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Abstract: Big data in health care is a fast-growing field and a new paradigm that is transforming
case-based studies to large-scale, data-driven research. As big data is dependent on the advancement
of new data standards, technology, and relevant research, the future development of big data applica-
tions holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly
growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics,
glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and in-
terpretation and open new computational gateways to address these issues. The design of new robust
algorithms that are most suitable to properly analyze this big data by taking into account individual
variability in genes has enabled the creation of precision (personalized) medicine. We reviewed
and highlighted the significance of big data analytics for personalized medicine and health care by
focusing mostly on machine learning perspectives on personalized medicine, genomic data models
with respect to personalized medicine, the application of data mining algorithms for personalized
medicine as well as the challenges we are facing right now in big data analytics.
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1. Introduction

Personalized medicine is an evolving field of science aimed in using various diagnostic
tests to determine which medical treatments will work best for each individual patient. The
progress of personalized medicine over the ages can be characterized by several milestones.

1. More than two and a half millennia ago, Hippocrates stated: “every human is distinct,
and this affects both the disease prediction and the treatment”.

2. In 1956, “favism”, the genetic basis for the selective toxicity of fava beans, was
discovered to be due to a deficiency in the metabolic enzyme G6PD.

3. In 1985, Renato Dulbecco realized that, in order to advance cancer research, it was
necessary to sequence the human genome.

4. In 1988, Genentech Inc. sequenced the entire human growth hormone locus (a world
record), making evident the feasibility of sequencing the human genome.

5. In 1990, the Human Genome Project (HGP) was launched, and the first draft was
published in 2001, with its final version in 2003.
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6. Since the early 1990s, individualized treatments tailored to the genome of each patient
have been envisioned but rarely realized.

7. In 1994, a diagnostic test for the prediction of the success of rHGH replacement therapy
was developed, being the earliest registry of a companion molecular diagnostics
(CMDx) test ever invented.

8. In 1998, when the FDA approved Herceptin (anti-EGFR mAb for EGFR+ breast
tumors) and HerceptTest (to detect such tumors), it became the first “official” CMDx
invented. Since then, a growing list of diagnostic packages/personalized medicine
therapies has received, from the FDA, labels recognizing and recommending them.

The human genome is basically the foundation of personalized medicine, which
is considered as the next generation of diagnosis and treatment. This review describes
the progress of personalized medicine over time, emphasizing the important milestones
achieved through time. Starting from the treatment of malaria, as the first more personal-
ized therapeutic approach, it highlights the need for new diagnostic tools and therapeutic
regimens based on the individual’s genetic background. Cutting-edge biochemical ad-
vances including single-nucleotide polymorphisms (SNPs), genotyping, and biochips have
made personalized medicine a reality, justifying the use of the terminology in the last few
decades. Variations such as SNPs, insertions and deletions, structural variants, and copy
number variations in the human genome play a distinctive role in the manifestation and
progression of diseases such as cancer, diabetes, and neurodegenerative and cardiovascular
diseases. Hence, biomarkers are being investigated as a way of predicting certain diseases
and also to identify patient subgroups that respond only to specific drugs. The discovery
of the association between antimalarial drugs and G6PD deficiency has opened up a new
perspective regarding the adverse effects of these drugs as well as a more personalized
approach to the disease. This was one of the first examples that led to a big step toward the
application of a more personalized therapy, which was established as a term many years
later in 1991 and is currently still quite limited. Since that time, several clinical trials have
proven the efficacy of trastuzumab, also resulting in establishing routine HER-2 testing
in breast cancer patients and dramatically changing the therapeutic approach to those
carrying the mutation. This gene is a great milestone in applied personalized medicine,
clearly showing that the right choice of a drug, based on the genetic background of a
patient, can have positive effects on their life.

Massive accumulation of large-scale molecular and clinical data in recent decades
has radically changed personalized medicine and has raised great expectations concern-
ing its impact on biomedical research and health care [1,2]. Personalized medicine is a
practice of medicine that uses an individual’s genetic profile to guide decisions made
regarding the prevention, diagnosis, and treatment of disease [3]. Personalized or pre-
cision medicine is an emerging medical practice based on a data-driven approach that
considers relevant medical, genetic, behavioral, and environmental information about
an individual to determine patient-specific therapy [2,4,5]. By linking together diverse
datasets to reveal hitherto-unknown casual pathways and correlations, big data allows
for far more precision and tailoring than was ever before possible [4]. Recent scientific
advancements in high-throughput, high-resolution data-generating technologies enables
cost-effective analysis of big datasets on individual health [6]. However, to analyze and
integrate such large information, there is a need for new computational approaches such
as faster, more integrated processors, larger computer memories, improved sensors, new
much sophisticated algorithms, methodologies and cloud computing, which may guide
future clinical practice by providing clinically useful information [6,7]. The development of
big data approaches has enhanced the ability to probe which parts of biology may have
functional and dysfunctional activity. The basic aim of precision medicine is to support the
practicing clinician by making that information of pragmatic value. Precision medicine can
be succinctly defined as an approach to provide the right treatments to the right patients
at the right time [8]. However, for most clinical problems, precision strategies remain
aspirational. The challenge of reducing biology to its component parts, then identifying
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which can and should be measured to choose an optimal intervention, the patient popu-
lation that will benefit, and when they will benefit most, cannot be overstated. However,
the increasing use of hypothesis-free, big data approaches promises to help us reach this
aspirational goal [9].

This review article will offer an overview on recent advancements and an update on
important developments in the analysis of big data and future strategies for personalized
medicine. Technical and methodological approaches have been systemically discussed
elsewhere and we direct the reader to these excellent reviews [10]. Here, we identify key
conceptual and infrastructural challenges and provide a perspective on how advances can
be and are being used to arrive at precision medicine strategies with specific examples [9].

2. The Conceptualization of Big Data

Distinct dimensions are included in the definition of “big data”, namely, volume,
velocity, variety, value, variability, visualization, virality, and veracity, which describes the
massive volume of structured, semi-structured, and unstructured data (Figure 1) [11–14].
According to the Health Directorate of the Directorate-General for Research and Innovation
of the European Commission, big data can be defined as “Big data in health encompasses
high volume, high diversity biological, clinical, environmental, and lifestyle information
collected from single individuals to large cohorts, in relation to their health and wellness
status, at one or several time points” [15]. Various sources of big data in the health care
industry and in biomedical research include medical records of patients, results of medical
examinations, and hospital records, etc. [16]. In addition, advances in technology have
already created and continue to create thousands or even millions of measurements that
include the sequencing of DNA, RNA, and the characterization of proteins: their sequence,
structure, posttranslational modifications, and function, alongside their clinical features. In
order to extract useful information from this huge amount of data, high-end computing
solutions, along with appropriate infrastructure to systematically generate and analyze
big data, are urgently needed. Moreover, advanced machine learning algorithms and
techniques (such as deep learning, and cognitive computing) represent the future toolbox
and emerging reality, which can be effectively applied to deliver integrative solutions for
multi-view big data analysis in order to explain an event or predict an outcome [2].
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Despite the recent advancements in machine learning-based solutions for big data,
currently, there exist only a few examples that have considerable influence on current
clinical practice. Reasons might be a lack of validation via prospective clinical trials,
unsatisfactory performance of predictive models, and difficulties in interpreting complex
models [16].

