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Abstract: Glioblastoma (GBM) is one of the most common malignant and incurable brain tumors.
The identification of a gene signature for GBM may be helpful for its diagnosis, treatment, prediction
of prognosis and even the development of treatments. In this study, we used the GSE108474 database
to perform GSEA and machine learning analysis, and identified a 33-gene signature of GBM by
examining astrocytoma or non-GBM glioma differential gene expression. The 33 identified signa-
ture genes included the overexpressed genes COL6A2, ABCC3, COL8A1, FAM20A, ADM, CTHRC1,
PDPN, IBSP, MIR210HG, GPX8, MYL9 and PDLIM4, as well as the underexpressed genes CHST9,
CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C, SHANK2 and VIPR2. Protein functional
analysis by CELLO2GO implied that these signature genes might be involved in regulating various
aspects of biological function, including anatomical structure development, cell proliferation and
adhesion, signaling transduction and many of the genes were annotated in response to stress. Of
these 33 signature genes, 23 have previously been reported to be functionally correlated with GBM;
the roles of the remaining 10 genes in glioma development remain unknown. Our results were the
first to reveal that GBM exhibited the overexpressed GPX8 gene and underexpressed signature genes
including CHST9, CSDC2, ENHO, FERMT1, IGFN1, LINC00836, MGAT4C and SHANK2, which might
play crucial roles in the tumorigenesis of different gliomas.

Keywords: glioblastoma; astrocytoma; oligodendrocytoma; glioma; biomarker signature; gene
signature; survival; machine learning

1. Introduction

Brain tumors are among the most feared and deadliest of all forms of cancers. Primary
brain tumors are categorized as glial (arising from glial cells) or nonglial (derived from
diverse brain structures including nerves, blood vessels and glands), benign or malignant.
Gliomas produced by glial cells are the most common and prevalent type of central nervous
system (CNS) tumors. According to their histological features, gliomas are classified as
astrocytomas (derived from astrocytes), oligodendroglial tumors, or ependymomas and
are assigned World Health Organization (WHO) grades I–IV, according to the presence
of anaplastic features indicating varying degrees of malignancy [1]. The most common
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astrocytomas are pilocytic astrocytomas (WHO grade I), diffuse astrocytomas (grade II),
anaplastic astrocytomas (grade III) and glioblastoma multiforme (GBM, grade IV).

In the most recent US population-based cancer registry data on primary brain and
other CNS tumors diagnosed between 2014 and 2018, GBM was the most common (14.3%
of all tumors and 49.1% of malignant tumors) [2]. GBM is a very aggressive tumor, with a
rapid growth rate, as well as high biological and genetic heterogeneity. The prognosis is
very poor, with a median survival of only 8 months [2]. Overall 1-, 2- and 5-year relative
survival rates for GBM were 40.9%, 6.6% and 4.3%, respectively, amongst 86,355 cases of
primary malignant and nonmalignant CNS tumors diagnosed in the USA between 2014
and 2018 [2]. Current standard treatment for GBM consists of maximal surgical resection
followed by aggressive chemoradiotherapy using temozolomide, but this fails to prevent
the local recurrence of almost all GBM tumors [3]. It is hoped that ongoing explorations
into future therapeutic strategies, such as targeted inhibitors of specific molecular processes,
nanotherapy and immunotherapy, will improve GBM treatment [3].

The heterogeneity of GBM tumors complicates their diagnoses, predictions of out-
comes and decisions on treatment strategies. Recent investigations using biomedical imag-
ing technologies to explore GBM clinical and histological features reflect the aggressiveness
of such tumors and provide valuable information for improving the accuracy of progno-
sis [4–6]. In addition to the histological features, genetic features, such as DNA methylation
data and molecular biomarkers, provide insights into the mechanisms underlying GBM
and its diagnosis and have been included in the WHO classification of brain tumors [7,8].
Gene- and protein-based signatures that have been identified in bioinformatics studies
have revealed gene and protein biomarkers of GBM survival [9–11]. Identified molecular
biomarkers of GBM include immune-related molecules [10], cytoskeletal proteins [12,13],
nonprotein-coding RNAs [14] and signal-related molecules revealing signaling pathways
that play crucial roles in GBM, i.e., EGFR [15,16], VEGF [17], sonic hedgehog (SHH) [18,19],
Notch [20] and Wnt/β-catenin signaling [21,22]. These molecular biomarkers not only
greatly assist with the diagnosis and classification of GBM, but also have enormous poten-
tial as drug targets in therapeutic drug development [20,23–27]. However, it is important
to realize that while changes in expression levels of many GBM biomarkers might be
associated with the suppression of tumor proliferation in GBM, none of these biomarkers
are capable of destroying all of the tumor cells [20,23–27]. This suggests that identifying
therapeutic strategies involving biomarkers with potential to destroy tumor cells in GBM
remains an urgent task.

