.64 91.62 ± 3.93 59.8 ± 3.30 49.78 ± 2.88 88.36 ± 5.14

scSPaC 83.57 ± 8.00 58.43 ± 4.78 48.90 ± 2.55 88.16 ± 3.73 57.02 ± 1.75 62.57 ± 3.39 91.71 ± 3.68
sscSPaC 78.84 ± 2.70 60.6 ± 4.97 51.48 ± 2.52 89.27 ± 5.40 58.49 ± 3.59 64.75 ± 2.09 90.37 ± 5.09

Table 4. Clustering results for purity on real scRNA-seq data. The highest score for each dataset is
shown in bold and the second best score is underlined.

Datasets Baron Goolam Kolodziejczyk Pollen Rca Zeisel Cell Line

K-means 71.95 ± 2.18 57.66 ± 2.82 62.66 ± 9.25 77.54 ± 7.79 30.42 ± 0.19 49.57 ± 2.75 86.43 ± 0.12
NMF 82.56 ± 2.85 59.23 ± 2.79 68.27 ± 3.31 90.02 ± 3.18 31.37 ± 0.54 60.69 ± 2.46 81.74 ± 0.1

ONMF 80.92 ± 4.01 59.23 ± 1.95 69.49 ± 1.4 88.34 ± 3.8 31.01 ± 0.4 58.34 ± 2.26 82.18 ± 0.01
l2,1-NMF 92.35 ± 1.47 70.85 ± 4.16 69.22 ± 0.94 91.01 ± 1.74 32.07 ± 1.13 66.3 ± 2.64 87.81 ± 0.1

Seurat 86.15 ± 0.26 72.18 ± 0.04 81.36 ± 0.02 86.15 ± 0.17 72.91 ± 0.01 51.99 ± 0.02 79.52 ± 0.04
Scanpy 87.89 ± 0.06 75.63 ± 0.64 76.44 ± 0.1 93.69 ± 0.06 78.59 ± 0.64 50.68 ± 0.1 88.41 ± 0.03

SC3 90.72 ± 2.28 76.59 ± 2.76 78.13 ± 3.51 94.95 ± 2.76 86.83 ± 1.08 78.14 ± 3.01 92.75 ± 0.09

scSPaC 93.26 ± 2.42 78.39 ± 1.88 79.03 ± 3.48 96.21 ± 2.05 83.22 ± 2.07 89.05 ± 1.91 93.94 ± 1.58
sscSPaC 92.94 ± 1.39 83.14 ± 3.7 81.85 ± 4.16 95.83 ± 4.08 84.85 ± 1.92 87.81 ± 2.28 93.18 ± 1.45

Table 5. Clustering results for NMI on real scRNA-seq data. The highest score for each dataset is
shown in bold and the second best score is underlined.

Datasets Baron Goolam Kolodziejczyk Pollen Rca Zeisel Cell Line

K-means 42.77 ± 3.74 20.2 ± 5.43 32.85 ± 16.3 80.57 ± 6.05 1.39 ± 0.19 19.15 ± 3.56 79.47 ± 2.39
NMF 62.11 ± 4.29 17.34 ± 6.42 42.43 ± 5.59 91.09 ± 2.4 2.62 ± 0.72 35.53 ± 2.22 80.81 ± 3.73

ONMF 60.77 ± 4.89 16.07 ± 3.87 44.33 ± 2.65 89.94 ± 2.84 2.15 ± 0.5 33.48 ± 2.86 80.45 ± 2.11
l2,1-NMF 64.75 ± 1.93 51.95 ± 4.02 44.15 ± 1.78 91.61 ± 1.80 5.98 ± 1.38 38.76 ± 2.34 84.86 ± 2.91