It is important to note that when working with genetic data, we should consider
that the number of examples (patients) is usually very small in relation to the number
of genes or genetic variables that are measured. Therefore, the solution is bounded by
the number of patients instead of the number of variables, which makes it a little big data
problem. This causes the uncertainty space of the mathematical models that are built to
solve this kind of problems and make decisions (regressors or classifiers) to have a huge
uncertainty space that contains the set of models that predict the observed data within the
same error bounds. These models are located in flat curvilinear valleys of the cost function
landscape [17,18]. This holds independently of the inverse problem that it is being solved
and concerns the uncertainty analysis of inverse problems and classification problems,
which are by definition ill-posed. In this way, these problems are very difficult to solve since
the noise from the data might dramatically perturb the solution by generating spurious
unphysical solutions. Therefore, the best way to deal with such problems is by reducing the
dimension to perform a robust uncertainty analysis of the corresponding medical decision
problem [19,20]. This kind of approach needs robust sampling methods to consider possible
multiple scenarios.

Data formatting and the storing of data also remain as big challenges in the past years.
However, the last decade has seen remarkable progress in the development of standard
genomic data formats such as FASTQ, BAM/CRAM, and VCF files [21]. However, such
standardization is incomplete and may lead to incompatibility between the inputs and
outputs of different bioinformatics tools, or worse, inaccurate results. Therefore, imperfect
standardization has allowed for the sharing of genomic data across institutions into either
aggregated databases such as ExAC, GNOMAD [22] or as federated databases such as
the Beacon Network [23]. ExAC, GNOMAD, and the Beacon Network databases provide
support in the understanding of genetic variations and identifying variants that are unique
within a specific ethnic group [22]. However, despite these successes with upstream
genomic data formats, key challenges are still present related to downstream data formats.
This often results in non-uniform analysis, and indeed, re-analysis of the same data using
different pipelines yields different outcomes [24,25].

3. Computational Approaches toward Personalized Medicine

Personalized medicine refers to the patient’s treatment based on their personal clinical
characterization [26]. The patient’s individual characteristics are used to modify treatment
in a way that might be more intricate compared to the standard course [27]. It is evident
from recent advances in the pharmacological and genetic behavior of various drugs that ge-
netic variations in a single individual could lead to differences in the response to drugs [28].
All of these factors conspire with the notion of personalized medicine. The main aim of
personalized medicine is to achieve the right treatments being given to the right patients.

There has been a rapid development in various high-throughput technologies that
has headed toward the addition of a large amount of molecular and cellular biology-
related data, providing unprecedented insights into various cellular processes. These
computational approaches are now exploiting these extensive data to better understand
patient diagnosis, various underlying disease mechanisms, and possible treatment options
(Figure 2). Based on genomic, epigenomic profiles, and drug and treatment responses,
computational methods can classify the patients into different subtypes that can be helpful
in disease prediction, the diagnosis of various cancers, generating disease decision rules,
and personalized recommendation systems [29]. These advancements have led many
research groups to investigate different aspects of personalized medicine such as diagnosis,
prognosis, and pharmacogenomics through computational approaches [30]. Moreover,
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such approaches not only refine the existing disease maps but are also beneficial in the
development of a predictive model of various diseases [29]. Such analysis is also helpful
to differentiate the cellular and molecular mechanism at the normal or control state in
comparison to the disease progression state. Thus, these computational approaches for
personalized medicine are likely to significantly reshape the therapeutic field in the coming
decades. Together, these approaches will allow for the development of various predictive
models against various diseases, especially the rare ones.
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Nowadays, computational models are integrated in different fields in medicine and
drug development, ranging from disease modeling and biomarker research to the as-
sessment of drug efficacy and safety [31]. The added value of such computational mod-
els, sometimes called digital evidence, in medicine is also acceptable by the scientific
community [32,33] and the U.S. Food and Drug Administration (FDA) or the European
Medicines Agency (EMA) [34,35]. There are two types of models: mechanistic models and
data derived models. The basic aim of mechanistic models is the structural representation
of the governing physiological processes in the model equations to support a functional
understanding of the underlying mechanisms. On the other hand, data-driven approaches
(machine learning (ML) and deep learning (DL) use algorithms and artificial intelligence
(AI) methodology [36,37].

3.1. Molecular Interaction Maps (MIMs)

MIMs actually represent the physical and causal interactions based on knowledge
based information among biological species in the form of networks [38]. MIMs explore the
information about different mechanistic pathways and regulatory modules involved in a
disease such as Parkinson’s [39] or signaling in cancer [40], respectively. The basic principle
of MIMs uses graph-theory concepts to identify network static properties such as (i) the
identification of critical nodes; (ii) community detection; and (iii) prediction of hidden
links. Furthermore, upon overlying expression data, such maps serve as visualization tools
for the activity level of regulators and their targets of established disease markers, which
provide the simplest mechanistic visualization of data [31].

3.2. Constraint-Based Models

Genome-scale metabolic (GEM) models are the best example of constraint-based
models that provide a mathematical framework to understand the metabolic capacities of a
cell, enabling system wide analysis of genetic perturbations, exploring metabolic diseases,
and finding the essential enzymatic reactions and drug targets [41]. Most importantly, the
GEM modeling approach is being used in multiple medical domains such as cancer [42]
obesity [43], and in Alzheimer’s disease [44].

3.3. Boolean Models (BMs)

BMs are the simplest logic-based models in which nodes are assigned one of two
possible states: 1 (ON, activation) or 0 (OFF, inactivation) [45]. Moreover, the regulatory
relationship between regulators (upstream nodes) to targets (downstream nodes) are ex-
pressed by logical operators such as AND, OR, and NOT, respectively. Therefore, BM does
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not require detailed kinetic data for parameter estimation, which makes them useful for
application to large biological systems. In the context of systems medicine, this approach is
often applied for cancer research [46,47].

