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Abstract: Soybean is a major crop that provides essential protein and oil for food and feed. Since its 

origin in China over 5000 years ago, soybean has spread throughout the world, becoming the second 

most important vegetable oil crop and the primary source of plant protein for global consumption. 

From early domestication and artificial selection through hybridization and ultimately molecular 

breeding, the history of soybean breeding parallels major advances in plant science throughout the 

centuries. Now, rapid progress in plant omics is ushering in a new era of precision design breeding, 

exemplified by the engineering of elite soybean varieties with specific oil compositions to meet var-

ious end-use targets. The assembly of soybean reference genomes, made possible by the develop-

ment of genome sequencing technology and bioinformatics over the past 20 years, was a great step 

forward in soybean research. It facilitated advances in soybean transcriptomics, proteomics, metab-

olomics, and phenomics, all of which paved the way for an integrated approach to molecular breed-

ing in soybean. In this review, we summarize the latest progress in omics research, highlight novel 

findings made possible by omics techniques, note current drawbacks and areas for further research, 

and suggest that an efficient multi-omics approach may accelerate soybean breeding in the future. 

This review will be of interest not only to soybean breeders but also to researchers interested in the 

use of cutting-edge omics technologies for crop research and improvement. 
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1. Introduction 

Soybean [Glycine max (L.) Merr.] originated in China over 5000 years ago; China cur-

rently ranks third in soybean production worldwide, and total production has increased 

to meet market demands [1]. In 1830, soybean travelled the great distance to Europe by 

the “ancient silk road”, and from there it spread throughout the world to North America, 

South America, India, and elsewhere [2]. 

At that time, soybean breeders were mainly farmers, brewers, or suppliers, and they 

selected soybeans based on their experience and market demands [3]. Records show that 

artificial hybridization was performed in the early 1900s [4], and breeders continued to 

advance soybean breeding through cooperation with cell biologists and molecular geneti-

cists in the late twentieth century [5]. 

Soybean is a major oil crop that also provides plant protein to the food industry. 

Through genetic modification of its fatty acid composition, soybean oil has been tailored 

to meet end-user needs more successfully than other conventional oils. Three modified 

oils are already commercially available. Oils with a linolenic acid (18:3) content from 1% 

to 8% can reduce or eliminate the need for chemical hydrogenation to achieve the stability 

Citation: Cao, P.; Zhao, Y.; Wu, F.; 

Xin, D.; Liu, C.; Wu, X.; Lv, J.; Chen, 

Q.; Qi, Z. Multi-Omics Techniques 

for Soybean Molecular Breeding.  

Int. J. Mol. Sci. 2022, 23, x. https:// 

doi.org/10.3390/ijms23094994 

Academic Editor: Endang  

Septiningsih 

Received: 4 April 2022 

Accepted: 28 April 2022 

Published: 30 April 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Int. J. Mol. Sci. 2022, 23, 4994 2 of 20 
 

 

and shelf life required for certain food applications. The elimination of fatty acids pro-

duced by chemical hydrogenation and trans-hydrogenation is important for human 

health. An increase in oleic acid (18:1) from 25% to >80% also increases oil stability and 

shelf life. Reduction in palmitic acid (16:0) from 11% to <4% produces low levels of satu-

rated fatty acids and is very beneficial for cardiovascular health [6]. Soybean meal ex-

tracted from high-oleic-acid soybeans is rich in protein and inhibits the growth of colon, 

liver, and lung cancer cells [7]. 

In response to global demands for different soybean product profiles, quantitative 

trait locus (QTL) mapping laid the foundation for breeding and selection of major traits. 

The SoyBase database was first established in the 1990s as the USDA Soybean Genetics 

Database, which collected genetic resources for soybean, including genetic maps and in-

formation on Mendelian genetics (www.soybase.org). With efforts from many groups and 

researchers, the first soybean reference genome (Williams 82) was released in 2010, mark-

ing a new era in soybean omics research [8]. Studies of genomics, transcriptomics, prote-

omics, metabolomics, and phenomics have increased dramatically in recent years (Figure 

1). The regulatory network of soybean is extremely complex; although single-omics ap-

proaches can reveal or explain specific biological phenomena, their results may be difficult 

to apply directly to soybean breeding. Additionally, now, given the huge amounts of om-

ics data available, significant thought must be given to the best means of using them effi-

ciently. In this review, we comprehensively describe the latest progress in crop omics tech-

niques and discuss ways that soybean breeding may be further improved using multi-

omics information in the future. 

