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Abstract: The process of protonation of [2,6-B10H8O2CCH3]− was investigated both theoretically and
experimentally. The most suitable conditions for protonation of the derivative [2,6-B10H8O2CCH3]−

were found. The process of protonation was carried out in the presence of an excess of trifluo-
romethanesulfonic acid CF3SO3H at room temperature in dichloromethane solution. The structure of
the resulting complex [2,6-B10H8O2CCH3*Hfac]0 was established using NMR data and the results of
DFT calculations. An additional proton atom Hfac was found to be localized on one of the facets that
was opposite the boron atom in a substituted position, and which bonded mainly with one apical
boron atom. The main descriptors of the B-Hfac bond were established theoretically using QTAIM and
NBO approaches. In addition, the mechanism of [2,6-B10H8O2CCH3]− protonation was investigated.

Keywords: closo-borates; boron cluster; protonation; DFT calculation; NMR spectra; QTAIM;
Fukui function

1. Introduction

The investigation of covalent and noncovalent interactions is one of the main tasks of
modern inorganic chemistry [1,2]. Such studies provide an opportunity to better under-
stand the structures of chemical substances and their properties. By examining chemical
bonds, it is possible to establish factors that influence their breaking and formation [3,4].
This fact can be used to produce new substances with given properties. A combined
theoretical and experimental approach is the best way to investigate such phenomena [5,6].

There are several driving forces behind bonding formation: orbital, electrostatic,
and the van der Waals interactions [7–9]. Information about the energy characteristics
of such interactions is one of the most important descriptors. Theoretical methods allow
exploration of the nature of chemical interactions and estimation of their energies in a
simple and intuitive way. The application of such popular and well-established methods as
QTAIM (Quantum Theory of Atoms in Molecules), ELF (Electron Localization Function),
and NBO (Natural Bond Orbitals) analysis provides the opportunity to find essential
information about the chemical structure and bonding of target compounds [10–14].
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Closo-borates and related compounds have always attracted attention due to their
unusual structure. Their electron structures cannot be described in terms of the classic
Lewis approach [11,15]. For a correct description of the structure of closo-borate compounds,
the terms of 3D-aromacity are used. Closo-borates possess various interesting properties,
such as thermodynamic and oxidative stability and biological activity [16–18]. These
properties determine the potential application of closo-borate systems for the preparation of
solid-state batteries [19], magnetic and hydrogen storage materials [20,21], and drugs for
BNCT (boron neutron capture therapy) [22–24]. Such systems can form various covalent
and noncovalent interactions. It is impossible not to mention the tremendous contributions
of the pioneers of boron cluster chemistry, such as Lipscomb [25–28], Hoffman [29–31],
Wade [32–34], Mingos [35–37], and Muetterties [38–41]. Their works have significantly
expanded ideas about the structure and properties of such systems. Currently, there is a
great deal of interest in the chemistry of closo-borate anions [42,43]. The phenomena of
the exo-polyhedral B-X (X = H, C, N, O, F) bonds have been extensively studied [44–46],
for example, research into the main characteristics of these bonds for hydroxy-derivatives
[BnHn-1OH]2− (n = 6, 10, 12) was carried out [47]. For the exo-polyhedral B-O bonds, it
has been established that, for the closo-borate anion, covalent interactions increase with
an increase in the boron cluster size. Noncovalent contacts of closo-borate anions and
related compounds have also been investigated [48]. This type of interaction is weaker
than covalent bonds but also has a significant effect on the structure and properties of
the systems under study. For example, the interactions of nitrile derivatives with various
nucleophiles have previously been studied [34,49–52]. It was shown that the structure
of the products obtained was the result of noncovalent interactions between protons of
nucleophile and hydrogen atoms of the cluster anion.

Closo-borate anions possess an excess of electron density and can act as an electron
donor for an electrophilic system. They can form a complex with different Lewis acids:
protons, AlCl3, MLn, and others [42,53]. Previously, the structure of the [B10H11]− anion
was studied both theoretically and experimentally [54,55]. It was shown that Hfacmoves
freely in the equatorial belt, with a very low energy barrier (approximately 1 kcal/mol) [20].