3.4. Quantitative Models (QMs)

QM are like ordinary differential equation (ODE)-based approaches used to analyze
the quantitative behavior of a biochemical reaction with time. QMs consist of a set of
differential equations containing variables and parameters that describe how the system
responds to different stimuli or perturbations [48]. This quantitative modeling approach
explains the biological-systems dynamics in detail and applies to a single pathway due to
the requirement of detailed kinetic data for parameter estimations. Most importantly, in
personalized medicine, ODE models are applied for individual biomarker discovery [49],
drug response, and tailored treatments [50].

3.5. Pharmacokinetic Models

Pharmacokinetic models explain the concentration of a drug in plasma or different
tissues. Therefore, drug pharmacokinetics are promptly used as a surrogate for drug-
induced responses. Therefore, pharmacokinetic models can be described by compartmental
pharmacokinetic (PK) modeling [51] or by physiologically based PK (PBPK) modeling [52].

4. Machine Learning Perspectives on Personalized Medicine

Machine learning imposes a major societal impact in many computational biology ap-
plications [53,54]. It has also witnessed dramatic progress as it attempts to identify patterns,
rules, and many statistical dependencies in large available datasets. Nowadays, person-
alized medicine in relation to machine learning programs is considered as an emerging
reality and is strongly connected with genomics and proteomics datasets. Machine learning
approaches have been applied to massive data collected through genome sequencing, with
the aim to precisely define what treatment method will work for an individual [55]. These
methodologies have provided deep understanding of the underlying disease mechanisms,
while integration of the assorted patient data results in amended and robust biomarker
discovery for various disease diagnoses. It has been assessed that without machine learning
approaches, the full potential of personalized medicine is impossible to comprehend in clin-
ical practice. Based on machine learning approaches, various algorithms focused on specific
diseases have been proposed. Among them, there is an FDA approved MammaPrint prog-
nostic test for breast cancer based on 70 gene signatures [56]. MammaPrint is a microarray-
based signature method using formalin-fixed-paraffin-embedded (FFPE) or fresh tissue
for microarray analysis [57,58]. Moreover, the BluePrint test has also demonstrated the
expression data, which could be supportive for personalized medicine in MINDACT and
IMPACt trials [59].

Similarly, Bejnordi et al. reported an algorithm that is trained to detect metastases in
various lymph nodes in stained tissue sections of breast cancer [60]. A machine learning
echocardiography algorithm proposed by Madani et al. provided an accuracy of greater
than 90% for the diagnosis of cardiac disease [61]. For the early detection of Alzheimer’s
disease, Ding et al. proposed a machine learning based system with high accuracy and
sensitivity [27].

Machine learning and AI approaches work with different types of data including
genetic, genomic [62], epigenomic [63,64], transcriptomic [65], metabolomic data [66],
medical images, biobanks data [67], electronic health records (EHR) [68], scientific literature
data, etc., and are able to combine all of this information to design optimum classifiers [69].
In this respect, two problems including regression and classification problems are of
interest. The difference between them is that in regression, the aim is to predict the value
of continuous and real value quantities, for instance, to predict the level of cholesterol
in blood based on other biomarkers. In the case of classification problems, the aim is to
predict the label of a set of individuals that are gathered in a broad class, for instance, the
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patients that have a survival time greater than the average from the rest. The interest in
formulating these prediction problems as classification problems comes from the reduction
in the uncertainty space. Particularly, phenotype prediction problems are of great use to
better understand the altered genetic pathways that are responsible for the development of
the disease and to speed up the drug discovery process [70].

5. Modeling Genetic Data with Translational Purposes

The genetic and epigenetic regulation of the altered pathways in a cell is one of the
main topics in pharmacogenomics and consists of understanding how a mutation in the
DNA impacts the transcriptome and the proteome downstream [70–72]. Additionally,
the epigenomic regulation of the transcriptome can be achieved via epigenomics through
chemical compounds that bind to the DNA and alter gene expression [73]. Transcriptomics
explores how gene expressions, genetic pathways, and regulatory networks are altered
in each phenotype, for instance, disease vs. healthy controls. Based on these findings, it
is possible to perform drug repositioning using connectivity map (CMAP) technologies
provided by the Broad Institute [74]. Drug repurposing, also called drug repositioning, of
the already known FDA approved compounds for new therapeutic uses is a very effective
methodology to find a cure in rare diseases where the economic constraints for new
drug development are very important [75]. There are multiple examples of personalized
medicine being used against multiple diseases. For example, Herceptin (trastuzumab),
used in breast cancer, is directed to the 30% of breast cancers with an overexpression of the
HER-2 protein, which responds to Herceptin. Gleevec (Imatinib mesylate) is used to treat
chronic myeloid leukemia, which has increased life expectancy from 5% to 95% at five years.
Zelboraf (Vemurafenib) is used to treat melanoma, where the late-stage prognosis has been
dismal, but 60% of patients have a defect in their DNA, and this drug benefits those with the
V600E defect. Other successful personalized medicine examples of “treatment–biomarker”
combinations are in colon cancer (Erbitux–EFGR) and lung cancer (Xalkori–ALK) [76].

Two other fields of active work are de novo drug design [77] and the optimization of
gene therapies [78]. Drug discovery is a very challenging problem due to the high attrition
rates in de novo design due to the lack of the efficacity of the new compounds and due
to possible development of undesirable side effects [79–81]. The computational problem
consists of finding a new compound that provides the desirable structure–activity relation-
ships (SAR data) [82,83]. This is a very challenging problem due to the high dimensionality
of the databases to explore the chemical space, which can be cast as an optimization and/or
sampling problem. Local optimization approaches and deep learning methodologies can
deal with such problems, but they are unable to perform a complete sampling of the
chemical space due to the curse of the dimensionality problem. Additionally, local opti-
mization methods might converge to suboptimal solutions that might be far away from the
global solution.

Gene therapy is an experimental technique that uses genes to treat or prevent disease [84].
Several approaches to gene therapy are tested:

1. Replacing a mutated gene that causes disease with a healthy copy of the gene.
2. Inactivating, or “knocking out,” a mutated gene that is functioning improperly.
3. Introducing a new gene into the body to help fight a disease.

This promising treatment technique remains risky and requires computational meth-
ods to understand the effect of these therapies on gene expression and on proteomics, and
how they can affect the health of the patients.

6. Data Mining Tools/Algorithms and Their Applications for Personalized Medicine

The machine learning algorithms are significant to interpret the genomic datasets
and help in the design of personalized medicines. The use of multimodal data helps in a
deeper analysis of large datasets, which improves the understanding of human health and
disease by leaps and bound. Algorithms represent the terminal node in the final predictions
from big data [85]. Lee and coauthors proposed a person-centered data mining algo-
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rithm that could simultaneously integrate both genetic information and baseline profiles
to identify which individual person will benefit from a specific antipsychotic drug among
schizophrenic patients. The proposed algorithm can be easily adopted in many other
clinical practices for personalized medicine [86]. To analyze metagenomes from novel envi-
ronmental niches, Ulyantsev and coauthors developed an algorithm named “MetaFast”,
which enabled them to compare the microflora of a healthy person with the microflora of a
patient. As a result, specialists would be able to detect previously unidentified pathogens
and their strains, which can aid in the development of personalized medicine [87]. Further-
more, it must be emphasized that the idea behind algorithms is not to replace physicians,
but to provide them with tools that support their decisions based on the wealth of available
biomedical knowledge and data-driven criteria.

