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Abstract: The prediction of how a ligand binds to its target is an essential step for Structure-Based
Drug Design (SBDD) methods. Molecular docking is a standard tool to predict the binding mode of a
ligand to its macromolecular receptor and to quantify their mutual complementarity, with multiple
applications in drug design. However, docking programs do not always find correct solutions,
either because they are not sampled or due to inaccuracies in the scoring functions. Quantifying
the docking performance in real scenarios is essential to understanding their limitations, managing
expectations and guiding future developments. Here, we present a fully automated pipeline for pose
prediction validated by participating in the Continuous Evaluation of Ligand Pose Prediction (CELPP)
Challenge. Acknowledging the intrinsic limitations of the docking method, we devised a strategy to
automatically mine and exploit pre-existing data, defining—whenever possible—empirical restraints
to guide the docking process. We prove that the pipeline is able to generate predictions for most of
the proposed targets as well as obtain poses with low RMSD values when compared to the crystal
structure. All things considered, our pipeline highlights some major challenges in the automatic
prediction of protein–ligand complexes, which will be addressed in future versions of the pipeline.

Keywords: docking; D3R; automated pipeline; pocket detection; binding mode prediction

1. Introduction

Computational approaches have proven to be a valuable addition to wet-lab tech-
niques in the field of drug discovery [1]. Amongst them, we can find Structure-Based Drug
Design (SBDD) methods, where the three-dimensional structure of biomolecules is used
to identify small molecules that can interact with them. Predicting how a ligand binds
to a target is an essential step for SBDD, and molecular docking has become a standard
tool for drug discovery [2,3]. The outcome of docking is a set of proposed positions and
conformations of the ligand in the binding site (poses), each with an associated score. These
models can be used to interpret and guide ligand design well before the structure of the
protein–ligand complex can be experimentally determined.

Nonetheless, docking programs do not always find accurate ligand poses when com-
pared to the experimental solution. There are still challenges that need to be addressed such
as receptor flexibility, proper accounting of solvation effects or better scoring functions [3].
Owing to the potential and relevance of docking for SBDD, there has been a substantial and
sustained effort to improve the technique, and many docking tools have been developed,
such as GLIDE [4], rDock [5], GOLD [6] and AutoDock [7]. Because different docking

Int. J. Mol. Sci. 2022, 23, 4756. https://doi.org/10.3390/ijms23094756 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23094756
https://doi.org/10.3390/ijms23094756
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4920-5915
https://orcid.org/0000-0002-0281-1347
https://doi.org/10.3390/ijms23094756
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23094756?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 4756 2 of 17

programs use different sampling strategies and scoring functions, it is important to be
able to evaluate and compare the performance between them. To that aim, test sets are
available to evaluate the performance of docking and scoring methods in binding mode,
binding affinity or virtual screening tasks. Regarding the former application, multiple
assessments have been performed with different evaluation benchmarks [8–13]. One of the
most recent and complete studies was conducted by Wang et al. (2016), who evaluated
ten different docking programs, including five commercial programs and five academic
programs using a collection of 2002 protein–ligand complexes from the PDB. Concurrently,
a strong emphasis has been put on generating highly refined test sets, which only include
high-quality structures of relevant protein targets containing drug-like ligands. Some of
the most-used validation datasets are CCDC/Astex [14] and Iridium [15]. Such datasets
and comparative studies provide a comprehensive understanding of the advantages and
limitations of each docking program and help users make more appropriate choices among
available methods. However, they suffer from an important limitation: in an attempt to
keep the comparison across docking programs fair, the authors of the comparative studies
use standard parameters, whereas in real-life applications, advanced users introduce sub-
stantial bias to improve performance. In consequence, such comparative studies reveal the
intrinsic capabilities of the programs, which is quite different from how they are actually
used in typical drug-discovery settings. In addition, as relatively small sets of well-curated
protein–ligand complexes become widely adopted as test-sets, there is a risk of biasing
docking programs towards those specific datasets.

The challenges organised by the Drug Design Resource (D3R) represent a welcome
departure from this tendency. D3R aims to provide benchmark datasets and blinded
challenges to assist in the evaluation and improvement of computational algorithms, giving
participants the freedom to use the methods as they see fit, but encouraging the use of
reproducible protocols. Besides the annual Grand Challenge, D3R also organises the CELPP
Challenge (Continuous Evaluation of Ligand Pose Prediction) [16]. Participants in CELPP
are encouraged to develop an automated workflow to generate binding mode predictions
for different targets that are delivered weekly.