Seurat 61.57 ± 0.23 43.23 ± 0.07 51.54 ± 0.02 86.11 ± 0.07 38.92 ± 0.04 52.03 ± 0.02 63.62 ± 0.07
Scanpy 73.98 ± 0.22 54.9 ± 0.07 49.56 ± 0.03 89.33 ± 0.12 36.02 ± 0.03 44.25 ± 0.03 80.46 ± 0.12

SC3 80.23 ± 2.72 56.59 ± 3.13 52.67 ± 6.64 91.25 ± 3.4 52.63 ± 3.57 50.01 ± 4.28 82.75 ± 3.14

scSPaC 79.82 ± 3.48 59.02 ± 5.48 53.69 ± 3.35 89.09 ± 1.86 51.70 ± 0.41 63.97 ± 2.12 89.96 ± 4.51
sscSPaC 81.94 ± 2.63 58.48 ± 3.78 56.81 ± 4.24 91.42 ± 5.13 54.96 ± 4.14 63.41 ± 2.68 87.23 ± 3.37

3.2. Different Numbers of Variable Genes Were Selected for Comparison

To do clustering analysis, we chose the top 1000 highly variable genes by default in
our methods. In fact, highly variable genes can collect more biological information than
lowly variable genes with little effect on cell type determination [52]. Furthermore, we
could lower the model and temporal complexity of our clustering methods by picking
highly variable genes. We varied the number of highly variable genes from 200 to 2500 and
used scSPaC and sscSPaC on seven real datasets to see how they affected the outcomes.

We use the broken line graph in Figure 3 to show the ARI values of seven real datasets
by selecting 200, 500, 1000, 1500, 2000 or 2500 highly variable genes. Overall, the perfor-
mance of 200 high variable genes was somewhat poorer than the other five cases, and the
mean values of the other five sets of results did not appear to differ much. In most of
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the datasets, the results of our scSPaC decreased when more than two thousand HVGs
were selected, so only up to a maximum of 2500 HVGs were tested in this study. However,
in most datasets, the average ARI computed for 1000 HVGs was still the greatest, so we
proposed to use the first 1000 high variable genes for clustering in preference.

0 500 1000 1500 2000 2500

Top N HVGs

0

20

40

60

80

100
A

R
I 
(%

)

baron goolam kolodziejczyk pollen rca zeisel cell_line

Figure 3. The clustering performance (ARI) with different high variable genes (HVGs). Each broken
line represents the ARI of a dataset with 200–2500 high variable genes.

3.3. Accuracy in Estimating the Number of Clusters

As the number of cell types in a real scRNA-seq dataset is usually unknown, most
similarity-based clustering methods require the number of clusters to be specified, and an
accurate estimate of the optimal number of cell types is critical to identifying cell types
on a real dataset. In this section, we used Scanpy [34], a community detection-based tool
that includes an efficient method for partitioning the network into discrete clusters that has
been shown to be reliable for forecasting the number of cell types.

In order to evaluate the accuracy of our method in estimating the correct number
of populations, the proposed scSPaC in this study searched for the optimal number of
clusters around K (from K − 3 to K + 3). K is the number of clusters estimated by Scanpy.
As K increases, our model was robust. We recommend that users initialize a slightly
larger number of clusters. Table 6 shows the details of how we determined the number of
clusters in our model scSPaC. Perhaps it may be more reasonable to add some biological
information when analyzing the number of clusters in scRNA-seq data, and combine it
with other downstream analysis, such as marker gene identification.

Table 6. Changes in ARI values calculated according to different cluster number K in simulated data
and 7 real scRNA-seq datasets. “Ref. K” means reference K, the number of provided single cell types.
“–” means the number of clusters is less than 2. The bold number indicate the best performance (ARI)
of each dataset calculated according to different K.