In recent years, large-scale human genomic data emerging from several projects have
been stored in public databases, including the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (NCBI GEO) repository [28,29], The Cancer Genome Atlas
(TCGA) [30] and the Catalogue Of Somatic Mutations In Cancer (COSMIC) database [31].
As some researchers have proposed, the efficient storage and processing of big data may
help us to extract essential information and to understand the complicated mechanisms
of life [32]. Machine learning methods offer us the capacity to leverage big data and to
analyze complex problems, so that we may clarify information conveyed by these data.
This study has consulted records from the Rembrandt (REpository for Molecular BRAin
Neoplasia DaTa) brain cancer patient-derived dataset, a joint project established by the US
National Institutes of Health (NIH) National Cancer Institute (NCI) and National Institute
of Neurological Disorders and Stroke (NINDS) [33]. The genomic data from this project
are available on the open-access Georgetown Database of Cancer (G-DOC) platform and
in the NCBI GEO repository as a super series GSE108474 [33]. Using gene set enrichment
analysis (GSEA) and support vector machine (SVM) learning analysis, our analysis of the
biological signatures identified a novel 19-gene GBM signature in the glioblastoma and
astrocytoma gene expression data (GBM1 dataset) and a novel 17-gene GBM signature in
the glioblastoma and nonglioblastoma patient samples (GBM2 dataset).

Our findings not only provide a new point of reference for the prognostic prediction
of GBM, but also contributed to the understanding of molecular mechanisms in GBM
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development. Furthermore, these novel signature genes might potentially be exploited as
therapeutic targets for GBM.

2. Results
2.1. Recognition of Novel Gene Signatures in GBM

This study employed the machine learning method to construct prediction models
and select critical genes from two datasets, GBM1 and GBM2. Each prediction model was
subjected to the five-fold cross-validation technique to evaluate predictive performances.
Table 1 presents predictive performances from the GBM1 and GBM2 datasets, optimized
with the Matthews correlation coefficient (MCC). The performance of the GBM1 dataset
was slightly superior to that of the GBM2 dataset, with an accuracy of 92%, an MCC of 0.83
and an F1 score of 0.93, which might be because the GBM1 dataset consisted of only two
tumor types (glioblastoma multiforme and astrocytoma), whereas the GBM2 dataset had
five (glioblastoma multiforme, astrocytoma, oligodendroglioma, mixed and unclassified).

Table 1. Predictive performances of the GBM1 and GBM2 datasets. All predictions were optimized
using the MCC as the fitness function.

Datasets Accuracy Sensitivity Specificity MCC Precision F1 Score

GBM1 0.9176 0.9517 0.8648 0.8265 0.9156 0.9333
GBM2 0.8835 0.8947 0.8722 0.7672 0.8755 0.8850

Gene scores ranged from 0 to 3, where the highest value had the most impact, repre-
senting the most frequently selected gene. A total of 19 and 17 genes scored ≥2 with their
gene signatures in the GBM1 and GBM2 datasets, respectively (Table 2). Three genes, in-
cluding IGFN1, MGAT4C and ADM, were selected in both datasets. Thus, a total of 33 GBM
gene signatures were identified. Twelve of these were overexpressed in GBM, including
the MIR210HG nonprotein-coding gene and 11 protein-coding genes (COL6A2, ABCC3,
COL8A1, FAM20A, ADM, CTHRC1, PDPN, IBSP, GPX8, MYL9 and PDLIM4) (Table 2).
The underexpressed GBM genes included the LINC00836 nonprotein-coding gene and
20 protein-coding genes (FERMT1, DLL3, P2RY12, CHST9, IFGN1, CSDC2, ETNPPL, VIPR2,
MGAT4C, DLL1, TNR, GDF10, IRX2, SHANK2, ENHO, LUZP2, DPP10, CDHR1, AKR1C3
and SCG3) (Table 2).

Table 2. Expression signatures of the 33 genes exhibiting high selective scores (≥2) in the GBM1 and
GBM2 datasets.