In this article, we describe the development of the first version of a pipeline for
participation in the CELPP Challenge, as well as validation results. The main focus of our
workflow is to adopt a knowledge-based approach whenever possible, trying to extract
data from similar systems that are already deposited in the PDB. Depending on the amount
of information available, the docking algorithm may benefit from knowledge about the
location of the binding site, specific pharmacophores or even the binding mode of specific
substructures. We will describe the different options, analyse their respective performances
and identify aspects that need further improvement.

2. Results and Discussion

The goal of this work was to create an automated workflow for protein–ligand pose
prediction. It must be able to extract information from related complexes deposited in the
PDB and to use it in different docking protocols. Throughout this work, a test set consisting
of structures released in previous weekly CELPP challenges was used to design the protocol
and for benchmarking.

2.1. Overview of the Pipeline

One of the key aspects of this work is the automation of the process; therefore, all
the steps are gathered in a combination of python, SVL and shell scripts and divided into
individually functional modules corresponding to the different phases of the protocol
(Figure 1). There are four phases summarized here (see Method section for further details):

Phase 1: Protein analysis. Download the sequence of the query protein, identify structures of
homologous proteins in the PDB and ligands that bind to them (this is performed through a query in
3decision [17]).
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Phase 2: Ligand analysis. Compute a similarity score and maximum common substructure
between the query ligand and all ligands retrieved in Phase 1.

Phase 3: Pharmacophore generation. Derive, whenever possible, a pharmacophore for the
ligands retrieved in Phase 1.

Phase 4: Docking. Three docking strategies are used: tethered docking (when large maximum
common substructure (MCS) is shared with a reference ligand), docking with pharmacophoric
restraints (if a pharmacophore could be defined in Phase 3) and docking without any restraints (in
all cases).

Additionally, the process includes communication with the CELPP server to download
the queries and upload the predictions.
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2.2. Workflow Input Data, Data Structure and Output

Each weekly CELPP data package is downloaded as a gzipped tar file that contains
one directory per target. The target is a protein defined by its primary sequence. Within
each directory, there is a set of structures that have the same or highly similar sequences to
the target. They are provided as potential receptor structures for docking and contain the
highest resolution unbound candidate protein (hiResApo), the highest resolution ligand-
bound (hiResHolo), the candidate protein that contains the ligand with the largest MCSS
to the target ligand (LMCSS), the candidate protein that contains the ligand with the
smallest MCSS (SMCSS) and the candidate protein that contains the ligand with the highest
structural similarity (based on Tanimoto score and Daylight fingerprints, as implemented
by RDkit [18]) to the target ligand (hiTanimoto). Then, we find the SMILES [19], MOL file
and INCHI key [20] corresponding to the target ligand. Finally, the suggested binding
pocket centre is also given. However, our pipeline includes a cavity detection phase, so the
suggested binding pocket centre will not be used. The expected output from participants is
a docked pose of the target ligand with each suggested candidate structure.

2.3. Pipeline Development
2.3.1. Blast Results

Before starting the implementation of the pipeline, we analysed the targets from
previous CELPP weeks (test set) to check how often they had high similarity homologues
already deposited in the RCSB PDB. For this purpose, we ran a blast search against the
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RCSB PDB with two different identity thresholds: 80% and 95%. From this step, we
could conclude that 100% of the targets had some close homolog structure available (>80%
identity) within the RCSB PDB prior to its release. When looking for proteins with an
identity higher than 95%, we obtained varying results across weeks with an average of
77, 1% of positive cases (Figure 2A). This mirrors the trends in the PDB, which is highly
redundant in protein composition [21]. In light of the results, we set the identity threshold
for blast searches in our automatic pipeline to 80%.
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2.3.2. Ligand Similarity

We analysed the similarity between the ligands provided by CELPP and the ligands
obtained by 3decision from similar proteins. After running the 3decision protocol, we
were able to obtain sets of ligands for 75% of the proteins in the test set. Using MACSS
keys fingerprints, we obtained a mean Tanimoto score of 0.6 with 0.008 and 0.96 being the
minimum and the maximum scores obtained, respectively (Figure 2B). We also took into
account the size of the compared ligands and their maximum common substructure with a
complementary similarity measure, the Tanimoto MCSS [22]. Its value distribution is rather
different from the Tanimoto MACSS, (Figure 2C) with average, minimum and maximum
values of 0.42, 0.1 and 0.947, respectively.