 

Figure 1. Numbers of PubMed references for different types of omics techniques. 
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2. Multi-Omics Research Progress 

2.1. Soybean Genomics Research Progress 

After the release of the soybean reference genome, Lam et al. (2010) sequenced 31 

wild and cultivated soybean genomes and identified genetic diversity patterns and signa-

tures of selection [9]. The genome sequence of Glycine soja (G. soja var. IT182932) was also 

subsequently reported. 

Because of at least two whole genome duplication (WGD) events in the soybean ge-

nome over the last 60 million years, it is quite common for genes to be present in two or 

four copies [10]. A more accurate reference genome can accelerate functional genomics 

research, and in 2018, Shen et al. [11] reported the de novo assembly of the Chinese soy-

bean “Zhonghuang 13” genome based on advanced sequencing technologies, including 

single-molecule real-time (SMRT) sequencing, Hi-C chromosome conformation capture, 

and optical mapping. This genome exhibited more than 250,000 structural variations com-

pared with Williams 82. Subsequently, the genome of the wild soybean accession W05 

was assembled, with a size of 1013.2 Mb and a contig N50 of 3.3 Mb [12]. The Williams 82 

genome was reassembled and reannotated (version Wm82.a4.v1), integrating ~1.6 million 

ESTs and 1.5 billion paired-end Illumina RNA-seq reads with homology-based gene pre-

dictions [13]. 

A pan-genome from seven wild soybean relatives was reported in 2014, facilitating 

the construction of a core genome and enabling genomic comparisons to identify lineage-

specific genes and genes with copy number variations or large-effect mutations [14]. Re-

cently, a graph-based pan-genome was constructed from 26 representative wild and cul-

tivated soybeans based on long-read sequencing, enabling the detection of numerous ge-

netic variations that could not be identified from short-sequence reads alone [15]. The pan-

genome not only provides complete information on the entire soybean genome, but also 

serves as a platform for investigating the evolution and functional genomics of soybean 

[16–18]. 

Recent studies have discovered a number of genes with wide applicability to soybean 

production. In 2016, Zhao et al. [19] performed genetic and molecular studies of flowering 

genes by crossing early maturing soybean varieties. The hybrid offspring segregated for 

two maturity loci, E1 and E9, and detailed molecular analysis of the E9 locus was per-

formed to identify the causal gene. Fine mapping, sequencing, and expression analysis 

indicated that E9 was FT2a, a homolog of Arabidopsis FLOWERING LOCUS T. The reces-

sive allele of E9/FT2a delays flowering through reduced transcript abundance due to al-

lele-specific transcriptional inhibition, associated with the sore-1 insertion. Therefore, 

FT2a transcript abundance is directly related to changes in soybean flowering time. The 

E9 allele can maintain vegetative growth in an early-flowering genetic background and 

can also be used as a long-juvenile allele, delaying flowering under short-day conditions 

at lower latitudes. Soybean is the main leguminous crop in temperate regions, and the 

photoperiod response is a key factor in its latitude adaptation. The varieties introduced 

into low-latitude, temperate regions mature earlier and have very low yields. The intro-

duction of long-juvenile (LJ) traits extends the vegetative stage and increases yield under 

short-day conditions, thereby enabling the expansion of tropical planting. In 2017, Lu et 

al. [20] used natural variation in the soybean J locus to improve adaptability to tropical 

areas and increase yield. 

The composition and content of fatty acids in soybean seeds are very important for 

the quality of soybean oil. Fatty acids are the main products of oil biosynthesis and sub-

strates of oil catabolism, and they are an important energy source for organisms. In a 2020 

study aimed at increasing soybean oil content, Wang et al. [21]. reported strong selection 

on GmSWEET10a during soybean domestication based on resequencing data from more 

than 800 genotypes. Selection on GmSWEET10a not only increased soybean seed size and 

oil content but also reduced protein content. These results were validated using near-iso-

genic lines with haplotype substitution and transgenic studies. Wang et al. also found that 
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GmSWEET10b and its homolog GmSWEET10a are functionally redundant and are under 

selection in breeding, making the GmSWEET10b allele a good target for soybean breeding. 

Research on GmSWEET10a and GmSWEET10b has shown that the transport of sucrose and 

hexose contributes to sugar distribution from seed coat to embryo, thereby determining 

oil and protein content and seed size in soybeans. Selection on the GmSWEET10a allele is 

thought to have promoted the initial domestication of a variety of soybean seed traits, and 

targeted selection of the superior allele GmSWEET10b may further improve the yield and 

seed quality of modern soybean varieties. 