6.1. Pattern-Based Approaches in Data Mining for Analyzing Patient Data

Pattern mining concentrates on identifying rules that describe specific patterns within
the data. Pattern mining is the discovery of sequential patterns, for example, sequences of
errors or warnings that precede equipment failure may be used to schedule preventative
maintenance or may provide insight into a design flaw. Genomic and medical studies
have continuously been collecting a huge amount of data on a daily basis and analysis of
these data is becoming a challenge with every passing day. Analyzing this huge amount of
data needs some practical approaches to deal with it. Sequence data analysis approaches
provide several different ways to uncover the precious hidden knowledge in data bulks and
to discover novel or important patterns related to a particular disease or individual patient.
Here, in this section, we will discuss some of pattern-based approaches (e.g., clustering and
temporal pattern analysis) commonly utilized for data mining to analyze the patient’s data.
Temporal data are more often related to clinical studies and mainly depend on time series,
with or without a sequence of events (i.e., the time-based quantitative measurements or
sequence of temporal events related to particular clinical study) [88].

6.2. Network Mining for Personalized Medicine and Health Care

To discover the meaningful patterns, interactions, relations, and clinical rules among
the variants, data mining and machine learning methods are used to build models for
systems biology. Data mining is the “process of sorting through large datasets to identify
patterns and establish relationships to solve problems through data analysis”. The medical
industry collects a dazzling array of data, most of which are electronic health records (EHRs)
collected by HIPAA covered health care facilities. According to a survey by PubMed, data
mining is becoming increasingly popular in health care, if not increasingly essential. The
huge amounts of data generated by health care EDI transactions cannot be processed and
analyzed using traditional methods because of the complexity and volume of the data.
Data mining methods include artificial neural networks, clustering, Bayesian networks,
decision trees, and genetic algorithms. However, to classify different variants according
to the classifications defined by biomedical experts, machine learning techniques are
useful, and multiple drug targets could be found by using these techniques. Similar to
clustering, the expression of big data at the level of genes and proteins can help in the
identification of biomarkers and target candidates [9]. In personalized medicine, medical
records representing the very personal biomedical information (individually identifiable
health information) are guarded very carefully by the Health Insurance Portability and
Accountability Act (HIPAA) and are not available openly. These types of data are not
shared centrally to prevent the misuse of big data methods. Furthermore, medical records
store the standard medical and clinical data gathered from the patients. There are many
errors such as altered data quality and misinterpretations, improper grammatical use,
spelling errors, local dialects, and semantic ambiguities, which increase the complexity
of data processing and analysis for medical records. Therefore, there is a strong need for
the data preprocessing of medical records such as data cleansing, data integration, data
transformation, data reduction, and privacy protection [9].
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6.3. Big Data Management Problems in Precision Medicine and Health Care

Different types of barriers including philosophical, legal, and practical exist that cause
hindrance in the access to data. To improve the translation of big data to health care
solutions, several issues need to be addressed that include collecting and standardizing the
heterogenous data; data curation; data de-identification and anonymization; legal consents
that are required for using the available data; and the importance of providing that data
back to the health care communities for further research and usage. As the volumes of
big data generated are increasing exponentially, the complexity of these data increases.
Sequencing individual human genome is no longer enough, as transcript-level expression
analyses of RNA-Seq experiments, metabolites, proteome data, phenotypic and functional
traits, can now also be associated within the data. Moreover, earlier research has shown
that significant information from a single cell data can provide more details about the
biological processes in comparison to the bulk analysis of multiple cell types in a mixed
cell population [89]. There are new ways for measuring the single cell genome and tran-
scriptome sequencing (G&T-seq) allowing us to simultaneously obtain both transcriptomic
and genomic information from a single cell [90], which can provide clearer information
that may be helpful in designing precision medicine [9]. Data volumes are increasing
continuously and beyond comprehension, while there is a shortage of bioinformaticians
in the current scenario [91]. Prior knowledge about the related domains is considerably
helpful to build models based on the big data, so it is suggested, ideally, that analysts
should also be trained in biomedicine in addition to bioinformatics. Translational research
is usually focused on collecting data abundantly, for example, clinical data, imaging data,
genetic and genomic data, and analysts are usually found to be lacking in skills to interpret
such types of data [10,62,92].

6.4. Significance of Next Generation Informatics for Big Data in Precision Medicine Era

These approaches can help to transform biomedical data into useful drug development
information, and to apply the knowledge for decision support in clinical practice. Today,
data integration techniques related to the field of biomedical sciences and health care set-
tings are rapidly revolutionizing research domains by acting as a bridge between biological
and medical sciences and data mining. This certainly rests upon a record data upsurge in
biological knowledge and research. In the modern era, the field of bioinformatics is facing
a challenging task to handle and interpret the massive amounts of genomics, proteomics,
and metabolomics data, which are accumulating at an unprecedentedly fast pace. Sparse,
noisy, and discontinuous data need special care, which is difficult using traditional machine
learning and existing computational methods. Numerous promising solutions have been
exploited to tackle big data mining problems and provide creative solutions. In this sense,
we must consider that there is no single solution for any biomedical problem. As we have
stated in the conceptualization of big data section, there could be infinite models that solve a
biomedical problem due to the huge uncertainty space [93]. One of the possible approaches
to deal with this ill-posed problem is to sample the uncertainty space using a wide multeity
of models. There is no unique model capable of solving this problem perfectly, so we need
to explore different techniques, obtaining a solution with its uncertainty assessment, using
a consensus strategy [94]. This way, we could give robust information to a medical expert to
enhance the medical decision process. There are multiple applications of this methodology
in the field of proteomics [95], genomics [96], clinical prognosis [97], cancer treatment [98],
aging [99], analysis of defective pathways [100,101], and drug repositioning [102].