2.3.3. Docking Method Selection

Using the same target, we compared the performance of the three different docking
methods (tethered, pharmacophoric restraints and free) and checked if there was any kind of
correlation between the docking RMSD and the Tanimoto similarity to the reference ligands.
RMSD values were calculated using the sdrmsd utility from rDock. The mean RSMD
values for tethered docking, docking with pharmacophoric restraints and free docking
were 2.81 Å, 2.15 Å and 2.19 Å, respectively. Thus, while the use of knowledge-based
restraints improved the predictions in individual cases (Figure 3), the overall performance
was not better (Table 1). In the case of tethered docking, our analysis showed that it should
only be applied when the Tanimoto MCSS is larger than 0.65, after which point almost all
predictions were correct (Figure 4A). Unfortunately, this applied to a small proportion of
the cases (15%). Surprisingly, free docking also produced improved predictions for this set
of ligands, which might be due to the similarity with the ligand of reference used to define
the cavity or to the protein pre-organisation (quasi self-docking). The plot also showed
that using tethered docking when the MCSS is too small leads to worse predictions than
free docking, explaining the apparently worst performance of tethered docking compared
to free docking when considering the entire test set. Regarding pharmacophore-guided
docking, contrary to our initial expectations, we found that there was not a significant
difference in total mean RMSD between restrained and free docking (2.15 Å and 2,19 Å,
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respectively). This could, in part, be related to the cavity definition process, which already
limits the docking space and may leave a small margin for improvement. However, it also
suggested that the choice of pharmacophoric restraints was sub-optimal and had to be
re-optimised. Thus, we introduced an improved pharmacophore elucidation protocol (see
Methods and results below).
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Figure 3. Differences in best pose predicted for target 5p8y from CELPP week 33. Image
(A) corresponds to free docking with an RMSD of 4.09 Å. Image (B) is the best prediction obtained
with pharmacophoric restraints (1.74 Å). Image (C) corresponds to the best pose using tethered
docking, obtaining an RMSD of 0.95 Å. The red substructure indicates the tethered atoms.

Table 1. RMSD results obtained using different docking methods.

Free Docking Tethered Docking Ph4 Docking

Mean 2.19 2.81 2.15
Median 1.96 1.71 1.63

Min 0.43 0.33 0.39
max 7.41 15.07 7.41

RMSD values in Å.

2.3.4. Pipeline Effectiveness and Processing Time

The above-described pipeline performance was tested with a collection of pre-released
CELPP weeks as well as with the weekly released CELPP set. The execution time of the
whole protocol took an average 6.5 min per target. The total execution time varied each
week depending on the number of released targets (26 to 68 in the period considered here)
and the connection speed to 3decision (from 22 s to 3 min per target). The 3decision protocol
could not obtain reference structures for 20% of the targets due to some internal errors
of a beta version of the program or because there were no ligands found in druggable
pockets from similar proteins. This last event was relatively rare, as it accounted for 25% of
times that we were not able to obtain results from 3decision, or 5% of the total. Finally, the
similarity analysis to the docked ligand poses took 4.8 min per target on average (Table 2).

2.4. Pipeline Validation

To validate the pipeline, we ran it prospectively for a total of 12 weeks. Table 3
shows that the pharmacophoric restrained protocol was the most-used method (51% of
the cases). On the other hand, free docking and tethered docking were applied in much
lower percentages of cases, 35% and 13.01%, respectively. The mean RMSD value for
free docking was 6.2 Å, 5.1 Å for pharmacophore-guided docking and 2.8 Å for tethered
docking. However, there is a bigger difference when looking at the proportion of correctly
predicted cases by each method. For free docking, only 7.9% of the cases had an RMSD
value lower than 2 Å, for pharmacophore guided docking this value increased to 21.4%,
and in tethered docking we reached 31.5% of correct poses.
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Table 2. Statistics of the pipeline implementation CELPP weeks.