In summary, although only a few genes suitable for use in soybean breeding have 

been identified through genomics analysis to date, the J locus and flowering-time-related 

genes show promise for moving soybean planting areas into new latitude locations 

[19,20]. Seed oil and protein content genes could also be used to improve soybean seed 

composition [21]. As the number of sequenced wild and cultivated soybean germplasm 

resources increases, there is an increasing need for a worldwide data integration platform 

that combines a series of reference genomes, a pan-genome database, and basic analysis 

platforms, expanding the scope of use of a wide range of available soybean germplasm 

resources. 

2.2. Soybean Transcriptomics Research Progress 

With the development of sequencing technology, transcriptomics is rapidly becom-

ing a mainstay of plant science research [22–24]. Transcriptome analysis with next-gener-

ation sequencing, also known as RNA sequencing (RNA-seq), enables unbiased, high-

throughput detection of all expressed transcripts. This technology offers new insights into 

molecular profiles and signaling pathways at the level of systems biology and can identify 

useful gene markers for the efficient breeding of soybean. Recent RNA-seq data provide 

an overall picture of the metabolic activities of storage compounds during soybean seed 

development and enable modeling of the gene network associated with seed lipid and 

protein deposition. During soybean seed filling, the embryo develops as carbohydrates, 

oils, and proteins are stored in the cotyledons [25–28]. Severin et al. [29] (2010) performed 

transcriptome sequencing of different tissues and different developmental stages of Wil-

liams 82 soybean, then constructed an RNA-seq atlas of hierarchically clustered gene ex-

pression profiles; highly expressed genes and legume-specific genes were also identified. 

Subsequently, similar research documented transcript patterns during soybean seed de-

velopment and identified seed-specific genes and expression patterns [30,31]. 

Genes encoding storage proteins (e.g., beta-conglycinin and glycinin) and enzymes 

of lipid or starch synthesis were most highly expressed at the embryonic stage when fresh 

weight was highest, suggesting that these storage compounds are immediately deposited 

into seeds before initiation of the desiccation process. Other genes expressed at the dry 

seed stages have been annotated as water-deficit-associated hydrophilic proteins [32], in-

cluding dehydrins and late-embryogenesis-abundant (LEA) proteins that facilitate the 

preservation of nutrients and cellular structures during seed desiccation. More signifi-

cantly, several transcription factors (TFs) have been identified as major regulators of seed 

development, including the APETALA2 (AP2), VIVIPAROUS1/ABI3-LIKE (VAL), FERTI-

LIZATION INDEPENDENT ENDOSPERM (FIE) [33], GLABRA2 (GL2), PICKLE (PKL) [34], 

and DNA-binding-with-one-finger (DOF4) transcription factors [35]. PKL is an important 

activator of embryonic development, and FIE inhibits premature endosperm develop-

ment. VAL1 and VAL2 [36] regulate the transition from embryonic development to ger-

mination. Seed filling development is also regulated by ABSCISIC ACID (ABA)-INSENSI-

TIVE 3 (ABI3), LEAFY COTYLEDON 2 (LEC2), FUSCA3 (FUS3), and WRINKLED1 (WRI1) 

TFs [26,37]. These TFs may influence the deposition of carbohydrates, oils, and proteins 

during seed filling. The interactions among TFs during embryonic development and ger-

mination are relatively complex and involve several TFs at each stage. Identification and 

characterization of transcript polymorphisms in soybean lines of different oil composi-

tions provided evidence that mutation of FAD2-1A and FAB2C influenced oleic acid and 
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stearic acid levels, respectively, in elite soybean lines [38]. Jang et al. [39] (2015) analyzed 

the gene expression patterns of seed protein and oil synthesis during early soybean seed 

development. Luet al. [40] (2016) built gene co-expression networks based on 40 transcrip-

tome datasets from developing seeds of cultivated and wild soybean accessions, and they 

identified the two hub genes GA20OX and NFYA. Qi et al. [41] (2018) performed RNA-seq 

of four chromosomal segment substitution lines (CSSLs) that differed in seed storage com-

position, identifying seven hub genes through the integration of meta-analysis and RNA-

seq co-expression networks. Yang et al. [42] (2018) screened out the three hub genes 

GmABI3b, GmNFYA, and GmFAD2-1B through dynamic transcriptome analysis of devel-

oping soybean seeds. Recently, as RNA sequencing technology has advanced, additional 

hub genes such as LEC2, ABI3, and SWEET10a have been identified by RNA-seq and co-

expression analysis [43]. These datasets and hub genes provide additional resources and 

candidate gene lists for functional validation. 