Datasets Overexpressed Genes Underexpressed Genes

GBM1 COL6A2, ABCC3, COL8A1,
FAM20A, ADM 1, CTHRC1

FERMT1, LINC00836 2, DLL3, P2RY12, CHST9,
IGFN1 1, CSDC2, ETNPPL, VIPR2, MGAT4C 1,
DLL1, TNR, GDF10

GBM2 PDPN, IBSP, MIR210HG 2,
ADM 1, GPX8, MYL9, PDLIM4

IRX2, SHANK2, IGFN1 1, MGAT4C 1, ENHO,
LUZP2, DPP10, CDHR1, AKR1C3, SCG3

1 Selected by both the GBM1 and GBM2 datasets. 2 Nonprotein-coding RNA genes.

The microarray expression data of the 19 GBM1 and 17 GBM2 selected genes are shown
as heatmaps in Figure 1a, b, respectively. The GSEA analysis identified intersections of
42 overexpressed genes and 35 underexpressed genes from the combined GBM1 and GBM2
datasets (Figure 2). In the 33-gene signature, our methods selected only one overexpressed
(ADM) and two underexpressed (IGFN1 and MGAT4C) intersection genes. Twelve overex-
pressed and 21 underexpressed signature genes were recognized from 58 overexpressed
and 65 underexpressed genes in both GBM1 and GBM2 datasets. Of particular interest was
that only three intersection genes were recognized as signature genes from 77 intersection
genes, while 30 genes were recognized by 46 genes that were either in the GBM1 or GBM2
dataset.
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2.2. Functional Analysis

We performed the protein functional analysis with CELLO2GO [34], a web server
that uses BLAST homology searching approaches to discern functional gene-ontology
(GO) annotation. Two GO functional annotation categories, biological processes (BPs) and
molecular functions (MFs) were retrieved for each selected protein-coding gene signature.
An analysis of the selected 31 protein-coding gene signatures revealed that they were
annotated to 50 and 24 GO-enriched groups in the BP and MF categories, respectively
(Supplementary Materials). Statistically, 15 GO terms for the BP category retrieved over
10 annotated proteins. The top five GO terms retrieved were “anatomical structure devel-
opment”, “response to stress”, “cell differentiation”, “signaling transduction” and “cell
adhesion” (Figure 3a; Supplementary Materials). Ten of the retrieved GO terms in the MF
category had more than five annotated proteins; the top three were “ion binding”, “protein
binding” and “structural molecule activity” (Figure 3b; Supplementary Materials). Notably,
more than half of the proteins encoded by signature genes were annotated to the “ion
binding” and “protein binding” GO terms associated with the MF category.
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The KEGG database [35] was used to identify potential signaling pathways involving
the selected protein-coding gene signatures. Four of the retrieved signaling pathways
(“focal adhesion”, “PI3K-Akt signaling pathway”, “ECM-receptor interaction” and “human
papillomavirus infection”) each had more than two annotated proteins (Figure 4a; Supple-
mentary Materials). CELLO2GO also predicted protein subcellular localization. Proteins
encoded by the 31 gene signatures were mostly located in the nuclear (18 proteins), extra-
cellular (8 proteins) or cytoplasmic regions (8 proteins), or were sited within the plasma
membrane (7 proteins) (Figure 4b; Supplementary Materials). CELLO2GO predicted the
locations of proteins SCG3 and CHST9 in the endoplasmic reticulum and mitochondria,
respectively.
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2.3. Roles of the Overexpressed GBM Gene Signatures

A literature search revealed that all of the selected overexpressed gene signatures
were differentially expressed in gliomas and associated with either poor prognosis or low
survival rates, except for the GPX8 gene (Table 3). Of the 12 overexpressed genes, ABCC3,
COL8A1, IBSP and PDPN are reportedly associated with GBM [10], while CTHRC1, PDLIM4
and MYL9 are associated with high-grade and malignant gliomas, respectively [36,37].
These findings were consistent with the evidence of their overexpression in GBM revealed
by our study, except for ABCC3, which in one study was apparently expressed at lower
levels in GBM tissue compared with normal brain tissue samples [38]. Correlations between
the ABCC3, COL6A2 and FAM20A genes and low-grade glioma suggested that these genes
might play more complex roles in gliomas [38–40].

Table 3. Roles/functions of overexpressed GBM gene signatures in glioma.

Gene Encoded Protein Reported Roles/Functions in Gliomas References

ABCC3 ATP-binding cassette subfamily C
member 3

Lower expression in GBM tissue versus
normal brain tissue; low expression is
associated with low survival rates.

