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Abstract: The epidemic caused by the SARS-CoV-2 coronavirus, which has spread rapidly throughout
the world, requires urgent and effective treatments considering that the appearance of viral variants
limits the efficacy of vaccines. The main protease of SARS-CoV-2 (Mpro) is a highly conserved
cysteine proteinase, fundamental for the replication of the coronavirus and with a specific cleavage
mechanism that positions it as an attractive therapeutic target for the proposal of irreversible inhibitors.
A structure-based strategy combining 3D pharmacophoric modeling, virtual screening, and covalent
docking was employed to identify the interactions required for molecular recognition, as well as the
spatial orientation of the electrophilic warhead, of various drugs, to achieve a covalent interaction
with Cys145 of Mpro. The virtual screening on the structure-based pharmacophoric map of the
SARS-CoV-2 Mpro in complex with an inhibitor N3 (reference compound) provided high efficiency
by identifying 53 drugs (FDA and DrugBank databases) with probabilities of covalent binding,
including N3 (Michael acceptor) and others with a variety of electrophilic warheads. Adding the
energy contributions of affinity for non-covalent and covalent docking, 16 promising drugs were
obtained. Our findings suggest that the FDA-approved drugs Vaborbactam, Cimetidine, Ixazomib,
Scopolamine, and Bicalutamide, as well as the other investigational peptide-like drugs (DB04234,
DB03456, DB07224, DB7252, and CMX-2043) are potential covalent inhibitors of SARS-CoV-2 Mpro.

Keywords: covalent inhibitors; SARS-CoV-2 Mpro; pharmacophore modeling; structure-based virtual
screening; drug repositioning

1. Introduction

The recent pandemic outbreak of coronavirus disease 2019 (COVID-19) caused by the
new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected more than 278
million, from which more than 5.4 million died worldwide (as of 28 December 2021) [1].
Coronaviruses are enveloped RNA viruses that are distributed broadly among humans,
other mammals, and birds and cause respiratory, enteric, hepatic, and neurologic dis-
eases [2]. Previously, other betacoronavirus-related outbreaks have emerged, including
severe acute respiratory syndrome (SARS-CoV) in 2003 and the Middle East respiratory
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syndrome (MERS-CoV) in 2012, and the molecular knowledge gained about this type of
coronavirus was relevant to cope with the global emergency [3]. The structural organi-
zation and gene expression of all coronaviruses are similar, involving 16 non-structural
proteins (nsp1 to nsp16) and structural proteins such as the nucleocapsid (N), the spike
(S), the envelope (E) and the membrane (M). The envelope includes three proteins: the M
protein, which binds to the nucleocapsid and enhances virus assembly and budding; pro-
tein E, which participates in viral assembly, release and pathogenesis, and protein S, which
contributes to homotrimeric peaks that recognize the cellular receptor, favoring the virus
invasion of human target cells [4]. Considering the viral structure, several of the structural
proteins are positioned as pharmacological targets, and their structural characterization
has promoted the design of potent and selective drugs against SARS-CoV-2. Additionally,
non-structural proteins participate in the processes of replication and evasion of the im-
mune response, for which reason they are also considered a therapeutic target along with
the main protease (Mpro) of SARS-CoV-2. The Mpro protease has functions such as cleaving
the polyprotein at 11 different sites, generating many of the non-structural proteins (nsp1
to nsp16), including RNA-dependent RNA polymerase (RdRp) and helicase (Hel), which
are important in viral transcription and replication within host cells, being essential in the
replication cycle. The structure of Mpro has been resolved by crystallography and is that
of a homodimeric nucleophilic protease; each protomer consists of three domains and has
a catalytic dyad consisting of Cys145 and His41 [5]. The mentioned structural features
are shared in 96% sequence identity with SARS-CoV Mpro, maintaining highly conserved
regions that are not mutating despite the environmental adaptation of the virus [6]. There-
fore, disrupting the enzyme activity of Mpro can stop the processing the virus genome for
further assembly in the replication cycle of SARS-CoV-2. SARS-CoV-2 Mpro has a unique
recognition sequence that is characterized by cleavage of peptides including sequences such
as [Asn/Ser/Ala/Gly: P1′] ↓ [P1: Gln] [P2: Leu/Phe/Val/Met] [P3: X] [P4: small], where
“small” denotes a non-bulky residue (e.g., Ala, Val, Pro, or Thr), “X” indicates any amino
acid, and “↓” indicates the cleavage amide group. Furthermore, it has been established that
there is a remarkably high degree of conservation of substrate binding sites, particularly
for the crucial S1/S2 subsites [7] (Figure 1).

According to the catalytic process above, no similar human protease is known to
have this cleavage specificity; this makes Mpro an excellent target for designing drugs with
less toxic effects. The Mpro inhibitor proposal is in constant development; many of the
designed molecules are covalent inhibitors that have an advantage from a pharmacokinetic
and pharmacodynamic point of view. Historically, the proposal for covalent inhibitors
has been held back due to the fear of non-specific protein inhibition off-target, generating
toxicity risks. However, the precise structural knowledge of the enzyme catalytic site
and the reactivity predictions of various electrophilic warheads have made it possible to
obtain highly selective compounds [8]. Today, covalent inhibitors can be found with a wide
variety of electrophilic centers and are used in different therapies. For example, proteasome
inhibitors such as epoxomycin are highly active against cancer [9], epoxyketone-derived
selective immunoproteasome inhibitors are a promising approach for the treatment of
autoimmune disorders [10], while propargylamine and carbamate derivative inhibitors tar-
geting monoamine oxidase A, monoamine oxidase B, and acetylcholinesterase are useful in
the central nervous system [11] and cardiovascular disorders [12]. The alpha-fluoromethyl
ketone analogs function as covalent inhibitors of human intestinal bacterial bile salt hy-
drolases [13,14] and, finally, the covalent inhibitors with antiviral activity are those with
the greatest structural variability in the electrophilic centers [15]. However, the most abun-
dant indication is in oncology, since 10 of the 14 covalent drugs approved by the FDA
between 2011 and 2019 were anticancer drugs [16]. Of note, there has been great interest
in the characterization of alternative warheads to achieve selectivity and potency over
SARS-CoV-2 Mpro, although Michael acceptors, alfa-ketoamides, aldehydes and hydrox-
ymethylketones are the predominant warheads in the field of the current development
of covalent drugs [17]. The most effective Mpro inhibitors identified so far, including the
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clinical candidates PF-00835231 and PF-07321332, incorporate a glutamine residue or a
bioisostere at the P1 position for potency and selectivity supported on a peptidomimetic
scaffold endowed with hydrophobic branched substituents in positions P2 and P3 [18].
However, the only Mpro inhibitor that has shown efficacy in advanced clinical trials is
PF-07321332 [19].
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Figure 1. The reaction catalyzed by SARS-CoV-2 Mpro. Substrate framework regions that are comple-
mentary to the substrate binding sites called S1, S1′, S2, and S4; molecular recognition regions in the
protease are highlighted. The catalytic dyad constituted by His41 can also be observed; it plays a
relevant role in the ionization of the residues favoring the nucleophilic attack of Cys145, on the amide
group of the substrate marked in blue, thus completing the hydrolysis of the peptide bond [7].