No. of Targets 3decision Time Docking Time Total Time

Week1 31 34 103 137
Week2 44 103 174 277
Week3 27 10 113 123
Week4 43 118 176 294
Week5 29 35 153 188
Week6 40 182 265 447
Week7 68 234 123 357
Week8 26 102 111 213
Week9 28 126 247 373

Week10 48 158 382 540
Week11 50 193 270 463
Week12 26 137 716 853
Mean 38 119.33 236.08 355.42

Time measured in minutes.

The values obtained with the validation set were much worse than the ones obtained
using the test set. The main difference between the sets as that the automatic pipeline for
retrieving the cavities using 3decision was not yet automatized during the development
stage. In consequence, all the cavities were visually inspected and selected using the
3decision webserver. By contrast, the automatic scripts used at the validation stage to
identify the docking cavity and retrieve aligned ligands from 3decision were error-prone.
We also had to consider the possibility that the test set was not representative enough of
the whole range of systems that can be found in the CELPP Challenge. Nonetheless, the
sources of errors and the difference in performance between the test set and validation will
be reviewed in the next section.
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Table 3. RMSD values and percentage of cases for each docking protocol.

Free Docking Ph4 Docking Tethered Docking

Mean 6.2 5.1 2.8
Std 6.2 3.4 1.6
Min 1 0.5 0.7
Q1 3.9 2.2 1.6
Q2 6.3 4.7 2.3
Q3 8.2 7.7 3.6

max 13.6 13.9 12.7
≤2Å 7.9% 51% 13%

Application rate 35% 51% 13%
RMSD values in Å.

After analysing the prospective results, we wanted to review if the algorithm for
docking protocol selection derived from the test set was the most adequate one. For this
purpose, we applied all three protocols to all the validation set and compared the best
RMSD obtained for the three methods (Figure 4). We could find some differences regarding
the accuracy of the docking methods in the test set and validation sets. Tethered docking
yielded better results than free docking when MCSS score ≥ 0.5 on the validation set
(vs. a marginal improvement on an MCSS score ≥ 0.65 for the test set). Nonetheless,
tethered docking was still the method that gave the worst results in low MCSS score values
(MCSS < 0.3). As for the pharmacophore-guided docking, during the validation phase, we
improved the pharmacophoric elucidation protocol that provided consistently better results
than in the test set (see Methods). It also provided improved results compared to free
docking in the 0.5 to 1 MCSS score range, with a performance on par with tethered docking.
In the 0.25 to 0.5 MCSS score range, pharmacophore-guided docking and free docking
performed at a similar level. At lower MCSS score values, free docking outperformed
pharmacophore-guided docking.

2.5. Challenges to Address

In this section we will describe the most important factors affecting the predictive
performance of our pipeline. Figure 5 depicts the main issues and challenges to overcome
in the CELPP challenge, which will be treated in more detail in the following sections.
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2.5.1. Automated Protocols

When testing a docking program or workflow, a crucial component that will have
a big impact in the predictions is the choice of dataset [13]. Usually, the datasets to test
docking programs, such as DUD-E [23] or Astex [14], are highly curated datasets, whilst
the CELPP receptors are selected automatically and are not manually prepared by experts.
Additionally, we have to take into account that CELPP is designed as a cross-docking
challenge, which means that we have the added problem of protein flexibility, as the used
receptor may not be in the most-fitting position for the ligand. Finally, participants are
given, each week, an average of 40 systems to predict and a limited amount of time (3 days),
which implies that all the processes need to be automatized, leaving virtually no time for
the visual inspection or study of the targets.

In consequence, the pose prediction performance is lower than for other challenges.
The median prediction RMSD for the best categories (LMCSS and hiTanimoto receptors)
is around 5 Å, being only 20% of the pose predictions accurate within 2 Å [17], whereas
reported performance for curated datasets regularly reaches the 80% [13]. Clearly, the latter
reflects a best-case scenario, which means that a significant effort to improve automated
target structure selection and preparation will be necessary in order to attain better results
in CELPP.

2.5.2. Scoring Challenges

Over the past years extensive efforts have been dedicated to improving the existing
scoring functions, but nowadays the accuracy of most scoring functions is still a limiting
factor in many drug design projects, and results require careful evaluation and post-
docking analysis.