The present study focused on [2,6-B10H8O2CCH3]−. This anion is a member of the
class of borylated heterocycles. Analogous derivatives based on borylated boroxazole
were also investigated for closo-decaborate and dodecaborate anions [56–59]. Several ap-
proaches for the preparation of this class of closo-borate derivatives have been explored
previously [60,61]. In addition, the disclosure reaction of borylated heterocycle has been
established [62]. [2,6-B10H8O2CCH3]− is a convenient model system for the investigation
of the protonation process. This system is more symmetrical than mono-substituted deriva-
tives and the number of possible isomers is reduced, compared to them. The protonation
process of a given anion can be readily investigated. It is important to assess the differences
and similarities between the protonation of the original anion [B10H10]2− and the deriva-
tives based on it. In addition, the protonation of a given derivative enables the preparation
of a derivative with a degree of substitution equal to three. Thus, in the present research, a
combined theoretical and experimental study of the protonation of [2,6-B10H8O2CCH3]−

was carried out.

2. Results and Discussion
2.1. Experimental Protonation

First, the protonation process of [2,6-B10H8O2CCH3]− was conducted experimentally.
As described previously [63], systems of the general form [B10H9L]− have a lesser possibility
of forming a protonated complex than the [B10H10]2− anion. A possible reason for this is
that the introduction of a positively charged group reduces the ability of the cluster cage to
donate its electron density. Anion [B10H10]2− can be easily transferred into [B10H11]− in
the presence of trifluoroacetic acid CF3COOH. For the preparation of a protonated complex
of the general form [B10H9OR1R2*Hfac]0, however, trifluoromethanesulfonic acid CF3SO3H
was used. In the present work, trifluoroacetic acid CF3COOH was also used as a proton
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donor, but the protonation process did not take place. As in the case of oxonium derivatives
[B10H9OR1R2]−, the protonation of the derivative [2,6-B10H8O2CCH3]− was carried out in
the presence of CF3SO3H at room temperature (Scheme 1). Dichloromethane CH2Cl2 was
used as a solvent. The application of another solvent was impossible due to the interaction
of [2,6-B10H8O2CCH3*Hfac]0 with the molecules of the solvents. [2,6-B10H8O2CCH3*Hfac]0

was formed immediately after the addition of the acid. The distinctive feature of this
process is that the protonation of the cluster anion requires an excess of CF3SO3H acid.
For an investigation of these phenomena, the experiment with sequential addition of
CF3SO3H acid to a dichloromethane solution of the initial [2,6-B10H8O2CCH3]− derivative
was conducted. The process was monitored by 11B-NMR spectroscopy (Figure S1). Detailed
information about the NMR spectra of the initial and target substances and the correlation
of all signals are given below in the NMR spectra analysis section. When one equivalent
of acid was added to the system, the overall structure of the spectrum characteristic of
the original derivative was preserved, but one of the signals was broadened. This signal
corresponds to boron atoms in apical positions. The given pattern indicates the possibility
of the formation of intermolecular contacts between the carboxonium derivative and the
trifluoromethanesulfonic acid molecule. When one more acid equivalent is added to the
system, a more significant change in the spectrum was observed, which may indicate the
formation of molecular complexes between the [2,6-B10H8O2CCH3]− derivative and the
acid molecule. The formation of the target substance was also observed, as indicated by the
presence of a broadened signal in the region of 20 ppm. However, the yield of the target
product did not exceed approximately 10 percent. A more accurate estimation of the target
product yield could not be made due to the overlapping signals of the target product and
the cluster-acid complex. At ratios [2,6-B10H8O2CCH3]−:CF3SO3H equal to 1:3 and 1:4, an
increase in the yield of the target product was observed. In the case of the 1:4 ratio, the
yield of the target product reached approximately 40 percent. Finally, in the presence of 5
equivalents of CF3SO3H, complete protonation of [2,6-B10H8O2CCH3]− with formation
of [2,6-B10H8O2CCH3*Hfac]0 occurred. Further addition of the acid excess did not change
the form of the spectrum, indicating the completeness of the protonation process. It is
noteworthy that [2,6-B10H8O2CCH3*Hfac]0 is stable only as a solvent at room temperature
and without air.
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2.2. Fukui Function