Unlike that of non-covalent inhibitors, the process of molecular recognition of a cova-
lent inhibitor depends not only on the structural complementarity between the catalytic site
and the inhibitor, but also on the appropriate chemical reactivity of the electrophilic center
and the protein environment that stabilizes the covalent complex. Therefore, designing
covalent inhibitors requires understanding the energy contributions of the different steps
in the formation of the covalent complex, including both the free energy of non-covalent
bonding and the free energies of reaction. In this sense, with the application of compu-
tational tools based on quantum mechanics/molecular mechanics (QM/MM), including
molecular docking, molecular dynamics (MD), linear-scaling DFT, and others, researchers
have been able to establish the structural requirements of the ligands in the non-covalent
bonding process (molecular recognition) and subsequently the irreversible bond, which are
necessary to slow down the catalytic cycle [7,20,21]. The implementation of these chemoin-
formatics tools has favored the proposal of drug repurposing, as well as the structural
chemical knowledge that promotes drug design.

Drug repurposing, also known as drug repositioning, is a strategy employed in drug
development that identifies new medical uses for drugs approved for clinical or investiga-
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tional use. This has enormous advantages compared to traditional development, as this
strategy shortens time-consuming stages in drug development such as safety evaluation
and testing, as well as optimization of molecular hits, substantially reducing the invest-
ment required [22]. For this reason, drug repositioning became a strategy to deal with
the COVID-19 pandemic, finding few drugs that demonstrated their ability to stop viral
replication [23–27].

Furthermore, in this work we present a bio-targeted guide under a computer-driven
approach to the selection of drugs with covalently bound warheads as potential SARS-CoV-
2 Mpro inhibitors, employing a structure-based strategy that includes high-efficiency virtual
screening on 3D pharmacophore models capable of identifying the minimal interactions
for non-covalent molecular recognition, as well as the necessary spatial orientation of the
electrophilic center for subsequent covalent binding, unlike traditional pharmacophore
models (Figure 2). The binding free energies were calculated by molecular traditional
docking and finally by covalent docking studies. The databases used were DrugBank
and FDA; our approach allowed the identification of drugs approved by the FDA and
others under investigation for non-peptidic and peptidomimetic characteristics, respec-
tively. From the best-ranked drugs, we identified five different covalent warheads: boronic
acids (Vaborbactam and Ixazomib), carbonitriles (Cimetidine, Bicalutamide and DB03456),
epoxides (Scopolamide, DB07224, and DB07225), aldehydes (DB04234), and disulfide bond
(CMX-2043). These drugs are positioned as potential inhibitors of SARS-CoV-2 Mpro.
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2. Results and Discussion

Under the concept inherent in the design and repositioning of covalent drugs, our
search for molecules that could inhibit irreversibly the SARS-CoV-2 Mpro was guided with
consideration for the two-step mechanism associated with the inhibition of the pharma-
cological target. Initially, undoubtedly, the ligand will have to bind non-covalently to
the catalytic site of the enzyme, promoted by the physicochemical complementarity of
functional groups and amino acid residues. This, in turn, guarantees the binding mode
that favors the approximation of the reactive centers of the ligand, commonly electrophilic,
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and of the pharmacological target with its nucleophilic residues (either the thiol group of
cysteine or the hydroxyl group of serine). In this second step, the covalent bond is formed
in situ, generating a protein–ligand covalent complex [28]. By combining structure-based
modeling strategies, we prioritized the order according to the above-mentioned mecha-
nism. Thus, the pharmacophoric modeling of the N3/Mpro complex gave us the nature,
three-dimensional arrangement, and directionality (hydrogen bonds) of the molecular
interactions that determine molecular recognition. Next, we carried out the screening and
corroborated the binding affinity of the drugs to the catalytic site by non-covalent docking.
Finally, all of those drugs with the best scores were subjected to flexible docking to identify
the formation of the covalent complex.

2.1. Structure-Based Pharmacophoric Modeling

The pharmacophoric model was generated from the crystal structure of SARS-CoV-2
Mpro in complex with an inhibitor called N3. N3 is an irreversible peptidomimetic inhibitor
that consists of a Michael-type acceptor electrophilic center and can react with the Cys145
side chain forming a covalent bond that stabilizes the complex. According to its structural
characteristics, N3 exhibits a very strong inhibition of SARS-CoV-2 Mpro (antiviral activity
assay, EC50 = 16.77 µM) [29]. The 3D pharmacophore model comprises the essential non-
covalent interactions and reflects the structural conformation of N3 required from the rest
of the warhead for interaction with the catalytic Cys145 of SARS-CoV-2 Mpro.

The results regarding the structure-based pharmacophoric map are shown in Figure 3;
a model is observed with 13 pharmacophoric features in which hydrogen-bonding interac-
tions predominate. Specifically, five hydrogen bond donor interactions (HBD) with amino
acids His164, Glu166, Gln189, and Thr190 stand out. Three interactions as hydrogen bond
acceptor (HBA) were located with residues Cys145, Glu166 and a structural water molecule
HOH201, which is considered crucial in the catalytic cycle of Mpro [30]. Four hydrophobic
regions (H) were surrounded by Thr25, Met49, Met165, Leu167, and Ala191. These types of
molecular interactions observed in the pharmacophoric map of the inhibitor-Mpro complex
are consistent with other inhibitors of the α-ketoamide type in crystalline complexes, both
in the site and mode of binding (in domains I and II of the protease) [31]. Finally, the cova-
lent bond (CI) that is generated between the -SH group of Cys145 and the α, β-unsaturated
system of N3, which favors 1,4-addition nucleophilic (Figure 3C), was clearly appreciated.