To assess the accuracy of the docking score, we selected a subset of 446 submitted cases
and checked if the submitted pose is the one with the lowest RMSD compared to the crystal
structure. In 208 out of 446 total cases (46.6%) the docking protocol was able to produce a
correct pose (RMSD lower than 2 Å), but in 75 of them, the pose with the lowest RMSD
was not ranked as the best solution by rDock’s intermolecular score (SCORE.INTER). This
translates to a 64% success rate when the correct pose can be generated. Note that this
is close to the 76% success rate obtained on the CCDC-Astex Diverse Set, a standard test
set for binding mode prediction where correct predictions can be generated for 99% of
cases [5].

Figure 6 shows the median RMSD obtained with the different receptors for the sub-
mitted pose and for the best pose generated by the pipeline. The median RMSD for the
submitted pose was around 4.18 Å, whereas if we considered the best prediction, the mean
decreased to 2.9 Å and the median to 2.4 Å. From these results, it is evident that the pipeline
would benefit greatly from a complementary method to re-score the docking poses. An
approach that presented better results in other blind challenges [24] was the combination of
the docking scores with Dynamic Undocking (DUck) [25,26] simulations of the top-scoring
poses. By combining both methods, we expected to be able to obtain a more accurate pose
ranking for challenge submission.

2.5.3. Sampling Challenges
Cavity Selection

The CELPP Challenge is designed as a pose prediction challenge and to assess the
influence of receptor choice in docking performance. For that reason, the coordinates for
the centre of the cavity are provided by the organisers. Nonetheless, we wanted to go one
step further by creating a pipeline of general applicability and add a cavity selection step
to our protocol, thus avoiding the need to pre-define the binding site. The cavity detection
is performed automatically by 3decision, and all the possible cavities are retrieved and
considered for docking. The method that 3decision uses for cavity detection is fpocket, a
pocket detection algorithm based on Voronoi tessellation [27]. When more than one cavity
is detected, our pipeline selects the cavity based on the similarity of the ligands retrieved
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by 3decision with the target ligand. On average, 3.2 cavities were detected per target, but
in 67 cases (14%), the correct cavity was not detected, and so the docking was carried out
in the wrong cavity. Figure 7 shows an example where 3decision only detected the cavity
represented by the grey surface, missing the actual cavity represented by the green surface.
In 9% of cases, the failure corresponded to shallow cavities on the protein surface that are
not detected by the fpocket algorithm.
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Another reason for not detecting the cavity correctly (14% of cases) is that the ligands
bind at the interface of a dimer, but only one protein is reported in the challenge. Note that,
unlike other docking challenges or scenarios, the receptors provided by CELPP are not
manually curated. They rely on a fully Automated Pipeline to perform that task, which
can sometimes lead to the selection of inappropriate structures (e.g., giving a monomer
instead of a dimer) for obtaining an accurate ligand pose [17]. Figure 8A shows one such
example. The remaining failures in this category were attributed to an error with the API
when downloading the analysis results.

https://drugdesigndata.org/about/celpp2-charts
https://drugdesigndata.org/about/celpp2-charts
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Docking Method Selection

In our protocol we implemented three different docking strategies that were applied
depending on the different set thresholds. From the 305 cases of the validation set where
we did not obtain the correct pose, in 78 cases the correct binding pose had been correctly
predicted by a different docking strategy.

As shown in Table ??, from those 78 cases, only in 9 cases the correct solution was
found by free docking instead of a form of guided docking. By contrast, 26 cases could
have been correctly predicted if a form of guided docking had been used instead of free
docking. This analysis also reveals that the two forms of guided docking employed here
are not equivalent: 27 incorrect pharmacophore-guided docking solutions were correctly
predicted by tethered docking. Vice versa, 16 incorrect tethered docking solutions were
correctly predicted by pharmacophore-guided docking. One such example is shown in
Figure 9. These results suggest that all the binding poses generated by the different docking
protocols should be considered, then rescored with a post-docking method to identify the
best one [28].

Table 4. Comparison between the submitted docking method vs. the method that yields the best result.