The idea is to benefit from biomedical data and apply resourceful informatics ap-
proaches to reform the practice of medicine and to improve the health care system. Imple-
menting these approaches promises a bright era of next generation precision medicine [59].
Research strategies that facilitate up-to-date all-encompassing biomedical expertise along
with handling vast health care data are highly required.
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7. Heterogeneity, a Huge Challenge in Big Data Analysis

Although big data analysis promises great advantages and a potential solution to a di-
verse range of problems, there remain many unique technical, computational, and statistical
challenges that must be addressed to fully explore its potential [103]. Heterogeneity [104],
incompleteness, complexity, privacy problems, scalability, lack of structure, storage bot-
tlenecks, spurious correlations, incidental endogeneity, noise accumulation, experimental
variations, statistical biases, and measurement errors impede progress at all phases of
the big data analysis from data collection and analysis to result in elucidation that can
create value from the data [105,106]. In order to solve this issue, data structuring should
be the first key step in, or prior, to data analysis. Let us consider a patient with several
medical procedures at a hospital, where one record per entire hospital stay or medical
procedure or laboratory test can relatively ease the problem of heterogeneity. The value
of data explodes when it can be linked with other data, thus data integration is a major
creator of value. Moreover, heterogeneity might be terminological, conceptual, syntactic,
or semiotic in nature [104,107]. The problems start right away during data collection as
decisions have to be made concerning what data to keep and what to discard, and how
to store what is kept reliably. Cloud computing, along with more sophisticated statistical
methods, can provide a solution as it offers high scalability, reliability, and autonomy, along
with composability and dynamic resource discovery. Moreover, federated learning is also a
machine learning method that enables machine learning models to obtain experience from
different datasets located at different sites (e.g., local data centers, a central server) without
sharing the training data. This allows for personal data to remain in local sites, reducing the
possibility of personal data breaches. To handle these challenges, we require transformative
solutions, therefore, it is time to develop advanced statistical and computational methods
that are robust to data complexity, noises, and data dependence (Figure 3) [103].
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8. Role of Big Data in Accelerating Digital Healthcare

Big data analysis will empower digital health care in a way that will ensure the timely
access of clinicians to the entire scope of a patient’s health information while reducing the
need for in-person visits and improving patient outcome [108]. Through digital medicine,
big data analysis will prove to be an invaluable tool for health care organizations as it
will provide more opportunities for proactive intervention and a more holistic view of
the patients’ conditions with consolidated real-time information [109]. The health care
providers’ ability to connect with health care apps to track and monitor patient health
will be another key benefit. In addition, via risk modeling and stratification, big data
analysis will help to make more accurate predictions of where a patient’s health is trending.
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By utilizing data-driven insights into patient health, big data analyses will eventually be
beneficial for the patients themselves, especially for those who can utilize telemedicine
and remote patient monitoring to their advantage, in order to enjoy more flexible and
convenient access to care, which in turn will help them to live healthier lives [110–112].

9. Big Data Applications in Health Care

There are so many applications where big data is being implemented to enhance
patient care, and, ultimately, can save lives [113]. There are two major divisions of health
care big data: vital and social data. The vital category is more significant compared to social
big data. However, social big data can also be significant to the health care industry by
allowing practitioners to detect attitudes through sentiment analysis [114].

10. Electronic Health Records

Electronic health records (EHRs) are most significant application of big data in medicine
and health care [115,116]. The patients must have their medical records reporting demo-
graphics, medical history, allergies, and laboratory test results in digital forms. Every record
is comprised of one modifiable file, which means that doctors can implement changes over
time with no paperwork and no danger of data replication [117].

11. Health Big Data as a Key Player for Informed Strategic Planning

Strategic planning through big data analytics improves the understanding of people’s
motivations. A common practice is to analyze the check-up results among people in
different demographic groups and identify which factors discourage people from taking
up treatment. Therefore, better understating of these data and better strategic plans can
cure more patients in the most diverse areas [118].

12. Advanced Risk and Disease Management through Big Data

Another significant use of big data is essential for tackling the hospitalization risk for
particular patients with chronic diseases [119,120]. More precisely, it can also be used to
prevent deterioration. Moreover, by drilling down into insights such as medication type,
symptoms, and the frequency of medical visits, among many others, it is possible for health
care institutions to provide accurate preventative care and, ultimately, reduce hospital
admissions [121].

13. Developing New Therapies and Big Data

Big data in the health care department has the power to discover new
medications [122–124]. By using prior data record, real-time, predictive metrics, and
cohesive mix data visualization techniques, health care experts can identify the potential
strengths and weaknesses in clinical trials or therapeutic processes. Moreover, through
data-driven analysis of genetic information as well as efficient predictions for patients,
big data analytics in health care can play an important role in the development of new
ground breaking drugs and innovative, forward-thinking therapies [125]. Data analytics in
health care can streamline, innovate, provide security, save lives, and give confidence and
clarity [126].

14. Impediments of Big Data in Health Care

One of the major problems in the use of big data in medicine is that medical data
have been collected across different states, hospitals, and administrative departments
using different protocols [127–129]. Therefore, new infrastructure resources are required to
better cross-examine the medical data through proper collaboration between different data
providers. A newly designed software with better efficacy is required for the health care
department. We will move from standard regression-based methods, which are a subset of
supervised machine learning methods, because the standard regression models can be used
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in the machine learning framework to learn from the data and provide outcome predictions
based on the inputs [130].

It is known that during online data collection and transmission, health care de-
vices are functional with the help of their MAC addresses and Internet protocol (IP)
addresses [97,131]. However, there are serious problem related to the use of this pro-
cedure because these network addresses can be accessed and linked to the location and the
name of the device’s owner, so by analyzing the transmitted data, a hacker could identify
an individual including financial and other confidential information. Moreover, there are
various open software applications that can track cell phone locations and the names of
social media users through MAC and GPS big data, which might be used for malicious
reasons [132,133]. Based on such problems, most countries have created legislative princi-
ples to secure the personal health care privacy and confidentiality of medical records such
as the HIPAA under the Privacy Rule of 2003 in the United States [134,135].

15. Conclusions and Future Prospects

The big data paradigm shift is significantly transforming health care and biomedical
research [109,136–139], having the potential to better process clinical and biomolecular
information that spans the four dimensions of volume, velocity, variety, and veracity,
referring to scale, rate, forms, and content of generated data, respectively [140]. In the
current situation, large amount of genomics data could be used to address personalized
health care issues [104] and can help to propose new drugs for the treatment of gene related
disorders. Advanced machine learning approaches such as artificial intelligence and deep
learning represent the future toolbox for the data-driven analytics of genomic big data. The
emerging progress in these areas will be indispensable for future innovation in health care
and personalized medicine.