The binding site of Mpro consists of a conserved catalytic dyad that is represented by
His41 and Cys145, playing an important role in other residues such as Phe140, Leu141
Asn142, Gly143, Ser144, Cys145, Met165, Glu166, Gln189 and Thr190, which promote
complementary interactions favoring the molecular recognition of ligands. Previously,
these types of interactions had been identified by structure-based methods including
X-ray diffraction [32], molecular dynamics simulations [33], and pharmacophoric model-
ing [34–38], suggesting a high reliability of the design of our pharmacophoric map focused
on the search for covalent inhibitors.
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distance relation in Å. (C) Two-dimensional representation of the interactions that determine the
binding of the inhibitor N3 on SARS-CoV-2 Mpro.

2.2. Virtual Screening on the Structure-Based Pharmacophoric Map

In recent years, pharmacophore models and molecular docking techniques have
been widely used in virtual screening [39]. Detection of specific and potent inhibitors
using pharmacophoric maps is more accurate and rapid due to the alignment of common
structural and molecular recognition features at the active site of the therapeutic target [40].
To achieve the identification of covalent fragments, LigandScout 4.4 was used, taking
advantage of the fact that this software incorporates the identification of electrophilic centers
capable of forming covalent bonds with the nucleophilic residues of the macromolecules.
This tool has been successfully applied in the search for covalent inhibitors for different
viral proteases [41–43].

The generated 3D pharmacophore model was subsequently used to screen the collec-
tion of drugs deposited in the FDA and DrugBank databases (approved, investigational,
and experimental). The results obtained from the high-throughput virtual screening (see
parameters in the Section 3.3) are shown in Table 1, where the drugs are prioritized by
the value of fit to the pharmacophoric map. With this first filter, only 53 drugs with a
pharmacophore-fit score >60 were selected. It is important to highlight that the pharma-
cophoric map was able to identify 207 additional drugs with structural fragments capable
of forming covalent interactions. However, they were not considered because they pre-
sented a low adjustment to the map, lacking the non-covalent interactions relevant for
Mpro inhibition. Interestingly, the best pharmacophore fit score was achieved with the N3
inhibitor, demonstrating that the initial pharmacophore hypothesis was able to detect all of
the required interactions despite the high conformational flexibility of N3. The specificity
of the pharmacophoric model was also reflected with the adjustment of drugs N1, N9,
I2, Boceprevir, and Telaprevir, since crystallographic data on the covalent complex with
SARS-CoV-2 Mpro were identified (PDB IDs of crystal complexes N3: 7BQY and 6LU7;
N1: 1WDF.; N9: 2AMD.; I2: 2D2D.; Boceprevir: 7NBR, 6XQU, 7C6S, 7BPR, 6WNP, 6ZRU.;
Telaprevir: 6XQS, 6ZRT, 7K6D, 7LB7, 7C7P and 7NBS.). Previous data validated our model
and demonstrated that the druggability of Mpro is possible due to the complementarity
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of pharmacophoric features with like-peptide and non-peptide drugs in addition to the
structural diversity of the electrophilic center of each molecule. Table 1 shows the phar-
macophoric characteristics related to the map structure based of Mpro/N3, as well as the
relevant amino acids in molecular recognition. Cys145, Met165, Glu166 and Gln189 were
relevant in the interactions exhibited by the best scored drugs. These results are consistent
with those obtained in interaction analysis by molecular dynamics simulation of peptide-
like inhibitors in SARS-CoV-2 Mpro [38]. In the molecular dynamics simulations, the HBD
and HBA interaction of the inhibitors with Glu166 maintained the higher rate of interaction,
while the interaction of HBD with His41 was maintained over 80% in all of the analyzed
ligands. Furthermore, ligands such as Indinavir and other ligands co-crystallized with
SARS-CoV Mpro interacted with Gly143 and Cys145, with a probability greater than 50%
during the simulation. Additionally, we identified the importance of the van de Waals-type
interactions generated by the residues Thr25, Met49, Met165, Leu167 and Ala191, as well
as the interaction HBA with the water molecule HOH201, since they are involved in the
structural stability of the inhibitor/Mpro complex [44], as observed in the non-covalent
molecular docking results for each drug obtained in the screening. Therefore, according
to our results, it is possible to propose the repositioning of peptide-like and non-peptide
drugs that adjust with key interactions for the inhibition of SARS-CoV-2 Mpro, delimited in
a designed pharmacophoric map.

In general, we classified the identified drugs into four main groups: (i) antivirals such
as N3, N1, N9, Amprenavir, Boceprevir, Telaprevir, Darunavir, Fosamprenavir, Atazanavir,
and BMS-488043; (ii) antibiotics such as Ceftaroline, Temocillin, Aztreonam, Cefaloglycin,
Mupirocin, and Cefditoren; (iii) proteasome-inhibiting anti-cancer drugs such as Ixazomib,
Oprozomib, Carfilzomib, as well as Prexasertib, an inhibitor of checkpoint kinase 1 (chk1);
(iv) inhibitors of proteolytic enzymes, Flovagatran, Calpain inhibitor, DB08119, DB03984,
DB07224, DB03456, DB07299, etc. (for details, consult Table S2). Specifically, several
antiviral drugs have been shown to inhibit Mpro. For example, Boceprevir shows a strong
inhibition of protease (IC50 = 1.42 µM) and antiviral activity (EC50 = 49.89 µM), while
Telaprevir and Nelfinavir show a moderate inhibition of protease (IC50 = 11.47 µM) and
high antiviral activity (EC50 = 3.28 µM), respectively [45,46].

Considering that the 53 identified drugs have the possibility of forming a covalent
bound with Cys145, the covalent docking studies were carried out to determine the affinity
energy and obtain a final consensus scoring [47].