Best Prediction

Free Ph4 Tethered

Submitted
Free 6 20
Ph4 8 27

Tethered 1 16

Receptor Flexibility

As pointed out by many previous studies [29], receptor flexibility is an important
factor that can alter docking predictions. Both small changes on side-chain orientation
and bigger structural changes can lead to incorrect predictions [30]. We could attest to
this phenomenon when docking against the different proposed receptors. For each target,
the docking protocol was run using all the receptors provided by the organisers. Figure 6
displays the validation results categorised by the receptor. The best-performing receptor
was LMCSS, which corresponds to the one hosting the ligand most similar to the query.
SMCSS obtained the worst results, with a median RMSD of 5.9 Å.
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Figure 9. Predictions for PDB 6dfo and hiTanimoto Receptor using: (A) Pharmacophoric restraints.
Predicted pose in orange. Pharmacophore represented as spheres. (B) Tether docking. Predicted pose
in blue. Reference ligand in pink. In both cases, the crystallographic solution is shown in white for
reference. The RMSD values with the predicted poses are 1.2 Å and 3.3 Å, respectively.

As an example, Figure 10 shows two cases where the differences in side-chain orien-
tation of residues from the binding site are interfering with the correct binding position.
In the case of 6pl1 (Figure 10A), there is a difference in the conformation of a loop in the
binding site of all the receptors used that cause Phe 669 (in blue) to block part of the binding
site obtaining a totally different cavity. It is established that, by using a variety of receptor
conformations, we increased the probability of generating a correct ligand pose, but se-
lecting the optimal docking cavity remains a major challenge for docking methods [31,32].
This result also highlights the need to select multiple binding mode predictions, which
should be re-scored with a more rigorous computational methodology.
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Figure 10. (A) Differences in binding site structure organisation between 6pl1 crystal and the selected
hiTanimoto receptor by CELPP; the correct ligand pose is represented in beige, (B) Differences in site
conformations for target 6a6k between receptor hiResHolo in purple, the crystal structure in white
and hiTanimoto receptor in yellow. The ligand crystal pose is represented in green and in light purple
is the pose obtained using the hiResHolo receptor.

Other Molecules in the Binding Site

This pipeline was intended for general applicability, and for this reason, during the
cavity preparation process all the ligands and co-solvents were removed, and only the
coordinates of the receptor were kept. However, in some systems, especially enzymes,
cofactors can have an important role in determining the ligand binding mode. Two such
examples are provided in Figure 11. Lastly, the fact that there can be other molecules in
the binding site can interfere when generating the pharmacophoric restraints. As they are
in the same cavity, our protocol included them in the list of retrieved ligands from similar
proteins, and those are considered in the pharmacophoric restraint generation pipeline.
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Figure 11. (A) Interaction of ligand G0D (green) with heme group (orange) in PDB 6DA2 [33].Ligand
belongs to a series of analogues with pyridine as a heme-ligating head that works as an inhibitor
of CYP3A4 by decreasing the heme reduction rates [33]. (B) Interaction of ligand EV8 (green) and
NADP (pink) in PDB 6gd0. In yellow dashed lines are H-bond interactions and in green dashed lines
π interactions.

3. Materials and Methods
3.1. Candidate Preparation

For each candidate structure, co-crystallized solvent and ligands were removed using
Schrödinger’s split structure tool [34], and only the coordinates of the receptor were kept.
Subsequently, the protein preparation tool from MOE [35] was used to fix problems within
the crystal structure, and the Protonate 3D tool [36] was used to assign protonation states to
the protein (assuming pH 7.0). All the files were saved in Tripos MOL2 format, as required
by the docking program, rDock [5]. All the above steps were integrated in an SVL script for
automation purposes.

3.2. Ligand Preparation

We took the query ligand in SMILES string format and used the LigPrep tool from
Schrödinger [37] to calculate the 3D structure with the proper topology; tautomerism; bond
orders and geometry of bonds, angles, dihedrals and rings. Additionally, the ionizable
groups were protonated at pH 7 with a threshold of ±1 pH unit. All ligands were saved in
SDF format.

3.3. Selection of Similar Proteins, Druggable Pockets and Ligand Retrieval

One of the pillars of the whole process was being able to select good reference systems
from which we could extract some restraints to guide our docking predictions. For this
purpose, we integrated into the pipeline a protocol based on the 3decision tool from
Discngine; 3decision [17] is a web-based platform that centralizes all structural knowledge
(including all the RCSB PDB dataset) to perform multiple kinds of analyses. We queried
3decision using a dedicated REST API endpoint. Using as input the target sequence in
FASTA format, a blast against the database was performed to select those proteins that
share a high identity (I% > 80%). The 3decision database also contains all pre-computed
druggable pockets as predicted by the fpocket cavity detection tool [27]. The pockets
are aligned based on the sequence and superimposed to the query structure. Finally,
we exported all the ligands found in the aligned pockets in an SDF file, which was also
converted to SMILES format using Openbabel [38]. In the case where multiple druggable
pockets were detected, the corresponding docking protocol was applied to every pocket.
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3.4. Ligand Similarity and Maximum Common Substructure Calculation

After retrieving the ligands found in similar pockets, a similarity analysis was per-
formed between the query ligand and the list of retrieved ligands using MACCS keys
fingerprints and the Tanimoto coefficient scoring, which has been identified as one of best
metrics for similarity calculations [39]. The Tanimoto coefficients as well as the fingerprints
were calculated using rdkit [19].