In the next step, the potential position in the boron cluster for the coordination of an
additional proton atom was investigated. The protonation process of [2,6-B10H8O2CCH3]−

can be considered to be an electrophilic attack on the boron cluster. The Fukui functions
approach is the best tool for investigation of the most likely position in the molecule for an
electrophilic or nucleophilic attack [64–66]. Previously, it has been shown, with the help of
Fukui functions, that electrophilic attack on closo-borate anions is performed predominantly
in the apical position [67,68]. In the present investigation, Fukui functions were used with
different approaches employed for their calculation (Table S2). As in the case of [BnHn]2−

systems [68], the Hirshfeld approach is the best for calculating the electrophilic attack
positions. In the present case, electrophilic attack on closo-borate anions was performed
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predominantly in the apical position (the optimized structures of [2,6-B10H8O2CCH3]− and
[2,6-B10H8O2CCH3*Hfac]0 are shown in Figure 1). Thus, the data from the Fukui functions
analysis indicated that the Hfac was localized near apical positions (Table S3).
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Figure 1. Optimized structures of [2,6-B10H8O2CCH3]− and [2,6-B10H8O2CCH3*Hfac]0.

2.3. Protonation Mechanism

The mechanism of [2,6-B10H8O2CCH3]− protonation was investigated. Initially, com-
plex [2,6-B10H8O2CCH3

*CF3SO3H]− (Comp) formed endoergonically (by 23 kJ·mol−1, in
terms of Gibbs free energies). The main driving force behind the formation of this complex
is the dihydrogen bond between the proton atom from CF3SO3H and the equatorial hydro-
gen atom from the boron polyhedron. The contact length of Heq–H was equal to 1.60 Å. The
presence of the dihydrogen bond was proved with the help of QTAIM analysis of the Comp
structure (Figure 2). In addition, the C–F· · ·H–B contact was detected. According to the
main topological descriptors of electron density C–F· · ·H–B, contact can be characterized
as being very weak.
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Figure 2. Molecular graph showing the results of the topological analysis of the electron density
distribution in the model structure of the [2,6-B10H8O2CCH3

*CF3SO3H]− (Comp).

In the next step, the proton migrated to a boron polyhedral through the formation
of the transition state (TS). The preferred location for the proton attack was the face of
the polyhedron opposite the substituted position. The proton from CF3SO3H acid in TS
connected mainly with the boron atom in the apical position, which was demonstrated
with the help of QTAIM analysis (Figure 3). In the case of TS, the contact length between
the apical boron atom and the proton atom from CF3SO3H was equal to 1.48 Å. The overall
energy barrier of proton migration was 69 kJ·mol−1.
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Finally, [B10H8O2CCH3*Hfac]0 formed. The overall process of boron cluster protona-
tion is endoergonical (by 18.5 kJ·mol−1, in terms of Gibbs free energies) (Figure 4). Thus,
due to ∆G > 0 overall, a reaction did not occur in the presence of 1 equivalent of CF3SO3H.
This finding correlates well with experimental data and the main reason it occurred is the
weak stabilization of CF3SO3

− in the dichloromethane solution. Additional proton donors
are required to stabilize this anion. The use of an excess of trifluoromethanesulfonic acid
can provide this. The CF3SO3

− can be stabilized by hydrogen bonds between oxygen atoms
of this anion and hydrogen atoms of CF3SO3H. For example, complex between CF3SO3