Su et al., 2020 [38]

Upregulated expression correlates with poor
overall survival in GBM. Jiang et al., 2021 [10]

ADM Proadrenomedullin Positively regulated by STAT-3 signaling;
enhances the migration of astroglioma cells. Lim et al., 2014 [41]

COL6A2 Collagen alpha-2(VI) chain
High expression associated with worse
prognosis; induces tumor cell proliferation in
recurrent and high-risk low-grade glioma.

Chen et al., 2020 [39]

COL8A1 Collagen alpha-1(VIII) chain High expression correlated with poor overall
survival in GBM. Jiang et al., 2021 [10]

CTHRC1 Collagen triple helix repeat
containing protein-1

Increased expression in glioma tissue is
associated with WHO disease stage; regulates
tumor cell invasion, migration and adhesion.

Mei et al., 2017 [42]

FAM20A Psedokinase FAM20A

Biomarker for low-grade glioma;
overexpression predicts poor outcomes. Feng et al., 2021 [40]

Associated with disrupted immune responses
in the GBM microenvironment. Du et al., 2020 [43]

GPX8 Glutathione peroxidase 8 N/A.

IBSP Integrin-binding bone
sialoprotein 2

High expression correlated with poor overall
survival in GBM. Jiang et al., 2021 [10]

MIR210HG Nonprotein-coding gene
Identified as an EMT-related lncRNA in
gliomas. Tao et al., 2021 [44]
Serves as a biomarker for glioma diagnosis. Min et al., 2016 [45]

MYL9 Myosin regulatory light
polypeptide 9

High expression is associated with a poor
prognosis and is increased in patients with
recurrent disease.

Kruthika et al., 2019 [13]

The DAPK1-ITPRIP-MYL9 complex promotes
the progression of malignant glioma. Cao et al., 2021 [37]

PDLIM4 PDZ and LIM domain protein 4 Biomarker for high-grade glioma. de Tayrac et al., 2013 [36]

PDPN Podoplanin
Correlated with poor overall survival in GBM. Jiang et al., 2021 [10]
Increases tumor cell migration and
angiogenesis in malignant glioma. Grau et al., 2015 [46]

2.4. Roles of the Underexpressed GBM Gene Signatures

Of the 21 underexpressed genes, 13 (AKR1C3, CDHR1, DLL1, DLL3, DPP10, ETNPPL,
GDF10, IRX2, LUZP2, P2RY12, SCG3, TNR and VIPR2) are reportedly associated with
gliomas (Table 4). These genes are underexpressed in GBM and overexpressed in low-grade
gliomas, including diffuse astrocytomas, anaplastic astrocytoma and oligodendrocytoma.
Observed correlations between decreasing levels of expression of these genes and increas-
ingly malignant gliomas suggested that these genes might be worth targeting in glioma
treatment [20,24–27,47–49]. No published evidence was available as to the roles of the
remaining eight underexpressed gene signatures (CHST9, CSDC2, ENHO, FERMT1, IGFN1,
LINC00836, MGAT4C and SHANK2) regarding glioma pathogenesis or prognosis.
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Table 4. Roles/functions of the underexpressed GBM gene signatures in glioma.

Gene Encoded Protein Reported Roles/Functions in Gliomas References

AKR1C3 Aldo-keto reductase family 1
member C3

A hormone activity regulator and prostaglandin
F synthase that is expressed in GBM and
oligodendrogliomas; associated with the
duration of overall survival in patients with
gliomas.

Park et al., 2010 [50]

CDHR1 Cadherin-related family member 1

Downregulated in GBM and other gliomas
(compared with normal brain tissue); lower
expression of CDHR1 is associated with worse
clinical prognosis in GBM.

Wang et al., 2021 [24]

CHST9 Carbohydrate sulfotransferase 9 N/A.

CSDC2 Cold shock domain-containing
protein C2 N/A.

DLL1 Delta-like ligand 1

Contributes to Notch signaling, which
suppresses glioma stem cell differentiation and
maintains their stem cell properties that
contribute to GBM tumorigenesis.

Bazzoni et al., 2019 [20],
Talukdar et al., 2016 [25]

DLL3 Delta-like ligand 3

An inhibitory ligand-driven activation of the
Notch pathway and is a potent prognostic factor
for malignant glioma; low DLL3 expression is
linked to shorter overall survival.