Transcriptome analysis has also provided an in-depth understanding of the molecu-

lar and genetic responses that underlie soybean adaptation to environmental stresses [44–

47]. Transcriptomic data can be extremely valuable for examining differences in gene ex-

pression between stress-tolerant and stress-sensitive genotypes, facilitating the develop-

ment of stress-tolerant genotypes, which is one of the primary objectives of soybean breed-

ing. Comparative transcriptome analysis of soybean exposed to different stresses led to 

the identification of functional and regulatory genes that act in response to individual and 

combined stresses, enabling their use in breeding for combined stress tolerance. These 

genes comprise protein kinases, phosphatases, and a number of TFs from the basic helix–

loop–helix (bHLH), ethylene response factor (ERF), myeloblastosis (MYB), no apical me-

ristem (NAC), and WRKY families [48]. Changes in the expression of genes encoding os-

molyte-regulating enzymes, aquaporins, LEA proteins, chaperone proteins, and reactive 

oxygen species (ROS) scavengers, which maintain ionic balance by active transport and 

protect cell membrane integrity, were also found to be associated with various stress re-

sponses in soybean. Transcriptomic studies permit the comparative genomic analysis of 

cultivated crops and their wild relatives, enabling the identification of additional target 

genes that are crucial for the improvement of breeding processes. For example, RNA-seq 

has been used to examine the expression profiles of wild soybean species under alkaline 

stress [49], providing insight into the functions of alkaline-stress-responsive genes and the 

molecular basis of wild soybean alkalinity tolerance [50]. 

Transcriptomics research is a high-throughput approach that uses large-scale da-

tasets to study the overall transcript levels of multiple genes that function in a biological 

process. With rapid development of high-throughput sequencing technology, further re-

ductions in sequencing costs, and continuous improvements in large-scale data pro-

cessing capabilities, transcriptomics has become a common experimental approach for 

solving biological problems through the discovery of new transcripts, development of de-

tailed transcriptional atlases, and accurate identification of metabolic pathways [51]. In 

addition, with the continuous development of sequencing technology, the current analy-

sis methods and basic assumptions need to be reevaluated and adjusted in order to better 

cope with the large amount of omics data in the future [24]. At the same time, cell- and 

tissue-specific transcriptomics technology has been used in specific biological applica-

tions, such as plant transformation [52]. Single-cell transcriptomics is continuing to ma-

ture, providing precise spatial and temporal insights into biological processes [53,54]. To 

date, transcriptomics research has identified only a few genes that can be used in soybean 

breeding, but continued integration of transcriptomics with genomics and other omics 

approaches could help breeders to optimize soybean regulatory networks and refine hub 

gene candidates for further soybean breeding. 

2.3. Soybean Proteomics Research Progress 

Proteins are the source of biological phenomena, the executors of physiological func-

tions, and the direct embodiment of biological activities. Proteomics, the study of protein 
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expression and function, has developed rapidly since its inception, and ever-increasing 

amounts of proteomic information, together with rapidly expanding plant genome re-

sources and EST sequence libraries, have provided help for the identification of proteins. 

Proteomics provides the necessary basis for the study of soybean protein expression [55]. 

In recent years, it has been widely used for research on various aspects of soybean biology, 

such as growth and development, stress, and root–nodule interactions, and the resulting 

studies have deepened our understanding of changes in protein expression during the 

soybean life cycle [56–61]. 

Before 2012, soybean proteome studies relied heavily on 2D gel electrophoresis [62], 

but advances in liquid chromatography with tandem mass spectrometry (LC–MS/MS) 

have made high-throughput proteomics possible, promoting greater efficiency and accu-

racy in proteome research. Hajduchet al. [63] (2005) constructed high-resolution proteome 

reference maps of seed filling in soybean. Subsequently, the integration of two-dimen-

sional gel electrophoresis, semicontinuous multidimensional protein identification tech-

nology (Sec-MudPIT), and LC–MS has improved our understanding of the metabolic pro-

cesses that occur during seed filling in soybean [64]. 