2.3. Validation and Covalent Docking Dependent Virtual Screening

Once those drugs that structurally contain a covalent warhead linked to the phar-
macophoric hypothesis had been identified, the ability of Mpro to couple to the different
ligands by flexible docking was evaluated, looking for the formation of the covalent bond
according to the catalytic properties of Mpro. For this, the protocol of the bioinformatics
method was validated through the independent docking of the co-crystallized ligand (N3)
on the active site, to achieve the bioactive conformation described in the X-ray protein-
ligand complex. Consequently, the binding pose of N3 on the Mpro catalytic site was the one
that showed the lowest energy score, and its binding mode adopted a conformation close
to the co-crystallized structure with an RMSD = 0.65 (Figure 4). The molecular recognition
of N3 was located in the substrate-binding pocket of Mpro, which is known to be highly
conserved and has been structurally characterized with precision. It is composed of a cleft
between domains I and II with sub-pockets named as S1, S1′, S2 and S4 (Figure S1) [48].
As expected, the relevant interactions were observed between Cys145 side chain and N3,
as well as with His41, alkyl and π-σ interactions with the pyrrolidinone substituent of
N3. Complementarity with these two amino acid residues is crucial to achieving the Mpro

inhibitory effect, since they are relevant in the catalytic mechanism of Mpro and responsible
for the stabilization of the covalent complex [49].
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Table 1. Top-ranked DrugBank and FDA drugs from structure-based virtual screening of SARS-CoV-2 Mpro.

Drug Interactions a
SPF

b EBE
c EBS

d EC
e SBA

f ∆Gncov
g

T25 M49 C145 H164 M165 E166 L167 Q189 T190 A191 H20
INHIBITOR N3 H H HBA CI HBD H HBD HBA H HBD HBD H HBA 106.93 5034.60 713.40 5815.39 −34.11 −7.70
INHIBITOR N1 H HBA CI HBD H HBD HBA H HBD HBD H HBA 106.90 3132.36 642.09 3819.69 −21.22 −6.80
INHIBITOR N9 H CI HBD H HBD HBA H HBD HBD HBA 96.23 2216.40 540.26 2796.46 −15.40 −6.30
INHIBITOR I2 H CI HBD H HBD HBA H HBD HBA 86.48 1112.63 617.64 1770.67 −9.61 −7.00

IXAZOMIB H CI HBD H HBD HBA H HBD HBA 83.90 170.89 469.81 674.98 −3.22 −6.70
CALPAIN INH H CI HBD HBD HBA HBD HBA 77.81 630.46 457.86 1127.00 −22.19 −5.10

DB08119 H HBA CI HBD HBA HBD HBA 77.80 2071.81 491.17 2619.91 −27.30 −6.20
DB03984 H HBA CI HBD HBA HBD HBA 76.82 2337.41 522.87 2930.08 −21.93 −6.70
DB07224 H HBA CI HBD HBA HBD HBA 76.48 156.99 476.63 659.17 −15.30 −6.10
DB07225 H H HBA CI HBD HBA HBD HBA 76.48 204.10 479.96 705.99 −1.17 −5.80

AMPRENAVIR H HBA CI HBD H H HBD HBA 76.23 679.32 593.57 1324.18 −20.21 −7.80
OPROZOMIB H CI HBD HBA HBD HBD HBA 76.12 2033.90 577.90 2696.86 −19.37 −6.30

CARFILZOMIB H CI HBD HBD HBA HBD HBA 76.03 5948.19 756.99 6849.93 −36.01 −8.20
DB03456 H HBA CI HBD HBA HBD HBA 75.87 103.11 461.78 584.84 −14.91 −6.80
DB07299 H CI HBD H HBD HBA H HBA 75.65 398.77 580.32 934.01 2.54 −6.50
DB03767 H HBA CI HBD HBA HBD HBA 75.52 504.95 523.68 1074.14 −18.57 −6.60
DB04234 H H CI HBD HBA HBD HBA 75.34 62.13 457.82 544.49 −3.05 −6.10

BOCEPREVIR H CI HBD H HBD H HBA 75.28 266.36 474.85 824.16 −9.45 −5.40
VABORBACTAM HBA CI HBD H HBA H HBD HBA 73.71 −10.58 457.61 453.04 −6.40 −6.50

DB07749 H CI HBD HBA HBD HBA 67.84 2577.53 485.06 3106.40 −17.85 −6.10
CEFTAROLINE H H HBA CI HBD HBA HBA 66.62 2556.58 698.58 3252.33 17.64 −7.10
TELAPREVIR CI HBD HBD HBA HBD HBA 66.43 4479.26 576.38 5196.13 −21.93 −6.20

DB07160 H HBA CI HBD HBA 66.40 924.43 487.56 1420.27 −19.95 −5.20
PREDNISONE H HBA CI HBD HBD HBA 66.34 1095.73 551.05 1738.53 −3.08 −7.30
DARUNAVIR H HBA CI HBD H HBA H HBD HBA 66.32 340.83 471.19 861.32 −30.86 −7.50
PREXASERTIB HBA CI H HBA H HBD HBA 66.27 339.96 514.87 921.30 −16.68 −7.50
TEMOCILLIN H HBA CI HBD HBA HBA 66.11 1131.23 475.67 1660.75 −11.36 −6.80
CIMETIDINE CI HBD H HBA H HBD HBA 65.99 120.44 459.12 557.49 −10.99 −5.30

SCOPOLAMINE H HBA CI HBA HBD HBA 65.98 122.54 459.65 646.78 −6.35 −6.30
FLUOXYMESTERONE H HBA CI HBA HBD HBA 65.98 1110.31 519.19 1733.89 −20.21 −7.20
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Table 1. Cont.

Drug Interactions a
SPF

b EBE
c EBS

d EC
e SBA

f ∆Gncov
g

T25 M49 C145 H164 M165 E166 L167 Q189 T190 A191 H20
METHSCOPOLAMINE H HBA CI HBA HBD HBA 65.98 1476.45 510.42 2070.99 −17.74 −7.00

DB08614 H CI HBD HBD HBA HBA 65.93 623.04 492.22 1151.02 −19.01 −7.30
FLOVAGATRAN CI HBD H HBD HBA H HBA 65.86 1325.16 516.40 1892.44 −7.04 −7.00

FELYPRESSIN H HBA CI H HBD H HBA 65.83 9699.06 993.86 10,838.66 −19.45 −6.80
DB07987 H CI HBD HBA HBD HBD 65.72 1777.82 554.85 2342.50 −18.83 −6.00

AZTREONAM HBA CI HBD HBD HBA 65.62 944.90 570.26 1482.14 5.99 −6.80
PREDNISOLONE H HBA CI HBD HBD HBA 65.59 1507.06 506.38 2120.64 −16.09 −7.80