Maimaiti et al., 2021 [26]

DPP10 Inactive dipeptidyl peptidase 10
Underexpressed in GBM but overexpressed in
diffuse astrocytomas and anaplastic
astrocytomas.

Gonzalez-Garcia et al., 2020 [51]

ENHO Adropin (energy
homeostasis-associated protein) N/A.

ETNPPL Ethanolamine phosphate
phospholyase

Underexpressed in GBM but overexpressed in
diffuse astrocytomas and anaplastic
astrocytomas.

Gonzalez-Garcia et al., 2020 [51]

FERMT1 Fermitin family member 1 N/A.

GDF10 (BMP3b) Growth differentiation factor 10

Associated with progression-free survival in
GBM in a gender-dependent manner (PFS
probability falls faster in males with high GDF10
expression than in females).

Serao et al., 2011 [47]

IFGN1
Immunoglobulin-like and

fibronectin type III
domain-containing protein 1

N/A.

IRX2 Iroquois-class homeodomain
protein IRX-2 Biomarker of pilocytic astrocytoma localization. Antonelli et al., 2018 [52]

LINC00836 Long intergenic nonprotein-coding
RNA 836 N/A.

LUZP2 Leucine zipper protein 2

Crucial for nervous system extracellular matrix
development; downregulated expression
corresponds with increasing tumor stage in
low-grade gliomas.

Chen et al., 2020 [48]

MGAT4C
α-1,3-mannosyl-glycoprotein 4-β-
N-acetylglucosaminyltransferase

C
N/A.

P2RY12 P2Y purinoceptor 12

A specific marker for resident microglia in
gliomas; its expression and localization
correspond with tumor stage and M1/M2
immune responses.

Zhu et al., 2017 [53]

SCG3 Secretogranin III
Expression is inversely correlated with
malignancy grade; high in oligodendrogliomas
and low in GBM.

Wang et al., 2021 [27]

SHANK2 SH3 and multiple ankyrin repeat
domains 2 N/A.

TNR Tenascin-R Low expression in GBM; TNR dysregulation in
GBM is associated with glioma malignancy. Bi et al., 2017 [49]

VIPR2 Vasoactive intestinal polypeptide
receptor 2

Overexpressed in gliomas, particularly in
oligodendrogliomas. Jaworski et al., 2000 [54]

2.5. Protein–Protein Interaction Network Analysis Using STRING

We used STRING (Search Tool for the Retrieval of Interacting Genes; https://string-
db.org, accessed on 1 March 2022) to assess potential interactions of the proteins encoded
by the 31 GBM gene signatures. The predicted protein–protein interaction (PPI) networks

https://string-db.org
https://string-db.org
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contained four linkage groups, modules I, II, III and IV, containing 3, 4, 2, and 15 nodes,
respectively (Figure 5). All three members of module I (IRX2, DLL1 and DLL3) were
encoded by underexpressed genes in GBM and all were annotated with the GO terms
of “embryo development”, “anatomical structure formation involved in morphogenesis”,
“anatomical structure development”, “cell differentiation” and “reproduction” in the BP
category (Supplementary Materials).
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Figure 5. Four linkage modules (I, II, III and IV) of predicted protein–protein interaction networks by
STRING. The nodes in red and blue represent the proteins encoded by the over- and underexpressed
GBM signature genes, respectively.

Members in module II (TNR, SCG3, ADM and VIPR2) were all annotated to the
GO terms of “transport”, “vesicle-mediated transport” and “response to stress” in the
BP category. Module III, containing a two-node linkage of AKRC3 and ABCC3, was
also annotated to the GO term “response to stress”, in addition to the “lipid metabolic”,
“biosynthetic process”, “catabolic process” and “metabolic process” GO terms in the BP
category (Supplementary Materials).

Of particular interest was that the largest module (IV) of 15 proteins was centrally
linked by COL6A2, COL8A1 and CTHRC1, a triangular interactive network of collagen-
related proteins that were all overexpressed in GBM and have previously been reported as
correlating with increasing tumor cell invasion, migration and adhesion in GBM (Table 3,
Figure 4) [10,39,42]. The other five nodes that reportedly correlate with GBM malignancy
(PDLIM4, MYL9, PDPN, IBSP and GPX8) [10,13,36,37,46] were all (with the exception
of GPX8) overexpressed in the GBM gene signatures (Figure 4). Among the 15 node
proteins, only GPX8 and DPP10 were not annotated to the GO term “anatomical structure
development”. The majority of nodes (7 of 10) in the COL6A2 and COL8A1 side chains
were annotated to the GO term “cell adhesion” in the BP category (MYL9, GDP10 and
P2RY12 were not).