The maximum common substructure (MCSS) between the target ligand and the ligands
retrieved from similar proteins was calculated using RDKit’s FindMCS function [19]. As a
complementary measure of similarity between the ligands, and also working as a method to
evaluate the robustness of the MCSS, a Tanimoto coefficient based on MCSS was calculated
using Equation (1) [22].

TanimotoMCSS =
NAB

(NA + NB)− NAB
(1)

where NA and NB are the number of heavy atoms in molecules A and B, respectively,
and NAB is the number of heavy atoms in the MCSS. The TanimotoMCSS can have values
between 0 and 1, 1 being the value obtained when two molecules are identical.

3.5. Generation of Pharmacophoric Restraints

Ligand-based pharmacophore modelling has had a great impact in drug discovery [40].
In this work, this strategy was used to extract common chemical features from the aligned
ligands retrieved by 3decision before elucidating the pharmacophores. The Align-it tool
from Silicos-it [41] was used to generate a combination of pharmacophore points for
each molecule in the set. In this work two different versions of the protocol for the
generation of a consensus pharmacophore were tested. In the first version, after the
generation of the pharmacophoric points for each molecule, the features that were common
between molecules were selected and ranked by number of appearances, and then the two
highest ranked features were selected and used as mandatory pharmacophoric restraints for
docking. In the second Version, the ligands were first clustered based on similarity (MACCS
fingerprints and Tanimoto similarity of 0.9). From each cluster, the ligand corresponding
to the centroid was selected, thus removing redundancy and obtaining a diverse set of
ligands, and then the pharmacophoric points were generated. From here, only the most-
representative points (those shared by more than 45% of the ligands) were considered
as mandatory restraints. Points shared by between 20% and 44% of the ligands were
considered optional restraints. For the optional restraints, at least one of them needed to be
fulfilled during the docking process.

3.6. Molecular Docking

To perform all the docking processes, we used rDock [5], a fast, versatile and open-
source docking program. To run rDock, we needed the prepared receptor structure and a
definition of the binding site. To define the binding site in this work, we chose the reference
ligand method with rDock’s default parameters. From the pool of retrieved ligands, we
selected as a reference ligand the one having the maximum sum of the MACCS Tanimoto
similarity score and TanimotoMCSS score. This combined score implies a similar ligand and
also a similar size to the target ligand. As a result, the cavity size was adapted to the query
ligand, adding another restriction level to the docking process.

After ligand preparation, rDock is able to explore exocyclic bond rotations on the fly
using a genetic algorithm together with rotations and translations. Conveniently, rDock
can perform free docking as well as different types of restraint docking. Using rDock
capabilities, our pipeline could use three different docking protocols, depending on the
characteristics of the system and the available information. If we found a good reference
ligand (TanimotoMCSS > 0.5), then the pipeline would choose tethered docking, fixing
the MCSS with the sdtether utility. Otherwise, if there was a sufficient number of diverse
ligands to extract a pharmacophore (>5), a pharmacophoric restraint docking was chosen
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instead. Finally, unrestrained docking was used for the remaining cases. All the docking
predictions used the standard rDock docking protocol (dock.prm).

3.7. Pose Selection

The output from the pipeline was a set of poses generated by the docking program
for each candidate structure in an SDF file. Then, the poses were sorted by rDock’s
intermolecular score (SCORE.INTER), which accounts for the protein–ligand interaction’s
free energy. Formally, solutions should be sorted based on the total score, which accounts
for the intramolecular energy as well (SCORE.INTRA + SCORE.INTER), but it has been
shown that the intramolecular term bears a large error and can introduce more noise than
signal to the predictions [42]. Using sdsort, the best pose was selected and saved in an SDF
file. If more than one cavity was detected, this selection protocol was then applied to each
cavity. Thereafter, the cavities were ranked based on the MCSS score obtained during the
Ligand similarity and MCSS calculation, and then the best poses from each cavity were
ranked by rDock’s SCORE.INTER. The best scoring pose from the top scoring pocket was
then selected for submission. Finally, the files were transformed to the format required by
CELPP submission rules: the ligand pose in MOL format and the receptor in PDB format.