−

anion and CF3SO3H was observed (Figure S8). This complex possesses strong hydrogen
bonds and the formation of a given system is an exergonic process. It is worth noting that
the addition of the acid excess also significantly changed the properties of the medium,
which in turn can change the solvation energy of the model system under consideration.
This aspect may also contribute to the fact that the protonation process becomes exergonic
when an excess of the acid is supplied.
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2.4. NMR Spectra Analysis
11B NMR spectra were used for the confirmation suggestion based on the Fukui index

results and to establish the structure of the resulting complex. It is useful to consider
the spectra of the [2,6-B10H8O2CCH3]− anion. Due to the high symmetry of the given
system, the two boron atoms in the substituted positions and the two apical atoms are
pairwise equivalent. Atoms in equatorial positions are split into two groups of signals
(Figure 5). Thus, as described previously, the 11B NMR spectra of the initial anion were
characterized by four signals, as follows: a signal at 0.0 ppm with integral intensities I = 2,
corresponding to the boron atoms from equivalent substituted positions. This signal did
not split in the absence of broadband decoupling; a signal at −7.1 with integral intensities
I = 2, corresponding to boron atoms from equivalent apical positions; and signals from
equatorial positions appeared at −17.6 (I = 2) and −30.0 (I = 4). This interpretation of
the spectrum is based on previously obtained spectral data for several closo-decaborate
derivatives with B-O exo-polyhedral bonds. This approach does not, however, enable a
complete correlation of signals and leaves some room for speculation.
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The theoretical calculation of chemical shielding enabled the full correlation of the
signals in the 11B NMR spectra with the boron positions in a cluster cage. Several com-
putational levels for calculating NMR shifts were tested: wB97X-D3, B3LYP, and B97
DFT-functionals with 6–31++G(d,p), IGLO-III, and EPR-III basis sets (Table S5). To evaluate
the difference between the theoretical and experimental data, the values of the root-mean-
square deviation (RMSD) were used. The wB97X-D3 level of theory provided the worst
results, with all basis sets. The values of RMSD were quite large (the range of RMSD values
lay in the range 46–47) and applying this method did not enable the deciphering of the
11B spectra of given compounds. Improved results were obtained with the application of
the hybrid functionals B3LYP and B97. In the case of the B97 functional, the best values of
RMSD were obtained (Table S5). The RMSD value for the B97/IGLO-III level of theory was
equal to 3.7. Thus, applying the results of the theoretical calculation, the assumption about
the chemical shifts of atoms in the substituted and apical positions proved to be correct. In
addition, the signal at −17.6 ppm corresponded to boron atoms from the equatorial belt in
the B3 and B9 positions. The signal from −30.0 ppm corresponded to atoms in the B4, B5,
B7, and B8 positions.
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The 1H NMR spectra of [2,6-B10H8O2CCH3]− were considered. For a simple view of
the spectrum and the correct correlation of signals, it is best to use 1H-11B NMR spectra
(Figure S2). Some of the signals appeared, however, as broadened lines, making it difficult
to identify them. Signals from the methyl substituent appeared at 2.18 ppm, and signals
from apical positions at 3.16 ppm were well represented. Signals from equatorial positions
appeared at 1.79, 0.39 and 0.12 ppm.

The addition of a proton reduced the symmetry of the resulting system and the spectra
of [2,6-B10H8O2CCH3*Hfac]0 were more complicated than those of [2,6-B10H8O2CCH3]−.
Boron atoms were split into separate signals. Thus, it was impossible to elucidate the
structure of [2,6-B10H8O2CCH3*Hfac]0 by only applying the 1D 11B spectra. To decipher
these spectra, the 11B-11B COSY spectra and theoretical calculations were used (Figure S5).
This type of spectrum indicates that, contrary to the case of the [B10H11]− anion, the proton
in this anion does not migrate along one of the equatorial belts but is localized on one of the
edges. Based on the calculated data, the most stable isomer Iso1 was found. In this isomer,
the proton was localized on the edge opposite the substituted position. The structure of this
isomer is described in more detail below. Similar to the initial anion [2,6-B10H8O2CCH3]−,
the B97 functional worked well for the prediction of NMR spectra. The RMSD value for the
B97/IGLO-III level of theory was equal to 3.5 (Table S5).