3. Discussion

This study found a novel 33-gene GBM signature by using the GSE108474 database
to compare differentially expressed genes amongst GBM and astrocytomas or non-GBM
gliomas. Notably, there were more overexpressed than underexpressed intersection genes
in the selected genes of both the GBM1 and GBM2 datasets. This was not unexpected
because these datasets shared the same GBM patient samples and there might be a greater
association between the overexpressed genes and GBM, while the underexpressed genes
could be more associated with the partially overlapping gliomas between the datasets. Our
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results implied that our methodological approaches were independent and were not biased
by the intersection genes.

Of the 11 protein-coding, overexpressed signature genes, only GPX8 was not asso-
ciated with either GBM or glioma (Table 3). GPX8 is an endoplasmic reticulum-resident
protein that plays an important role in various cancers, such as gastric, breast and non-small
cell lung cancer [55–57]. FoxC1-induced transcriptional activation of GPX8 activates Wnt
signaling and subsequent gastric cancer cell proliferation [55]. The Wnt/β-catenin signal-
ing pathway has pleiotropic functions in neurogenesis and is one of the main signaling
pathways in glioma tumorigenesis [58,59]. High levels of FoxC1 expression have been
found in gliomas and FoxC1 may regulate epithelial-to-mesenchymal transition (EMT)
via Wnt/β-catenin signaling [60]. Furthermore, evidence has shown that GPX8 maintains
an aggressive breast cancer phenotype by regulating the interleukin 6 (IL-6)/JAK/STAT3
signaling pathway [57], which is hyperactivated in many different malignancies and is
generally linked to a poor prognosis [61]. Indeed, aberrantly activated STAT3 signaling
is positively correlated with tumor grade and survival rates of patients with GBM [62].
Future research could usefully investigate whether the overexpression of GPX8 in GBM is
activated by FoxC1 and consequently regulates GBM tumorigenesis via the Wnt/β-catenin
pathway or via GPX8/IL-6/STAT3 signaling.

The identification of the underexpressing genes in GBM might contribute to the
development of a therapeutic strategy. Twelve of the 13 protein-coding, underexpressed
signature genes were associated with GBM or other gliomas (Table 4). Many of them, such
as CDHR1, DLL1, DLL3 and SCG3, have been reported to be potential therapeutic targets
for glioma treatment [20,23–27]. We failed to find any reports in the literature revealing the
role of the other seven selected protein-coding, underexpressed signature genes (CHST9,
CSDC2, ENHO, FERMT1, IGFN1, MGAT4C and SHANK2). However, all reportedly play
crucial roles in various tumors and thus may also play important roles in gliomas.

Genetic variants of CHST9 contribute to the prognosis of triple-negative breast can-
cer [63] and the copy number variants of CHST9 are associated with hematologic malig-
nancies [64]. CSDC2 has been shown to be a potential diagnostic biomarker for early-onset
colorectal cancer [65] and prostate cancer [66]. The protein encoded by the ENHO gene,
adropin, is a secreted peptide hormone related to energy homeostasis [67] and is reportedly
associated with the pathogenesis of endometrium cancer [68]. Evidence has suggested that
FERMT1 silencing inhibits oral squamous cell cancer EMT and invasion by inactivating the
PI3K/AKT signaling pathway, one of the most important pathways in GBM [69]. As for
IGFN1, although the biological function of this gene remains unclear, IGFN1 expression has
been associated with susceptibility to primary retroperitoneal liposarcoma and renal cell
carcinoma, and the radiotherapy response in non-small cell lung cancer [70–72]. MGAT4C
overexpression in benign and cancer prostate cell lines significantly increases their prolifer-
ation and migration, and increasingly higher MGAT4C transcript levels are associated with
prostate cancer progression [73].