4. Conclusions

Quantifying the performance of docking software in real scenarios is essential to
understanding their limitations, managing expectations and guiding future developments.
With the CELPP Challenge, D3R aimed to provide a fast-growing validation set that better
captures all the complexity in a real drug-discovery setting. Here we presented an initial
version of our pipeline for participation on the CELPP Challenge, which applies different
knowledge-based docking approaches depending on the already available information
on PDB.

To provide a baseline performance, the CELPP team developed four workflows based
on different docking programs, one being rDock. The rDock workflow represents a default
implementation of the method without any optimisation and using the cavity defined by the
challenge. Our protocol had the added challenge of detecting the cavity automatically, but
when we considered only the cases where the cavity was correctly predicted, we observed
a significant performance of our protocol relative to the baseline, with improvements in the
median RMSD value ranging from 1.0 Å to 2.6 Å, depending on the docking cavity (Fig-
ure 6). This confirms that gathering information from already-deposited complexes in PDB
and transforming them into the appropriate restraints benefits the docking process greatly.

Our final goal was to evolve this platform into a docking server where more rigorous,
but also more computationally demanding methods, could be applied (e.g., molecular
dynamics). Nonetheless, there are some additional points that need to be revised. The first
one is cavity detection and characterization. For our pipeline being able to identify possible
binding sites for the majority of targets, 3decision has proven to be a valuable tool. However,
there are some cases where the 3decision protocol is not able to retrieve the correct pocket
because they are shallow cavities or the receptor structure is ill-defined. In this first version
of the pipeline, targets where there is no pocket information are neglected, and no docking
protocol is applied. For these situations, we could use a local implementation of fpocket [38]
to check whether there are, in fact, no possible druggable cavities. Another option would
be using molecular dynamics with co-solvent/water mixtures (MDmix) [43,44] to identify
possible binding sites. Nonetheless, we would like to add the option of taking the cavity
coordinates as a reference. With this, we would separate the cavity-finding problem from
the docking problem, reduce execution time and increase the predictive power when the
binding site is already known.

A second point to revisit is the choice of receptor structure. As discussed, protein
flexibility is an important aspect to consider in a drug-discovery setup. Proteins can adapt
their structures to the bound ligand, so using an apo structure or one in a complex with a
very different compound degrades the performance of the docking program. One way to
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mitigate this effect would be to use different conformations of the receptor and select the
one with the better score as the optimal structure [45].

A third aspect is the management of ‘third-party’ molecules in the binding site, namely
cofactors and water molecules. In this initial version of the pipeline, all systems are
processed and prepared in the same way, stripping the binding site of all non-protein
molecules. However, we detected several cases where docking failed owing to missing
cofactor molecules that should be considered part of the receptor. This can be solved with
a curated list of cofactors that should not be removed. Water molecules are frequently
found at the protein–ligand interface, mediating hydrogen bonds between the partners.
By keeping these structural waters on the binding site, the ligand pose predictions can be
more accurate.

We will also continue to monitor the performance of restrained and unrestrained
docking in prospective CELPP predictions. As previously shown, by using the MCSS score,
we are able to determine which is the docking method that performs best for each case.
Initially, we applied a rather restrictive cutoff of 0.65, which included only 13% of the total
cases. After considering all the participation cases, we were able to determine better ranges
of applications for each type of docking protocol, which presently is set to 0.5 and includes
31% of cases.

As far as the creation of the pharmacophores, in cases where, due to a lack of pre-
existing information when ligand-based pharmacophore cannot be extracted, we could
make use of hot spots derived from the structure. Such hot spots can be identified by their
ability to bind small organic co-solvents [43,46]. By performing molecular dynamics with
co-solvent/water mixtures (MDmix), we can identify binding sites and hot spots [47] that
could be used as pharmacophoric restraints for docking. The addition of this methodology
to our workflow would also allow us to assess the druggability of the pockets selected
by 3decision.
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