RIOCIGUAT H HBA CI HBD H H HBA 65.57 348.80 529.93 955.36 −10.18 −8.30
TIOTROPIUM H HBA CI HBA HBD HBA 65.57 858.19 513.34 1466.31 −7.52 −7.00

CMX−2043 HBA CI H HBD HBA H HBD 65.45 156.96 472.39 634.24 −13.38 −5.90
GAXILOSE CI HBD HBD HBA HBD HBA 65.45 2334.44 578.92 2999.85 15.21 −6.50

CINOLAZEPAM H HBA CI HBA HBD HBA 65.40 2514.84 846.67 3451.69 −15.19 −7.40
Mdl 101,146 H HBA CI H HBA H HBA 65.33 4065.30 624.83 4813.17 −16.43 −7.20

FOSAMPRENAVIR H HBA CI HBD H H HBA 65.33 6894.18 648.29 7505.59 −10.23 −7.20
BICALUTAMIDE H HBA CI HBD HBA HBD 65.19 376.99 497.65 932.83 −15.10 −7.40

DB04293 H H HBA CI HBD HBA 65.17 152.09 483.24 704.77 0.79 −7.30
ATAZANAVIR H CI HBD HBD HBA HBA 65.17 7923.60 860.74 8900.26 −28.37 −5.40
BMS−488043 H H HBA CI HBD HBA HBA 65.15 1800.92 537.19 2446.41 −6.45 −7.90

DB04232 H H HBA CI HBD HBA 65.10 1768.70 529.64 2367.43 −1.12 −6.90
CEPHALOGLYCIN H HBA CI HBD HBD HBA 64.48 3432.94 596.57 4091.77 −8.54 −7.60

MUPIROCIN H HBA CI HBA HBD HBA 63.87 4899.57 820.50 5761.68 −13.58 −6.70
CEFDITOREN H H CI HBD HBA HBA 63.78 3465.77 799.57 4352.81 −3.02 −6.50

CABAZITAXEL H CI HBD H HBA H HBD HBA 63.67 7750.80 1172.22 9132.50 −23.63 −6.70
a Matching feature with the pharmacophoric hypothesis structure-based PDB ID: 7BQY complex. Hydrogen bonding acceptor (HBA, red), hydrogen bonding donor (HBD, green),
hydrophobic interaction (H, yellow) and covalent interaction (CI, orange). The interactions between the functional groups of each drug with the amino acids can be consulted in Table S1.
b SPF = Pharmacophore-fit score, Fit value indicates how well the features in the pharmacophore map with the chemical features present in the compound. c EBE = MMFF94 Binding
enthalpy, is the contribution of the calculated strain energy of the ligand in its active conformation, the energy of the geometric optimization of a relaxed conformation and the energy of
protein-ligand interaction (represented by the sum of intermolecular Coulomb and Van der Waals terms). d EBS = The binding site energy is the contribution of each residue of the
ligand-protein interaction. e EC = Complex energy. f SBA = Calculated binding affinity score between the library molecules and the macromolecule, helps to gain an understanding of
how well a ligand binds in the current environment. g Affinity energy calculated in Autodock Vina 1.1.
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Figure 4. N3 redocking over SARS-CoV-2 Mpro (PDB ID: 7BQY). The co-crystallized inhibitor is
shown in blue, the MOE-docked inhibitor in brown (RMSD = 0.65), and orange highlights the covalent
interaction with Cys145.

Likewise, interactions were observed by hydrogen bonding with amino acids located
in the center of the sub-pockets specifically between His164, Glu166, and Gln189 and the
L-alanyl-L-valyl region of N3, also with Asn 142, Gly143, and Ser144 (located in S1′ and S2),
and finally with Thr190 of S1. Adjacently, hydrophobic interactions were observed in the S3
and S4 sub-pocket with the Met165, Leu167, Pro168, and Ala191 residues (Figures 4 and S1).
A surprising degree of similarity was observed between the pharmacophoric entities
found in the 3D map; the molecular interactions analyzed by covalent docking and in
the crystalline complexes revealed the high resolution that the virtual screening based
on pharmacophoric maps could provide. These data suggest a considerable increase in
the anchoring precision of new drugs despite the dynamic properties of the Mpro sub-
pockets; this fact could be verified in a recent study [34]. Consequently, in addition to
the parameters calculated in the virtual screening, we added the binding energy and the
interactions obtained by covalent docking, reaching a final energy value calculated by
the consensus score equation. Thus, Table S3 shows the results of all drugs subjected to
covalent docking, while in Table 2 only those drugs with the best scores were recovered,
without considering those that have previously shown inhibitory activity experimentally.

Therefore, 16 drugs were selected, considering as the cut-off point the last best po-
sitioned antiviral with experimental inhibition data, which in this case corresponded
to Amprenavir (the chemical structures of all the drugs can be consulted in Table S4).
Specifically, the final list presented seven drugs approved by the FDA with structural
and pharmacological diversity, corresponding to Vaborbactam, Cimetidine, Ixazomib,
Scopolamine, Bicalutamide, Prexasertib and Riociguat. For example, Vaborbactam and
Ixazomib have a boron atom capable of forming the covalent interaction, and Cimetidine
and Bicalutamide are sensitive to nucleophilic attack on the carbonitrile substituent, while
Scopolamine undergoes epoxide opening, and Riociguat has its electrophilic warhead in a
group hydrolyzable carbamate. It is important to note that, according to the scope of our
search, the beta-lactamase inhibitor Vaborbactam has not been proposed as an inhibitor
against SARS-CoV-2 Mpro, whereas Ixazomib has been proposed as a non-covalent inhibitor
in computational approaches [50] and an analysis of the transcriptional response of the
host to SARS-CoV-2 infection and the drug-sensitive gene relationship, highlighting the po-
tential use of Ixazomib and Carfilzomib for its proteasome inhibitory activity (Oprozomib
was also identified in this study) [51].
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Table 2. Top-ranked drugs by the consensus score. The values of pharmacophore fit and affinity
energies for docking are shown, as well as the relevant amino acids in molecular recognition.