Author Contributions: Conceptualization, A.K., M.H. and J.L.F.-M.; writing—original draft prepa-
ration, M.H., F.M.A., A.N., E.J.d.-G., O.A., A.C., L.F.-B. and J.L.F.-M.; writing—review and editing,
M.H., F.M.A., A.N., E.J.d.-G., O.A., A.C., L.F.-B. and J.L.F.-M.; funding acquisition, A.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by a NSF grant DBI-1661391, and NIH grants R01GM127701
and R01HG012117. MH acknowledges the Ohio State University for providing the “President’s
Postdoctoral Scholars Program (PPSP)” award.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iriart, J.A.B. Precision medicine/personalized medicine: A critical analysis of movements in the transformation of biomedicine in

the early 21st century. Cadernos. Cad. De Saúde Publica 2019, 35. [CrossRef]
2. Cirillo, D.; Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 2019, 58, 161–167. [CrossRef]

[PubMed]
3. Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287.

[CrossRef] [PubMed]
4. Schaefer, G.O.; Tai, E.S.; Sun, S. Precision medicine and big data. Asian Bioeth. Rev. 2019, 11, 275–288. [CrossRef]
5. Naqvi, M.R.; Jaffar, M.A.; Aslam, M.; Shahzad, S.K.; Iqbal, M.W.; Farooq, A. Importance of big data in precision and personalized

medicine. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic
Applications (HORA), Ankara, Turkey, 30 July 2020; pp. 1–6.

6. Beckmann, J.S.; Lew, D. Reconciling evidence-based medicine and precision medicine in the era of big data: Challenges and
opportunities. Genome Med. 2016, 8, 1–11. [CrossRef] [PubMed]

7. Espinal-Enríquez, J.; Mejía-Pedroza, R.; Hernández-Lemus, E. Computational approaches in precision medicine. In Progress and
Challenges in Precision Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–250.

8. Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [CrossRef] [PubMed]

http://doi.org/10.1590/0102-311X00153118
http://doi.org/10.1016/j.copbio.2019.03.004
http://www.ncbi.nlm.nih.gov/pubmed/30965188
http://doi.org/10.1016/j.trsl.2009.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19931193
http://doi.org/10.1007/s41649-019-00094-2
http://doi.org/10.1186/s13073-016-0388-7
http://www.ncbi.nlm.nih.gov/pubmed/27993174
http://doi.org/10.1038/nrg.2016.86
http://www.ncbi.nlm.nih.gov/pubmed/27528417


Int. J. Mol. Sci. 2022, 23, 4645 13 of 17

9. Hulsen, T.; Jamuar, S.; Moody, A.; Karnes, J.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.; McKinney, E. From big data to
precision medicine. Front. Med. 2019, 6, 34. [CrossRef] [PubMed]

10. Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-generation machine learning for biological networks.
Cell 2018, 173, 1581–1592. [CrossRef]

11. Bibault, J.-E. Real-life clinical data mining: Generating hypotheses for evidence-based medicine. Ann. Transl. Med. 2020, 8, 69.
[CrossRef]

12. Normandeau, K. Beyond Volume, Variety and Velocity is the Issue of Big Data Veracity. Inside Big Data 2013. Available online: https:
//insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/ (accessed on 18 January 2022).

13. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144.
[CrossRef]

14. Diebold, F.X.; Cheng, X.; Diebold, S.; Foster, D.; Halperin, M.; Lohr, S.; Mashey, J.; Nickolas, T.; Pai, M.; Pospiech, M. A Personal
Perspective on the Origin (s) and Development of “Big Data”: The Phenomenon, the Term, and the Discipline*. CiteSeer 2012.
[CrossRef]

15. Auffray, C.; Balling, R.; Barroso, I.; Bencze, L.; Benson, M.; Bergeron, J.; Bernal-Delgado, E.; Blomberg, N.; Bock, C.; Conesa, A.
Making sense of big data in health research: Towards an EU action plan. Genome Med. 2016, 8, 1–13. [CrossRef] [PubMed]

16. Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data
2019, 6, 54. [CrossRef]

17. Fernandez Martinez, J.L.; Fernandez Muniz, M.Z.; Tompkins, M.J. On the topography of the cost functional in linear and nonlinear
inverse problems. Geophysics 2012, 77, W1–W15. [CrossRef]

18. Fernández-Martínez, J.L.; Fernández-Muñiz, Z.; Pallero, J.; Pedruelo-González, L.M. From Bayes to Tarantola: New insights to
understand uncertainty in inverse problems. J. Appl. Geophys. 2013, 98, 62–72. [CrossRef]

19. Fernández-Martínez, J.L.; Pallero, J.; Fernández-Muñiz, Z.; Pedruelo-González, L.M. The effect of noise and Tikhonov’s regular-
ization in inverse problems. Part I: The linear case. J. Appl. Geophys. 2014, 108, 176–185. [CrossRef]

20. Fernández-Martínez, J.L.; Pallero, J.; Fernández-Muñiz, Z.; Pedruelo-González, L.M. The effect of noise and Tikhonov’s regular-
ization in inverse problems. Part II: The nonlinear case. J. Appl. Geophys. 2014, 108, 186–193. [CrossRef]

21. Zhang, H. Overview of sequence data formats. In Statistical Genomics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–17.
22. Lek, M.; Karczewski, K.; Minikel, E.; Samocha, K.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.; Ware, J.; Hill, A.; Cummings, B.; et al.

Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [CrossRef]
23. The Global Alliance for Genomics and Health. A federated ecosystem for sharing genomic, clinical data. Science 2016,

352, 1278–1280. [CrossRef]
24. Wenger, A.M.; Guturu, H.; Bernstein, J.A.; Bejerano, G. Systematic reanalysis of clinical exome data yields additional diagnoses:

Implications for providers. Genet. Med. 2017, 19, 209–214. [CrossRef] [PubMed]
25. Wright, C.F.; McRae, J.F.; Clayton, S.; Gallone, G.; Aitken, S.; FitzGerald, T.W.; Jones, P.; Prigmore, E.; Rajan, D.; Lord, J.

Making new genetic diagnoses with old data: Iterative reanalysis and reporting from genome-wide data in 1133 families with
developmental disorders. Genet. Med. 2018, 20, 1216–1223. [CrossRef] [PubMed]

26. Chan, I.S.; Ginsburg, G.S. Personalized medicine: Progress and promise. Annu. Rev. Genom. Hum. Genet. 2011, 12, 217–244.
[CrossRef] [PubMed]

27. Masoudi-Nejad, A.; Wang, E. Cancer Modeling and Network Biology: Accelerating toward Personalized Medicine.
Semin. Cancer Biol. 2015, 30, 1–3. [CrossRef]

28. Meyer, U.A. Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet. 2004, 5, 669–676.
[CrossRef]

29. Janga, S.C.; Edupuganti, M.M.R. Systems and network-based approaches for personalized medicine. Curr. Synth. Syst. Biol.
2014, 2. [CrossRef]

30. Tuena, C.; Semonella, M.; Fernández-Álvarez, J.; Colombo, D.; Cipresso, P. Predictive precision medicine: Towards the computa-
tional challenge. In P5 eHealth: An Agenda for the Health Technologies of the Future; Springer: Cham, Switzerland, 2020; pp. 71–86.