As in the case of [B10H11]−, the anion [2,6-B10H8O2CCH3*Hfac]0 has two non-equivalent
apical positions. The first of them is bonded with additional proton atoms Hfac and the
second one is not. Signal from the boron atom of the apical position B10, which was not
bonded with Hfac, shifted into a low field and appeared at 19.4 ppm. Similar observations
were made in the case of the apical position B10 of the [B10H11]− anion. In addition,
the existence of this shift was proved by theoretical calculation. According to theoretical
calculation, the signal of the apical position B10 appeared at 13.4 ppm. The chemical shift
from the apical position B1, which bonded with Hfac, shifted in the high field and appeared
at −26.9 ppm. The boron atoms in the substituted positions were also not equivalent in the
case of a protonated cluster. The signal at 0.2 ppm correlated with the B10 position of the
boron cluster in the 11B-11B COSY NMR spectra, thus it corresponded to the B6-substituted
position, which is opposite to the apical position with Hfac. Another substituted position
was found at−1.6 ppm. At−15.4 ppm, the signal from the B4,5 positions appeared. Signals
from the B3 and B7 positions were relatively close, appearing at −19.0 and −20.1 ppm,
respectively. Signals from the B9 and B8 positions had the greatest negative chemical shift
value at −26.1 and −27.8 ppm, respectively.

In the 1H NMR spectra of [2,6-B10H8O2CCH3*Hfac]0, the signal of the methyl group
was observed at 2.45 ppm (Figure S3). Signals from the exo-polyhedral cluster were in
the range 5.16–0.33 ppm. It is noteworthy that the signal at 5.16 ppm corresponded to a
hydrogen atom connected with a boron atom in the B10 position. This assumption is based
on the result of 1H NMR spectra modeling. According to the results of the calculations,
the proton in the downfield region belonged to the given atom. The signal from Hfac

,
according to theoretical calculations, was in the downfield region at 0.00 ppm. In the
experimental spectra, the most upfield signal was at 0.33 ppm. In the 13C NMR spectra
of [2,6-B10H8O2CCH3*Hfac]0, the signal of the carbonyl group carbon atom was observed
at 194.0 ppm and the signal of the methyl group carbon atom was observed at 20.10 ppm
(Figure S4). In the IR-spectra, the B-H bands were shifted from 2490 cm−1 in the initial
[2,6-B10H8O2CCH3]− to 2540 cm−1 in [2,6-B10H8O2CCH3*Hfac]0 (Figure S6).

2.5. Structure Elucidation

The structure of [2,6-B10H8O2CCH3*Hfac]0 was examined using DFT calculation. Sev-
eral possible isomers were calculated (Figures 6 and S7, Table S4). Calculations were
performed in the gas phase and considering the solvation effect. In both cases, the isomers
differed significantly in terms of energy. The Iso1 and Iso2 isomers were the most thermody-
namically stable (Figure 6). In these isomers, an extra proton, in addition to the equatorial
boron atoms, was localized on the apical boron atom. The Iso1 in which the proton was



Int. J. Mol. Sci. 2022, 23, 4190 8 of 13

localized on the edge opposite the substituted position had the highest negative Gibbs
energy among all isomers. The energetic barrier for the migration of the proton atom from
Iso1 to Iso2 was equal to 30 kJ·mol−1in the gas phase and 25 kJ·mol−1 in dichloromethane
solution. Isomers with the localized proton only on equatorial boron atoms were the least
thermodynamically stable and had the smallest negative Gibbs energy values. The energy
barrier between Iso1 and Iso3 was 50 kJ·mol−1 for both the gas and dichloromethane phase.
This energy barrier was less than that of the anion [B10H11]−. Thus, Iso1 was the most
stable isomer among the other possible structures of [2,6-B10H8O2CCH3*Hfac]0.
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The geometric parameters of this isomer were discussed in detail (Table S1). The
bond length between Hfac and the apical boron atom was 1.28 Å, whereas the analogous
parameter for the bond between Hfac and the equatorial boron atom was 1.42 Å. The bond
length between equatorial boron atoms and the apical boron atom that bonded with the
proton increased compared to the same parameter in the original cluster. This parame-
ter increased from 1.72 to 1.84 Å. The phenomena of B-Hfac contacts were investigated
using Wiberg bond order indices and QTAIM analysis (Figure 7). Applying the QTAIM
method, a molecular graph of the electron density distribution in [2,6-B10H8O2CCH3*Hfac]0