Drug CsScore SPF a ∆Gncov b ∆Gcov c Interactions

Ref INHIBITOR N3 412.82 106.93 −7.7 −10.1 Leu27, His41, Met49, Asn142, Gly143, Ser144, Cys145, His164, Met165, Glu166,
Leu167, Pro168, Gln 189, Thr190, Ala191, H2O201

(A) VABORBACTAM 436.08 73.71 −6.5 −5.9 His41, Met 49, Leu141, Ser144, Cys145, His163, His164, Met165
(B) DB04234 487.59 75.34 −6.1 −7.3 His41, Met 49, Leu141, Cys145, His164, Met165, Glu166, Gln 189, H2O201
(C) DB03456 496.79 75.87 −6.8 −6.1 His41, Met 49, Leu141, Cys145, His164, Met165, Glu166, Gln189, H2O201
(D) CIMETIDINE 503.00 65.99 −5.3 −5.3 Thr26, His41, Met49, Gly143, Cys145, His164, Met165, Gln189, H2O201
(E) IXAZOMIB 521.07 83.90 −6.7 −5.9 His41, Cys145, His163, His164, Met165, Leu167, Gln189, Thr190, H2O201
(F) CMX-2043 523.19 65.45 −5.9 −6.8 His41, Met 49, Gly143, Glu166, Pro168, Asp187, Gln189, H2O201
(G) DB07224 529.37 76.48 −6.1 −6.6 His41, Leu141, Asn142, Cys145, His163, His164, Met165, Arg188, Gln189, H2O201
(H) DB07225 540.42 76.48 −5.8 −6.6 Leu27, Thr26, Asn142, Gly143, Cys145, His163, Met165, Glu166, Leu167, Thr190
(I) SCOPOLAMINE 558.11 65.98 −6.3 −5.6 Leu27, His41, Phe140, Leu141, Ser144, Cys145, His163, Met165, Glu166, H2O541
(J) DB04293 596.86 65.17 −7.3 −6.2 Thr26, His41, Met49, Gly143, Cys145, His163, Met165, Glu166, Gln189, H2O585.

(K) DB07299 621.90 75.65 −6.5 −7.3 His41, Asn142, Gly143, Cys145, His164, Met165,
Glu166, Asp187, Gln189, H2O201

(L) CALPAIN INH-1 626.71 77.81 −5.1 −7.4 His41, Phe140, Ser144, Cys145, His163, His164, Met165, Glu166, Gln189
(M) BICALUTAMIDE 678.69 65.19 −7.4 −5.5 Thr24, Thr26, His41, Thr45, Ser46, Cys145, His164, Gln189, H2O201, H2O585

(N) DB03767 682.37 75.52 −6.6 −7.2 Leu27, His41, Met49, Gly143, Cys145, His163, His164, Met165,
Glu166, Arg188, Gln189, H2O201

(O) PREXASERTIB 687.56 66.27 −7.5 −5.3 His41, Phe140, Leu141, Asn142, Gly143, Cys145, His163,
Glu166, Pro168, Gln189 H2O541

(P) RIOCIGUAT 717.46 65.57 −8.3 −5.7 His41, Leu141, Gly143, Cys145, Met165, Glu166, Pro168, Gln189, Ala191, H2O201

a SPF = Pharmacophore-fit score, Fit value indicates how well the features in the pharmacophore map with
the chemical features present in the compound. b ∆Gncov = Affinity energy calculated in Autodock Vina 1.1.;
c ∆Gcov = Affinity energy calculated by covalent docking.

The binding modes of Vaborbactam and Ixazomib on Mpro showed a covalent inhibi-
tion of S1/S2 and S1/S2/S4, respectively (Figure 5A,E), and both organoborate drugs have
the advantage of being able to generate covalent and reversible bonds with serine proteases
in a clinically safe manner [52,53]. On the other hand, Cimetidine and Bicalutamide gener-
ated a covalent interaction with the corresponding carbonitrile group showing a different
binding mode. The H2 antagonist showed molecular recognition in the central S1-S1′/S2
subpockets (Figure 5D), while the androgen receptor antagonist showed a completely differ-
ent binding mode (Figure 5M), where the 4-fluorobenzenesulfonyl substituent was oriented
beyond the S1′ subpocket, reaching hydrophobic interactions in a small cavity formed by
Thr24, Thr45 and Ser46 (Figure S2), which until now has not been fully explored in the
design of new inhibitors [54]. Experimental evidence indicates that histamine receptor
antagonists can inhibit SARS-CoV-2 through the H1 receptor or the ACE2 receptor, and can
also interrupt the interaction between heparan sulfate and the spike protein, slowing the
entry of genetic material of SARS-CoV-2 [55]. On the other hand, it has been suggested that
the combination of antagonists of the H1, H2 and H4 receptors is effective in reducing lung
inflammation caused by SARS-CoV-2, reducing the severity of the infection [56]. Addition-
ally, there is evidence of the covalent binding of Bicalutamide on Mpro reaching a partial
inhibition at a concentration of 50 µM, data that corroborate our findings [57]. However,
the most relevant application of prostate cancer agents such as Bicalutamide and Enzalu-
tamide has to do with their ability to inhibit androgen signaling, reducing the expression of
TMPRSS2 in the lung, and consequently preventing viral entry into human cells [58,59].
The last approved drug that appears on our list is Riociguat, which is used for the control
of type IV pulmonary hypertension (secondary to chronic pulmonary embolism) and is
considered the first stimulator of guanylate cyclase for clinical use. This drug showed a
preferential binding mode of the S1/S4 type, prevailing hydrophobic interactions, and two
acceptor hydrogen bond interactions between one of the nitrogen atoms of the pyrimidine
nucleus and Glu166 as well as 1H-pyrazolo [3,4-b] pyridine and the amino acid Gln189,
while the fluorobenzyl substituent was adequately positioned in the S4 cavity, generating
hydrophobic interactions with Leu141, Met165, Pro168, and Ala191. Riociguat has not
shown experimental efficacy against the virus; it has only been proposed against the spike
protein fusion peptide with computational approaches [60].

Moving to the investigational drugs identified in our screening, it is striking that
most of them are peptide-like structures except for DB04293 (carbacephem) and DB08614
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(phenylpyridine). The 10 best-ranked drugs in this group have various electrophilic groups
that can be consulted in Table S2; curiously, they have pharmacological activity on vari-
ous proteases. For example, they act as cathepsin inhibitors such as DB04234, DB03456,
DB07224, DB07225, Calpain inhibitor 1, and DB03767, beta-lactamase inhibitors DB04293
and Ceftaroline, coagulation factor XI inhibitor (DB07299), and a chymotrypsin-1 inhibitor
elastase family member (DB08614).