31. Collin, C.B.; Gebhardt, T.; Golebiewski, M.; Karaderi, T.; Hillemanns, M.; Khan, F.M.; Salehzadeh-Yazdi, A.; Kirschner, M.;
Krobitsch, S.; Consortium, E.-S.P. Computational Models for Clinical Applications in Personalized Medicine—Guidelines and
Recommendations for Data Integration and Model Validation. J. Pers. Med. 2022, 12, 166. [CrossRef]

32. Apweiler, R.; Beissbarth, T.; Berthold, M.R.; Blüthgen, N.; Burmeister, Y.; Dammann, O.; Deutsch, A.; Feuerhake, F.; Franke, A.;
Hasenauer, J. Whither systems medicine? Exp. Mol. Med. 2018, 50, e453. [CrossRef]

33. Pison, C.; Consortium, C. THE CASyM ROADMAP Implementation of Systems Medicine across Europe; Project Management
Jülich, Forschungszentrum Jülich GmbH, Germany. 2014. Available online: https://hal.univ-grenoble-alpes.fr/hal-01969603
(accessed on 28 February 2022).

34. Morrison, T.M.; Pathmanathan, P.; Adwan, M.; Margerrison, E. Advancing regulatory science with computational modeling for
medical devices at the FDA’s office of science and engineering laboratories. Front. Med. 2018, 5, 241. [CrossRef]

35. Musuamba, F.T.; Skottheim Rusten, I.; Lesage, R.; Russo, G.; Bursi, R.; Emili, L.; Wangorsch, G.; Manolis, E.; Karlsson, K.E.;
Kulesza, A. Scientific and regulatory evaluation of mechanistic in silico drug and disease models in drug development: Building
model credibility. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 804–825. [CrossRef]

http://doi.org/10.3389/fmed.2019.00034
http://www.ncbi.nlm.nih.gov/pubmed/30881956
http://doi.org/10.1016/j.cell.2018.05.015
http://doi.org/10.21037/atm.2019.10.99
https://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/
https://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/
http://doi.org/10.1016/j.ijinfomgt.2014.10.007
http://doi.org/10.2139/ssrn.2202843
http://doi.org/10.1186/s13073-016-0323-y
http://www.ncbi.nlm.nih.gov/pubmed/27338147
http://doi.org/10.1186/s40537-019-0217-0
http://doi.org/10.1190/geo2011-0341.1
http://doi.org/10.1016/j.jappgeo.2013.07.005
http://doi.org/10.1016/j.jappgeo.2014.05.006
http://doi.org/10.1016/j.jappgeo.2014.05.005
http://doi.org/10.1038/nature19057
http://doi.org/10.1126/science.aaf6162
http://doi.org/10.1038/gim.2016.88
http://www.ncbi.nlm.nih.gov/pubmed/27441994
http://doi.org/10.1038/gim.2017.246
http://www.ncbi.nlm.nih.gov/pubmed/29323667
http://doi.org/10.1146/annurev-genom-082410-101446
http://www.ncbi.nlm.nih.gov/pubmed/21721939
http://doi.org/10.1016/j.semcancer.2014.06.005
http://doi.org/10.1038/nrg1428
http://doi.org/10.4172/2332-0737.1000e109
http://doi.org/10.3390/jpm12020166
http://doi.org/10.1038/emm.2017.290
https://hal.univ-grenoble-alpes.fr/hal-01969603
http://doi.org/10.3389/fmed.2018.00241
http://doi.org/10.1002/psp4.12669


Int. J. Mol. Sci. 2022, 23, 4645 14 of 17

36. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion
2020, 58, 82–115. [CrossRef]

37. Dimiduk, D.M.; Holm, E.A.; Niezgoda, S.R. Perspectives on the impact of machine learning, deep learning, and artificial
intelligence on materials, processes, and structures engineering. Integr. Mater. Manuf. Innov. 2018, 7, 157–172. [CrossRef]

38. Kitano, H.; Funahashi, A.; Matsuoka, Y.; Oda, K. Using process diagrams for the graphical representation of biological networks.
Nat. Biotechnol. 2005, 23, 961–966. [CrossRef]

39. Fujita, K.A.; Ostaszewski, M.; Matsuoka, Y.; Ghosh, S.; Glaab, E.; Trefois, C.; Crespo, I.; Perumal, T.M.; Jurkowski, W.; Antony, P.
Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 2014, 49, 88–102. [CrossRef]
[PubMed]

40. Kuperstein, I.; Bonnet, E.; Nguyen, H.-A.; Cohen, D.; Viara, E.; Grieco, L.; Fourquet, S.; Calzone, L.; Russo, C.; Kondratova, M.
Atlas of Cancer Signalling Network: A systems biology resource for integrative analysis of cancer data with Google Maps.
Oncogenesis 2015, 4, e160. [CrossRef]

41. Thiele, I.; Palsson, B.Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 2010,
5, 93–121. [CrossRef]

42. Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F. A pathology atlas
of the human cancer transcriptome. Science 2017, 357, e2507. [CrossRef]

43. Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Nookaew, I.; Jacobson, P.; Walley, A.J.; Froguel, P.; Carlsson, L.M.; Uhlen, M.
Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 2013, 9, 649. [CrossRef]

44. Stempler, S.; Yizhak, K.; Ruppin, E. Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for
Alzheimer’s disease. PLoS ONE 2014, 9, e105383. [CrossRef]

45. Wang, R.-S.; Saadatpour, A.; Albert, R. Boolean modeling in systems biology: An overview of methodology and applications.
Phys. Biol. 2012, 9, 055001. [CrossRef]

46. Eduati, F.; Jaaks, P.; Wappler, J.; Cramer, T.; Merten, C.A.; Garnett, M.J.; Saez-Rodriguez, J. Patient-specific logic models of
signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol. Syst. Biol. 2020,
16, e8664. [CrossRef] [PubMed]

47. Udyavar, A.R.; Wooten, D.J.; Hoeksema, M.; Bansal, M.; Califano, A.; Estrada, L.; Schnell, S.; Irish, J.M.; Massion, P.P.; Quaranta, V.
Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor
heterogeneity. Cancer Res. 2017, 77, 1063–1074. [CrossRef] [PubMed]

48. Malik-Sheriff, R.S.; Glont, M.; Nguyen, T.V.; Tiwari, K.; Roberts, M.G.; Xavier, A.; Vu, M.T.; Men, J.; Maire, M.; Kananathan, S.
BioModels—15 years of sharing computational models in life science. Nucleic Acids Res. 2020, 48, D407–D415. [CrossRef]
[PubMed]

49. Kolch, W.; Fey, D. Personalized computational models as biomarkers. J. Pers. Med. 2017, 7, 9. [CrossRef]
50. Hastings, J.F.; O’Donnell, Y.E.; Fey, D.; Croucher, D.R. Applications of personalised signalling network models in precision

oncology. Pharmacol. Ther. 2020, 212, 107555. [CrossRef] [PubMed]
51. Pérez-Urizar, J.; Granados-Soto, V.; Flores-Murrieta, F.J.; Castañeda-Hernández, G. Pharmacokinetic-pharmacodynamic modeling:

Why? Arch. Med. Res. 2000, 31, 539–545. [CrossRef]
52. Edginton, A.N.; Willmann, S. Physiology-based simulations of a pathological condition. Clin. Pharmacokinet. 2008, 47, 743–752.