was obtained. The molecular graph indicated that Hfac has interactions with apical and
equatorial boron atoms. The Bap–Hfac interaction was characterized by a greater value of
the Wiberg bond order index compared to that of Beq–Hfac. The Bap–Hfac interaction was
also characterized by greater values of ρ(r), total energy at the bond critical point, and the
delocalization index. These data indicate that Hfac is predominantly bonded with the boron
atom in the apical position. An analogous investigation was carried out for the case of
the [B10H11]− anion. For this anion, Hfac only bonded with the boron atom in the apical
position. This contact was characterized by a longer Bap-Hfac bond and smaller values of
the main bond descriptors. Thus, in the case of [2,6-B10H8O2CCH3*Hfac]0 Bap–Hfac has
greater covalent interaction than the [B10H11]− anion.
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The values of the main bond descriptors indicated that the Bap–Hfac interactions
were significantly weaker than those of the covalent interactions between boron atoms
and exo-polyhedral hydrogen atoms. It is noteworthy that the values of the main bond
descriptors of B-H and B-O bonds were greater in the case of [2,6-B10H8O2CCH3*Hfac]0

than in [2,6-B10H8O2CCH3]−. This indicates that the strength of these contacts increases.
A possible reason for these phenomena may be the reduction in the total charge in the
system compared to that of the initial anion [2,6-B10H8O2CCH3]−. The atomic charges on
the boron atoms are reduced and the electron repulsion in the exo-polyhedral bonds is
also reduced.

3. Materials and Methods
3.1. Computational Details

The full geometry optimization of all model structures was carried out at theωB97X-
D3/6–31++G(d,p) level of theory [69,70] with the help of the ORCA 4.2.1 program package
(Mülheim an der Ruhr, Germany) [71] (the atom-pairwise dispersion correction with
the zero-damping scheme was utilized [70]). The convergence tolerances for the ge-
ometry optimization procedure were as follows: energy change = 5.0 × 10−6 Eh, max-
imal gradient = 3.0 × 10−4 Eh/Bohr, RMS gradient = 1.0 × 10−4 Eh/Bohr, maximal
displacement = 4.0 × 10−3 Bohr, and RMS displacement = 2.0 × 10−3 Bohr. Spin-restricted
approximation for the model structures with closed electron shells was used. Symmetry
operations were not applied during the geometry optimization procedure for any of the
model structures. The Hessian matrices were calculated numerically for all optimized
model structures in order to prove the location of correct minima on the potential energy
surfaces (no imaginary frequencies for all reactants, intermediates, and final products;
only one imaginary frequency for transition states). The connectivity of each reaction
step was also confirmed using the intrinsic reaction coordinate (IRC) calculation from
the transition states [72–74]. Solvent effects were considered using the Solvation Model
based on Density (SMD) [75]. The natural bond orbital (NBO) method was emplyed,
using the NBO7 program package (Madison, WI, USA) [76]. Topological analysis of the
electron density distribution, using the Quantum Theory of Atoms in Molecules (QTAIM)
formalism developed by Bader [12], was employed with the Multiwfn program, version 3.7
(Beijing, China) [77]. The Cartesian atomic coordinates for all optimized equilibrium model
structures are presented in the Supplementary Materials. Visualization of the optimized
structures was carried out with the help of ChemCraft program version 1.7 (Ivanovo, Rus-
sia) [78]. In the case of the molecular graph showing the results of the topological analysis
of the electron density distribution visualization, the Multiwfn program (version 3.7) was
employed [77].
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3.2. IR Spectra

The IR spectra of the prepared compounds were recorded on an Infralyum FT 02
Fourier transform spectrometer (Lumex Instruments Research and Production Company,
Fraserview Place, Vancouver, BC, Canada) in the region of 300–4000 cm–1 and with a
resolution of 1 cm–1. Samples were prepared as dichloromethane CH2Cl2 solution.