ARI around Evaluate K by Scanpy (K ± 3)Datasets Ref. K Evaluate K
by Scanpy

Best K
by scSPaC K − 3 K − 2 K − 1 K K + 1 K + 2 K + 3

simulated data 2 2 2 – – – 0.2662 0.2448 0.2567 0.2489
baron 14 13 11 0.7808 0.8357 0.8319 0.8094 0.7862 0.8249 0.7727

goolam 5 5 5 0.4227 0.4518 0.4615 0.5843 0.5758 0.5661 0.5732
Kolodziejczyk 3 8 5 0.4890 0.4863 0.4875 0.4671 0.4679 0.4628 0.4605

pollen 11 8 10 0.7098 0.7172 0.7893 0.8764 0.8753 0.8816 0.8612
Rca 7 9 8 0.5475 0.5419 0.5702 0.5671 0.5623 0.5453 0.5286

zeisel 9 13 10 0.6257 0.6246 0.6241 0.6078 0.5793 0.5641 0.5632
cell line 4 4 4 – 0.5468 0.7025 0.9171 0.9043 0.9102 0.8954
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3.4. Clustering Pulmonary Alveolar Type II, Clara and Ependymal Cells of Human ScRNA-seq Data

To fully examine the validity of scSPaC on different single cell data, we tested the
algorithm on human scRNA-seq data. In this section, we focus on the enhancement of the
original algorithm in the single cell domain by the addition of self-paced learning. For
the sake of simplicity and visualization of the results, we selected human data containing
only two cell types. The dataset contains two types of cell lines (113 clara cells and
58 ependymal cells in the human scRNA-seq data) [53]. We use the provided cell type labels
as a benchmark for evaluating the performances of the clustering methods. Figure 4 shows
the cluster results for t-SNE targeting pulmonary alveolar type II, clara and ependymal cells
of human scRNA-seq data. Clara cells are shown in red and ependymal cells in blue. As
can be seen in the figure, our scSPaC is more advantageous near boundary lines between
clusters. SARS-CoV-2 infection of alveolar epithelial type 2 cells (AT2s) is a defining feature
of severe COVID-19 pneumonia [54]. For human lung alveolar type II, our model performs
a decent job of discriminating between these clara and ependymal cells, which could help
with drug development.
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Figure 4. t-SNE for pulmonary alveolar type II, clara and ependymal cells of human scRNA-seq
data cluster results. The red filled circles represent clara cells and the blue filled triangles represent
ependymal cells. (a) t-SNE for K-means; (b) t-SNE for origin NMF; (c) t-SNE for single cell self-paced
clustering (scSPaC); (d) t-SNE for ground truth.

4. Conclusions

The advent of single cell sequencing technology provides an opportunity to reveal
cellular heterogeneity. In this study, a new sample selection strategy, self-paced learning,
is introduced for scRNA-seq data clustering, which solves the clustering problem: that
these comparison algorithms are easy to fall into local optimum. Cells are grouped into
clustered samples from easy to hard based on the loss of initialization. In order to reduce the
impacts of noise and outliers on clustering results, two non-negative matrix factorization
algorithms based on self-paced learning were introduced in this work. We test scSPaC and
sscSPaC on both simulated and real scRNA-seq data. The state-of-the-art performance
was achieved compared to baseline clustering algorithms. In a case study, our scSPaC was
more advantageous near the clustering dividing line. Deep learning is computationally
expensive compared to traditional machine learning, needing a huge amount of memory
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and processing resources, and it is difficult to adapt to new situations. It is difficult to
put into words and is not totally understood [55,56]. As a result, we only talked about
the applicability of the self paced learning technique to scRNA-seq data in the traditional
machine learning model in this study.

Although the newly proposed methods scSPaC and sscSPaC performed well in iden-
tifying new cell types, it still has some shortcomings. For example, the computational
complexity is relatively high, and it requires a relatively long time and large memory size,
especially for large-scale datasets. Based on the proposed computational framework, some
future improvements will be considered, for example, designing a more elegant regulariza-
tion term or a deep learning framework to characterize the non-linear relationship among
single cells and improve similarity learning by integrating additional multi-omics data.
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