Afroz et al. [56] (2011) analyzed the proteome profiles of leaves, hypocotyls, and roots 

of young soybean seedlings and detected tissue-specific proteins. Since then, proteomics 

has increasingly been used to analyze enzyme expression and regulatory mechanisms in-

volved in accumulation during seed storage [57]. Root hairs and developing seeds have 

been analyzed using isobaric tags for relative and absolute quantitation (iTRAQ), and spe-

cific proteins related to root hair and seed development have been identified [58,59]. 

Seed oils and seed storage proteins are the main seed storage reserves in soybean. Xu 

et al. [60] (2015) used proteomics to analyze differences in global protein expression pro-

files and oil synthesis between a high-oil soybean cultivar (Jiyu 73, JY73) and its parents. 

Proteomics has also been widely used in stress biology to identify key proteins. For exam-

ple, Xu et al. [61] analyzed GmDGAT1-2 transgenic soybeans with high oil content using 

quantitative proteomics and lipidomics. They showed that GmDGAT1-2 overexpression 

induces downregulation of lipoxygenase and upregulation of oleosin, thereby signifi-

cantly altering total fatty acid composition. A proteomics approach also revealed flood 

and drought response mechanisms in soybean. Wang et al. [65] (2018) identified sensitive 

tissues of stressed soybean at different developmental stages based on protein profiles, 

documenting the stress responses of young plants and seedlings exposed to combined 

stresses in a tissue-specific manner. In 2017, Wang et al. [66] performed tissue-specific 

proteomics studies of soybean seedlings under flooded conditions, and Wang et al. [67] 

(2021) demonstrated the dual effect of calcium on soybean radicle protrusion using quan-

titative proteomics. 

Recently, Islam et al. [68] (2019) performed quantitative proteomic analysis of low-

linolenic-acid transgenic and control soybean seeds. They revealed perturbations in pro-

teins related to fatty acid metabolic pathways, including a lower abundance of proteins 

associated with FA initiation, elongation, and desaturation processes and with β-oxida-

tion of α-linolenic acids. Wei et al. [69] (2020) combined quantitative proteomics with 

physiological data and revealed the effects of temperature and humidity stress on cotyle-

don, embryo, leaf, and pod vigor in soybean. 

Although the breadth of proteome research in soybean is still lower than that in other 

crops, it nonetheless provides a starting point for functional genomics studies of natural 

product biosynthesis mechanisms and biotic and abiotic stresses in soybean [55–61]. The 

information obtained from proteomics can help to identify novel proteins, determine the 

expression patterns of their corresponding genes, and enable their molecular cloning. Soy-

bean research could be further advanced by the construction of a soybean proteome ref-

erence map. A combination of proteomics, genomics, and transcriptomics could enable 

the screening of elite alleles and the development of molecular markers, providing new 

possibilities for soybean molecular breeding. Recent advances in protoplast and sequenc-

ing technologies have enabled single-cell transcriptomic studies in plants, but single-cell 
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proteomics will need to develop much further to achieve a comparable throughput. A 

major problem with single-cell proteomics is its inherently low sample volume that chal-

lenges traditional sample preparation protocols and the sensitivity of current liquid chro-

matography–mass spectrometry (LC-MS) systems [70]. Nonetheless, protein data argua-

bly reflect the execution and control of most cellular processes more closely than tran-

scriptome data, and efficient, high-throughput techniques for analyzing protein expres-

sion, interactions, and modifications will be essential for understanding the molecular 

mechanisms that underlie plant phenotypes [71]. 

2.4. Soybean Metabolomics Research Progress 

Metabolomics is a new approach to the qualitative and quantitative analysis of small 

metabolites with relative molecular weights <1000 in a given tissue or cell. It is an im-

portant aspect of systems biology, and its development will have implications for future 

soybean research. Metabolomics analyses can reveal specific metabolic signaling path-

ways, providing key resources for gene discovery, metabolic engineering, and the eluci-

dation of regulatory mechanisms. Quantitative metabolomics techniques for the detection 

of plant metabolites include liquid chromatography–electrochemistry–mass spectrometry 

(LC–EC–MS), gas/liquid chromatography–mass spectrometry (GC/LC–MS), thin-layer 

chromatography (TLC), Fourier transform infrared (FT–IR) spectroscopy, NMR, direct in-

fusion mass spectrometry (DIMS), and capillary electrophoresis–LC–MS [72–76]. The LC–

MS, GC–MS, NMR, and capillary electrophoresis MS techniques are most commonly used 

in plant metabolomics [77–79]. Compared with genomics, transcriptomics, and prote-

omics, the results of plant metabolomics techniques are more directly related to the plant 

phenotype. The identified metabolites have the dual effect of influencing or regulating 

both gene transcription and protein expression. Subtle changes that occur at other levels 

of regulation can be further amplified at the metabolome level [80]. The general process 

of metabolomics studies involves plant sample collection, metabolite isolation, and the 

detection of metabolite type, content, and status using assay techniques to construct a 

metabolic fingerprint [81]. This is combined with bioinformatics analysis to mine relevant 

information and integrate metabolic pathways for a comprehensive understanding of 

plant metabolic processes and metabolite changes [82]. 