SHANK2 is the most frequently amplified gene on 11q13, a major tumor amplicon
in human cancer [74]. SHANK2 plays an evolutionarily conserved role in the regulation
of Hippo signaling [74], which promotes tumorigenesis and metastasis of several can-
cers including GBM, although scant data exist on the role of Hippo signaling in brain
tumors [75,76]. SHANK2 may be important for the development of GBM [74]. VIPR2,
also known as VIP and PACAP receptor 2, is a receptor subtype for pituitary adenylate
cyclase-activating polypeptide (PACAP) [77]. VIP and PACAP are neurotransmitters and
neuromodulators that regulate neurons in various aspects, such as neuronal division, dif-
ferentiation and survival [78]. Under normal culture conditions, VIP and PACAP induce
the proliferation of rat GBM-derived C6 glioma cells, while under serum-starved condi-
tions, VIP and PACAP possess antiproliferative properties [78]. As the receptor of VIP
and PACAP, VIPR2 may regulate GBM development [77]. Importantly, the associations of
these eight underexpressed GBM genes with various tumors imply that they may also play
crucial roles in glioma development.
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This study identified two nonprotein-coding RNA genes, MIR210HG and LINC00836,
as GBM signature genes. MIR210HG was overexpressed in GBM compared with non-GBM
gliomas. Previous research has found MIR210HG within a nine-EMT-related lncRNA signa-
ture in patients with glioma, while other evidence suggests that MIR210HG is an important
diagnostic biomarker for glioma [44,45]. No reports have documented the underexpression
of LINC00836 in GBM compared with astrocytomas. Nevertheless, although no evidence
exists as to the differential expression of LINC00836 in gliomas, this gene is known to be a
key Alzheimer’s disease-related immune hub gene that potentially contributes to immune-
related phenomena in Alzheimer’s disease by regulating other immune-related hub genes
in the Alzheimer’s brain [79]. Further analysis should explore the role of LINC00836 in
glioma pathogenesis.

4. Materials and Methods
4.1. Brain Tumor Dataset

GEO Series Experiment 108474 (GSE108474), which was part of the Rembrandt brain
cancer project from 2004 to 2006, contains clinical and biospecimen data from 671 patients
collected from 14 institutions. Records for 550 patients that had both gene expression and
clinical metadata are held in the NCBI GEO database [33]. Table 5 lists these 550 samples
by tumor types obtained from the NCBI GEO repository. Two datasets were collected based
on the types of brain tumors documented in the metadata. The first dataset (GBM1) con-
tained 148 astrocytoma and 228 GBM samples, while the second dataset (GBM2) contained
228 GBM samples and 227 other brain carcinoma samples, including 148 astrocytomas,
11 mixed, 67 oligodendrogliomas and 1 unclassified tumor.

Table 5. Clinical attributes of the GSE108474 metadata from the NCBI GEO repository.

Tumor Type Number of Patients

Astrocytoma 148
Glioblastoma multiforme 228

Mixed 11
Oligodendroglioma 67

Unclassified 1 1
Unknown 2 67

Control 3 28
1 The type of glioma was unclassified for this patient. 2 The type of brain tumor was unknown in these patient
samples. 3 Normal, healthy brain samples.

4.2. Gene Feature Generation

The gene expression data of 550 patient samples in GSE108474 were sequenced on
the GEO platform 570 (GPL570, Affymetrix Human Genome U133 Plus 2.0 Array [HG-
U133_Plus_2]) containing 54,675 human probsets. The gene expression values from the
microarray data were first normalized using MAS5 [80] (linear scaling) before adopting
the log base 2 scale. The GSEA method [81] was then used for the preliminary screening
of genes, to determine whether any statistically significant differences were apparent
between GBM and other types of brain tumors. The normalized microarray data from
each sample were first labeled by categorical classes, before comparing the genes inside the
microarray with the a priori defined gene set from the REACTOME [82] subset of canonical
pathways curated by the Molecular Signatures Database (MSigDB) [83]. We used the
default algorithm signal-to-noise ratio to compare differences in gene expression amongst
different phenotypes and ranked the genes based on the value of the formula. To evaluate
the distribution of genes in the REACTOME gene set across the entire ranked list, the GSEA
method was used to perform a running sum statistic progressing down the ranked list: if a
gene in the ranked list belonged to the gene in the REACTOME set, the GSEA increased
the accumulative score and reduced it when genes did not belong. In this process, the
maximum value was denoted as the enrichment (EC) score. The EC score reflected which



Int. J. Mol. Sci. 2022, 23, 4157 11 of 16

genes in the REACTOME set were overexpressed at the top or bottom of the ranked list.
Finally, we obtained the top 50 over- or underexpressed genes ranked by the EC score as
our classification features for input into the machine learning method.