The binding mode of DB04234 (Figure 5B) and DB03456 (Figure 5C) was of type
S1/S2-S4, maintaining the interactions and similar energy data between both (entry B and C
in Table 2); the difference lies in the electrophilic warheads corresponding to an aldehyde
and nitrile group, respectively. CMX-2043 suffered the opening of the 1,2-dithiolane ring
by nucleophilic attack by the Cys145 side chain, adopting a conformation that covers
interactions in the S1-S1/S2-S4 regions, generating HDA interactions with the Glu166 and
Pro168 residues, as well as HBD between the group -SH (generated by the opening of the
ring) and Gly143 in addition to the nitrogen atom of an amide group with Glu166 (Figure 5F).
Secondly, the ligands DB07224 and DB07225, despite maintaining a structural similarity
with the same fit to the pharmacophoric map, showed some differences in their binding
mode in Mpro (S1/S2 and S1-S1′/S2-S4, respectively). Although the binding energies in the
catalytic pocket were similar, DB07225 increased the hydrophobic interactions according
to its structural substituents. The carbacephem derivative DB04293 was coupled to Mpro

through the opening of the β-lactam ring by the action of the nucleophilic amino acid
Cys145, adopting a structural conformation that generated interactions in the S1-S1′/S2
sub-pockets (Figure 5J). β-lactam rings have shown good inhibition of SARS-CoV-2 Mpro in
an in-vitro assay demonstrating covalent binding by mass spectrometry [61]; however, their
clinical application remains defined for the treatment of complications of viral infection
and is limited by probable resistance to antibiotics [62].

DB07299, the inhibitor of coagulation factor XI, showed interactions with the amino
acids that make up the S1-S1′/S2 sub-pockets, forming a covalent anchor with Cys145
in the thiazole-2-carbonyl group (Figure 5K). In this case, it has been considered that the
ketone groups are bioisosteric electrophilic centers with the cleavable amide carbonyl of
the viral peptide substrates, for which they have been used successfully in the design of
new selective inhibitors of viral protrusions, as is the case with the acyloxymethylketone
and hydroxymethylketone derivatives developed by Pfizer that showed potent inhibitory
activity and adequate pharmaceutical properties in preclinical studies [63,64]. In Figure 5N,
the molecular recognition of DB03767 on Mpro can be observed, staying in the S1′/S2-S4
sites mainly, with evident polar interactions with the residues Gly146, Gln189, and a water
molecule, while the hydrophobic interactions are generated with Leu27, His41, Met49,
and Met165.

It is important to highlight the relevance that peptidomimetic Mpro inhibitors have
acquired in the design of new antiviral agents; PF-07321332 (NCT04756531) was developed
under this context, is considered a potent inhibitor of SARS-CoV-2 Mpro, and has shown
promising clinical results [65]. Structurally, it stands out for its electrophilic warhead, which
corresponds to a carbonitrile group that favors maintaining good selectivity and a better
toxicological profile, since this group has the characteristic of forming a reversible covalent
interaction [66], a fact that gives confidence regarding the drugs identified in our screening.
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Figure 5. Binding pose of the top-ranked drugs after CsScore, (A) Vaborbactam, (B) DB04234, (C) 
DB03456, (D) Cimetidine, (E) Ixazomib, (F) CMX-2043, (G) DB07224, (H) DB07225, (I) Scopolamine, 
(J) DB04293, (K) DB07299, (L) Calpain inhibitor-1, (M) Bicalutamide, (N) DB03767, (O) Prexasertib, 

Figure 5. Binding pose of the top-ranked drugs after CsScore, (A) Vaborbactam, (B) DB04234,
(C) DB03456, (D) Cimetidine, (E) Ixazomib, (F) CMX-2043, (G) DB07224, (H) DB07225, (I) Scopo-
lamine, (J) DB04293, (K) DB07299, (L) Calpain inhibitor-1, (M) Bicalutamide, (N) DB03767, (O) Prex-
asertib, and (P) Riociguat. The covalent interaction generated by the Cys145 residue of Mpro with the
electrophilic warhead of each molecule is shown in orange and the hydrogen bonding are represented
in cyan segmented lines.
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Considering the above, cathepsin inhibitors have attracted powerful attention. Cathep-
sins are proteases with serine, cysteine, or aspartic acid residues as nucleophiles and are
vital for digestion, coagulation, immune response, adipogenesis, hormone release, and
peptide synthesis, among a wide variety of other functions [67]. Recently, cathepsin L was
identified as a protease that elevates its surrounding concentration in COVID-19 patients
and was positively correlated with the course and severity of the disease [68]. Additionally,
it has been shown that Cathepsin L participates in the degradation of the extracellular
matrix, an important process for SARS-CoV-2 to enter the host cell, and is even involved
in the functional cleavage of the S protein, favoring the entry of the genetic material [69].
Cathepsins B, K, L, S, and V have also been shown to have proteolytic activity in various
regions of the S protein [70]. Therefore, these types of enzymes that work in a proteolytic
network are proposed as therapeutic targets to reduce the rate of viral infection. Even in this
sense, inhibitors with Cathepsin/Mpro dual activity have been proposed, such as Calpain
Inhibitor I and II [71], which were identified in our virtual screening data (Figure 5L, entry
L in Table 2); recently, the dual activity of the inhibitor M-132 (Cbz-Leu-Leu-Leu-al) was
also reported [72].

3. Materials and Methods
3.1. Drug Database

During the search for drugs with repositioning possibilities, in addition to considering
the structural chemical constitution, it is relevant to consider the pharmacological and
toxicological properties. Therefore, for this study, we used the FDA (https://www.fda.
gov/drugs/drug-approvals-and-databases/, accessed on 25 March 2020) and DrugBank
(https://www.drugbank.ca/releases/latest, accessed on 25 March 2020) databases, which
are fed with approved drugs in clinical and experimental phases for various diseases.
The files for each drug structure were obtained from the FDA database containing more
than 1800 drugs and DrugBank with more than 9000. For our virtual screening analysis,
the protocol to incorporate the set of molecules consisted of energy minimization using
the Merck Molecular Force Field 94 (MMFF94s) calculation method for the 3D structure.
Subsequently, the structural conformational search of each molecule was carried out using,
in both cases, the iCon tool in LigandScout 4.4 Advance, maintaining the best search
conditions (the maximum number of conformations was 300, and the RMS threshold was
0.8 Å, discarding duplicate conformations) [73].