[CrossRef]
53. Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of deep learning in biomedicine. Mol. Pharm. 2016,

13, 1445–1454. [CrossRef]
54. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
55. Fröhlich, H.; Balling, R.; Beerenwinkel, N.; Kohlbacher, O.; Kumar, S.; Lengauer, T.; Maathuis, M.H.; Moreau, Y.; Murphy, S.A.;

Przytycka, T.M. From hype to reality: Data science enabling personalized medicine. BMC Med. 2018, 16, 1–15. [CrossRef]
56. Cardoso, F.; van’t Veer, L.J.; Bogaerts, J.; Slaets, L.; Viale, G.; Delaloge, S.; Pierga, J.-Y.; Brain, E.; Causeret, S.; DeLorenzi, M.

70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 2016, 375, 717–729. [CrossRef]
[PubMed]

57. Marchio, C.; Balmativola, D.; Castiglione, R.; Annaratone, L.; Sapino, A. Predictive diagnostic pathology in the target therapy era
in breast cancer. Curr. Drug Targets 2017, 18, 4–12. [CrossRef] [PubMed]

58. Van’t Veer, L.J.; Dai, H.; Van De Vijver, M.J.; He, Y.D.; Hart, A.A.; Mao, M.; Peterse, H.L.; Van Der Kooy, K.; Marton, M.J.; Witteveen,
A.T. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415, 530–536. [CrossRef] [PubMed]

59. Viale, G.; De Snoo, F.; Slaets, L.; Bogaerts, J.; Van’t Veer, L.; Rutgers, E.; Piccart-Gebhart, M.; Stork-Sloots, L.; Glas, A.; Russo, L.
Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the
EORTC 10041/BIG 3-04 MINDACT trial. Breast Cancer Res. Treat. 2018, 167, 123–131. [CrossRef]

60. Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.; Hermsen, M.;
Manson, Q.F.; Balkenhol, M. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in
women with breast cancer. JAMA 2017, 318, 2199–2210. [CrossRef]

61. Madani, A.; Ong, J.R.; Tibrewal, A.; Mofrad, M.R. Deep echocardiography: Data-efficient supervised and semi-supervised deep
learning towards automated diagnosis of cardiac disease. NPJ Digit. Med. 2018, 1, 1–11. [CrossRef]

http://doi.org/10.1016/j.inffus.2019.12.012
http://doi.org/10.1007/s40192-018-0117-8
http://doi.org/10.1038/nbt1111
http://doi.org/10.1007/s12035-013-8489-4
http://www.ncbi.nlm.nih.gov/pubmed/23832570
http://doi.org/10.1038/oncsis.2015.19
http://doi.org/10.1038/nprot.2009.203
http://doi.org/10.1126/science.aan2507
http://doi.org/10.1038/msb.2013.5
http://doi.org/10.1371/journal.pone.0105383
http://doi.org/10.1088/1478-3975/9/5/055001
http://doi.org/10.15252/msb.209690
http://www.ncbi.nlm.nih.gov/pubmed/33438807
http://doi.org/10.1158/0008-5472.CAN-16-1467
http://www.ncbi.nlm.nih.gov/pubmed/27932399
http://doi.org/10.1093/nar/gkz1055
http://www.ncbi.nlm.nih.gov/pubmed/31701150
http://doi.org/10.3390/jpm7030009
http://doi.org/10.1016/j.pharmthera.2020.107555
http://www.ncbi.nlm.nih.gov/pubmed/32320730
http://doi.org/10.1016/S0188-4409(00)00242-3
http://doi.org/10.2165/00003088-200847110-00005
http://doi.org/10.1021/acs.molpharmaceut.5b00982
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1186/s12916-018-1122-7
http://doi.org/10.1056/NEJMoa1602253
http://www.ncbi.nlm.nih.gov/pubmed/27557300
http://doi.org/10.2174/1389450116666150203121218
http://www.ncbi.nlm.nih.gov/pubmed/25654739
http://doi.org/10.1038/415530a
http://www.ncbi.nlm.nih.gov/pubmed/11823860
http://doi.org/10.1007/s10549-017-4509-9
http://doi.org/10.1001/jama.2017.14585
http://doi.org/10.1038/s41746-018-0065-x


Int. J. Mol. Sci. 2022, 23, 4645 15 of 17

62. Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332.
[CrossRef]

63. Rauschert, S.; Raubenheimer, K.; Melton, P.; Huang, R. Machine learning and clinical epigenetics: A review of challenges for
diagnosis and classification. Clin. Epigenet. 2020, 12, 1–11. [CrossRef]

64. Bosco, G.L.; Rizzo, R.; Fiannaca, A.; La Rosa, M.; Urso, A. A deep learning model for epigenomic studies. In Proceed-
ings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy,
28 November–1 December 2016; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA; pp. 688–692.

65. Hamey, F.K.; Göttgens, B. Machine learning predicts putative hematopoietic stem cells within large single-cell transcriptomics
data sets. Exp. Hematol. 2019, 78, 11–20. [CrossRef]

66. Erban, A.; Fehrle, I.; Martinez-Seidel, F.; Brigante, F.; Más, A.L.; Baroni, V.; Wunderlin, D.; Kopka, J. Discovery of food identity
markers by metabolomics and machine learning technology. Sci. Rep. 2019, 9, 9697. [CrossRef]

67. Narita, A.; Ueki, M.; Tamiya, G. Artificial intelligence powered statistical genetics in biobanks. J. Hum. Genet. 2021, 66, 61–65.
[CrossRef] [PubMed]

68. Luz, C.F.; Vollmer, M.; Decruyenaere, J.; Nijsten, M.W.; Glasner, C.; Sinha, B. Machine learning in infection management
using routine electronic health records: Tools, techniques, and reporting of future technologies. Clin. Microbiol. Infect. 2020,
26, 1291–1299. [CrossRef] [PubMed]
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