3.3. NMR Spectra

The NMR (1H, 11B, 13C) spectra of the solutions of the studied compounds in CD3CN
were recorded on a Bruker Avance II 300 spectrometer (Ettlingen, Germany) operating at
300.3, 96.32, and 75.49 MHz, respectively, using an internal deuterium lock. Tetramethylsi-
lane and boron trifluoride etherate were used as external references.

3.4. Protonation of ((C6H5)4P)[2,6-B10H8O2CCH3]

CF3SO3OH (0.018 mL, 1.5 mmol) was added to a solution of ((C6H5)4P)[2,6-B10H8O2CCH3]
(20 mg, 0.3 mmol) in deuterated dichloromethane CD2Cl2 (0.5 mL), in a dry argon atmo-
sphere. The resulting mixture was kept at room temperature for 10 min. IR-spectra
(dichloromethane solution): V(BH) 2590 cm−1, 2555 cm−1. 11B-{1H} NMR (CD2Cl2, ppm):
19.2 (s, B10, I = 1), 1.4 (d, B6, I = 1), −0.2 (d, B2, I = 1), −15.2 (d, B4, I = 1), −15.7 (d, B3,
I = 1), −19.1 (d, B5, I = 1), −20.1 (d, B9, I = 1), −24.4 (d, B7, I = 1), −26.1 (d, B1, I = 1), −27.8
(d, B8, I = 1). 1H NMR (CD2Cl2, ppm): 11.75 (CF3SO3H), 7.97 (m, Ph4P+, I = 4), 7.80 (m,
Ph4P+, I = 8), 7.66 (m, Ph4P+, I = 8), 5.17 (s, B(10)H, I = 1), 2.68 (s, B(3)H, I = 1), 2.50 (s, CH3,
I = 3), 2.03 (s, B(9)H, I = 1), 1.60 (s, B(4)H, I = 1), 1.32 (s, B(5)H, I = 1), 0.93 (s, B(7)H, I = 1),
0.62 (s, B(8)H, I = 1), 0.36 (s, Hfac, I = 1). 13C NMR (CD2Cl2, ppm): 194.7 (O2CCH3), 140.6
(Ph4P+), 139.8 (Ph4P+), 135.8 (Ph4P+), 122.7 (Ph4P+), 118.1 (CF3SO3H), 20.1 (O2CCH3).

4. Conclusions

The process of protonation of the carboxonium derivative [2,6-B10H8O2CCH3]− was
investigated. In the case of the carboxonium derivatives of closo-decaborate anions, tri-
fluoromethanesulfonic acid CF3SO3H was used as a proton donor. By considering the
reaction mechanisms, the reason for the excess of CF3SO3H was established. The excess
acid was required to stabilize the anion CF3SO3

−, which in turn caused the total proto-
nation process to become exergonic. In contrast to the anion [B10H11]−, in the case of
[2,6-B10H8O2CCH3*Hfac]0, the proton did not migrate along the equatorial belt and was lo-
calized on a facet opposite the B atoms bonded with the exo-polyhedral substituent. Based
on theoretical modeling data, it was shown that the proton was predominantly bound to
the apical boron atom. In addition, the 11B-1H NMR spectra of the final compound were
quite complicated and difficult to decipher. Using theoretical modeling data, all signals
were correlated with the positions of the boron atoms in the cluster. Theoretical calculations
at the B97/IGLO-III level of theory corresponded perfectly with the experimental 11B-1H
NMR spectra data. [2,6-B10H8O2CCH3*Hfac]0 can be considered to be a promising synthon
for the preparation of trisubstituted derivatives of closo-borate anion.
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