3.2. Structure-Based (SB) Pharmacophore Model

A 3D structure-based pharmacophore model was built from the crystalline protein–
ligand complex of the main protease of SARS-CoV-2 and the inhibitor N3 (7BQY), obtained
from the PDB protein database (https://www.rcsb.org/, accessed on 8 June 2020), with
a resolution of 1.7 Å [28]. The binding site of the crystalline complex was identified, and
its minimization energy was calculated using Merck Molecular Force Field 94 (MMFF94s)
considering a solvated environment. Subsequently, the pharmacophore model was created
using the pharmacophore generation tool of the LigandScout 4.4 Advanced software. The
pharmacophore model provided the 3D coordinates of the minimal molecular interactions
of the co-crystallized inhibitor (N3) binding mode at the Mpro recognition site of the virus.

3.3. Pharmacophore Model-Based Virtual Screening

Structure-based virtual screening was carried out in LigandScout 4.4 Advanced consid-
ering the coordinates and distance (Å) between the pharmacophoric features obtained from
the 7BQY complex. Pharmacophore model-based virtual screening was described as an effi-
cient virtual detection tool that defines the spatial relationship between the pharmacophoric
features that represent the interaction properties between the receptor and the ligand. The
tolerance spheres of the pharmacophoric characteristics were 1.50 Å, except for the covalent
sphere, which was 1.95 Å; the screening mode used was “match all query features”, and
the scoring function was determined by the percentage of “pharmacophore-fit”. The search
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by molecule was continued until the “best match conformation” was obtained considering
the exclusion volumes [74]. The reliability of the screening was validated with the reference
inhibitor N3 for the protein (7BQY). The energies (Kcal/mol) of binding enthalpy, complex
energy, and binding affinity were calculated from the best-scored molecules. The final
selection was based on visual inspection of the highest-ranking compound docking poses,
complemented by the best affinity values obtained with the Autodock Vina 1.1 extension
set in LigandScout 4.4 Advanced.

3.4. Covalent Docking

The covalent docking was performed with Molecular Operating Environment (MOE)
software version 2019.0102. The DOCK module of MOE achieved conformational sampling
by placement methodology [75]. Before the docking studies, each compound undergoes
energy minimization and the atomic charges are adjusted, followed by a potential energy
adaptation, using MMFF94s force field. The protein 7BQY was prepared using default
parameters (generating protonation states by default, pH = 7 ± 2), the co-crystallized
ligand was removed from the active site, hydrogen atoms were added over the selected
receptor, and then the potential energy was fixed. The final energy, induced-fit docking
score, was evaluated using the GBVI/WSA ∆G scoring function with the Generalized
Born solvation model (GBVI) [76]. The GBVI/WSA ∆G is a forcefield-based scoring
function [77], which estimates the free energy of binding of the ligand from a given pose. It
has been trained using the MMFF94x and AMBER99 forcefields on the 99 protein–ligand
complexes of the solvated interaction energy (SIE) training set [78]. All of the ligands of
the molecular database were tested according to the above procedure. The Amber12:EHT
force field was used for all computational procedures. Cys145 was selected as a reactive
residue (nucleophilic group at -SH) in the catalytic site of SARS-CoV-2 Mpro. The type
of covalent reaction was identified from the interaction predicted in the pharmacophoric
hypothesis generated between the sulfur atom located in the side chain of Cys145 and
the electrophilic center of the drugs selected in the structure-based virtual screening,
considering a nucleophilic addition reaction. The binding mode and chemical stability
generated by the ligands at the catalytic site allow for successful covalent coupling, in
addition to changes in charge, bond order, protonation states, and the stereochemistry of
the reacting species. The pose prediction is generated by the reaction or transformation
methodology of the combinatorial library. The covalent interactions identified in the
virtual screening on the pharmacophoric map that was not included in the catalog of
predefined reactions in MOE were customized using the ChemDraw Professional 15.0
software. The visualization of the docking results was performed with ChimeraX (https:
//www.cgl.ucsf.edu/chimerax/, accessed on 25 March 2019).

Finally, the selection of molecular hits was performed under a consensus score
(CsS) calculated with the following equation: CsS = EC − EBE + [(|∆Gncov| + |∆Gcov|)
(SPF/100)]. Ec represents the general energy of the complex and EBE refers to the binding en-
thalpy energy (the lower value of the enthalpy of binding represents an energetically more
favorable environment for the interaction between a drug and the recognition site within the
protein). Subsequently, the non-covalent (∆Gncov) and covalent (∆Gcov) docking energies
were added, multiplying the quotient SPF/100, which represents the number of minimal
pharmacophoric interactions to achieve molecular recognition and covalent inhibition.

4. Conclusions

The health emergency due to COVID-19 requires urgent treatments to stop and prevent
viral infection; in this context, bioinformatics approaches provide relevant information for
the design of antiviral drugs and even vaccines. An important area of application is the
identification of new ligands through structure-based high-throughput virtual screening.
In this work, we used 3D pharmacophore models that allowed us to precisely define the
minimum molecular interactions that a ligand requires to covalently bind to SARS-CoV-2
Mpro in combination with conventional and covalent docking tools, potential non-peptide
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and peptide-like Mpro inhibitors were identified (Figure 6). Our combined structure-
based virtual screening strategy showed high efficiency and reliability in identifying FDA-
approved drugs (Vaborbactam, Cimetidine, Ixazomib, Scopolamine, Bicalutamide, and
Riociguat) and protease inhibitor drugs as potential irreversible Mpro inhibitors. The
certainty of identification was based on the ability of the set of tools to correlate drugs
that have experimentally shown anti-COVID activity via inhibition of Mpro, increasing the
probability of success of the drugs proposed here in future in-vitro assays and managing to
provide useful information on the current status of the design and discovery of covalent
SARS-CoV-2 Mpro and potential dual-activity Cathepsin/Mpro inhibitors.
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Our work demonstrates a combined cheminformatics procedure that can predict the
structure and affinity of effective molecules for a challenging drug target (such as SARS-
CoV-2 Mpro), through a set of steric and electronic features that are necessary to ensure
supramolecular interactions optimal with the biological objective. This combined approach
provides an efficient strategy for the discovery and repositioning of drugs that can target
different proteins of viruses and other potential pathogens.
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