4.3. Selection of Critical Genes

The genetic algorithm (GA) [84–86] was used to select critical genes and optimize
classification performance. The GA procedures in this work were as follows: in the initial
population, we randomly generated 80 solutions (Si, i = 1, . . . , 80), where each solution Si
was represented as a set of 100-dimensional feature vectors ( f i

j , j = 1, . . . , 100), indicating

the binary representations of 100 genes selected from GSEA. If f i
j = 1, the jth gene was

kept; if f i
j = 0, the gene jth was eliminated for feeding into the SVM, a supervised learning

method that used the principle of statistical risk minimization to estimate the hyperplane of
a classification. All SVM calculations were performed using LIBSVM (version 3.24) [87,88],
with the radial basis function (RBF) kernel. The parameters (penalty and gamma values of
the RBF kernel) were both trained by exponentially increasing the grid search from 2−15 to
215, incorporating the best values of informative measures with a five-fold cross-validation
during model training.

In this work, 200 generations were iterated. For each generation, τ, the three ba-
sic mechanisms driving the evolutionary processes were performed consisting of the
selection, mutation and crossover processes. The selection operators were defined as
ατ = max

{
Sτ

1 , . . . , Sτ
40, ατ−1} and βτ = max

{
Sτ

41, . . . , Sτ
80, βτ−1}. The solutions ατ and βτ

had the best fitness values in each half of 80 solutions and ατ−1 and βτ−1 in the previous
generation, respectively. The best solutions ωτ had the best fitness values between ατ and
βτ . Note that for the special case of τ = 0, the fitness values of α0 and β0 were defined as 0.
A new solution in the next generation τ + 1, Sτ+1

i , was equal to ατ if i was odd, while Sτ+1
i

was equal to βτ if i was even.
Four informative measures (Equations (1)–(4)) calculated using five-fold cross-validation

during model training were used as the fitness functions in the selection process. They
consisted of accuracy (Acc), the MCC, the F1 score (F1), summation of sensitivity and
weighted specificity (hybrid), calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

F1 =
2 × Precision × Sensitivity

Precision + Sensitivity
(3)

Hybrid = Sensitivity + δ × Speci f icity (4)

where Precision = TP
TP+FP , Sensitivity = TP

TP+FN , Speci f icity = TN
TN+FP , TP represents

true-positives, TN represents true-negatives, FP represents false-positives, FN represents
false-negatives and δ is the ratio of the number of positives to negatives.

After adopting the selection operators, two types of mutation were applied to all
solutions (Sis). In the first half of the solutions, every b bit of the vectors was subject to
mutation: b = ∼ b, if the mutation rate was less than a mutation threshold µmu = 0.1. In
the second half of the solutions, we randomly chose a bit from the 100 vectors subject to
mutation: b = ∼ b without any mutation thresholds. The one-point crossover operations
were carried out between S2k−1 and S2k, where k = 1, . . . , 40 and proceeded as follows: the
feature vectors from λ to 100 of S2k−1 and S2k were swapped if the crossover rate was less
than the crossover threshold µcr = 0.5, where λ was randomly selected from 1 to 100.

The selection procedure of critical genes, performed by the genetic algorithm, was
repeated 10 times with each informative measure. Each repeat produced 200 best solutions
(ωτ , τ = 1, . . . , 200) for every 200 generations. Thus, we generated a total of 2000 solutions.



Int. J. Mol. Sci. 2022, 23, 4157 12 of 16

After deleting the redundant solutions, the top 10 were obtained from the remainder and
ranked by fitness value. The selective scores (rj, j = 1, . . . , 100) of 100 genes were calculated
from the top 10 solutions, as follows:

rj =
1
4

4

∑
p=1

(
1

10

10

∑
q=1

f q
j +

1
5

5

∑
q=1

f q
j +

1

∑
q=1

f q
j ) (5)

where p is the specific informative measure (Equation p) used as the fitness function, and q
represents the top q-th solution.

5. Conclusions

GBM is one of the most common malignant and incurable brain tumors. The molecular
mechanisms underlying the tumorigenesis of GBM, a biologically heterogeneous tumor,
remain unclear. The identification of a gene signature for GBM may be helpful for the
diagnosis, treatment, prediction of prognosis, and even new treatments for GBM. The
identification of a 33-gene signature of GBM by GSEA and machine learning analysis
revealed reported associations with GBM for 24 of these genes; the roles of the remaining
nine in glioma development remain unknown. Our results were the first ever to report
that the overexpressed GPX8 gene and the underexpressed GBM CHST9, CSDC2, ENHO,
FERMT1, IGFN1, LINC00836, MGAT4C and SHANK2 genes might play crucial roles in the
tumorigenesis of different gliomas.
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