Single-cell mass spectrometry provides information on metabolite abundance in cell 

populations, enabling the identification of hidden phenotypes, metabolic states, and rare 

cells. Comparing gene expression, protein function, and metabolite levels in individual 

cells could provide a comprehensive understanding of cellular physiology. In recent 

years, the combination of MS with novel sampling and ionization techniques has emerged 

as an important tool for single-cell metabolomics [83]. MS-based single-cell metabolomics 

enables the simultaneous detection of multiple metabolites from a single cell without pre-

selection or labeling, thus mapping phenotypes at the single-cell level. Although this ap-

proach is still relatively new, it has been adopted by a growing number of active research 

groups who are developing cell sampling and ionization techniques, data analysis tools, 

and applications to answer important biomedical and environmental questions [84]. 

Characterizing mechanisms of metabolic regulation is crucial for modifying soybean 

seed composition. Using a nontargeted metabolomics approach, 169 metabolites were 

identified from mature seeds of 29 representative soybean cultivars and then mapped 

onto a metabolic network. These metabolites were mainly involved in key pathways of 

seed development, such as the tricarboxylic acid cycle, glycolysis, amino acid biosynthesis 

and catabolism, nitrogen utilization, antioxidant utilization, lipid oxidation, and second-

ary metabolite accumulation [85]. Significant variations in metabolite abundance and clear 

metabolite–metabolite correlations among different soybean cultivars were also demon-

strated. The isoflavone profiles of soybean germplasms highlighted the diverse varieties 

of isoflavones present in soybean [86], and several aglycones were associated with differ-

ent levels of shade tolerance at the seedling stage [87]. The effects of seed dry weight, seed 

coat color, and maturity on metabolite abundance have also been determined [88,89]. For 
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instance, black soybean seeds were used to investigate the effect of maturity on metabolite 

abundance at different maturity stages. Several metabolites showed different responses 

to seed maturation, and the isoflavone content was markedly related to seed maturity. In 

addition, plant metabolites that change through specific pathways can enhance the nutri-

tional value of genetically modified soybean by promoting the accumulation of isofla-

vones in developing seeds. 

The use of metabolomics techniques was evaluated in a comprehensive study to ex-

plore the results of abiotic stress on soybean metabolites. The results showed that expo-

sure of soybean plants to abiotic stress increased the biosynthesis of secondary metabo-

lites, among which glycine and proline act as major osmoprotectants, playing important 

roles in the reduction in osmotic damage induced by abiotic stress. Levels of different 

polyphenols (hydroxycinnamates and flavonoids), phenylpropanoids, alkaloid caffeate, 

and phytochemicals (daidzin, daidzein, syringic acid, formononetin, genistin, and 

genistein) also increased [90], all of which are known to respond to plant drought stress. 

A metabolomics approach was recently used to discover metabolic markers applicable to 

crop improvement. This concept was first introduced by an earlier study that identified 

metabolites with high predictive values as biomarkers for plant biomass accumulation 

and plant breeding improvement. The role of these markers in crop enhancement was 

verified by recent studies [91], and their potential for use in soybean selection was also 

evaluated. Recent studies compared changes in metabolites between tobacco and soybean 

after exposure to drought, and levels of 4-hydroxy-2-oxoglutaric acid in tobacco roots and 

pinitol and coumestrol in soybean roots were markedly increased, suggesting that these 

may be useful markers for differentiating lines grown under well-watered conditions 

from those exposed to drought stress [92]. 

In the last decade, metabolomics studies have opened up new horizons for the eluci-

dation of plant metabolic pathways and genetic architecture. Metabolomics studies have 

resolved the isoflavone profile of soybean [84], identified metabolites associated with dry 

weight and maturity of soybean grains [87], and greatly accelerated the differentiation of 

disease-resistant from disease-susceptible soybean varieties under stress conditions [93]. 

However, because plants have complex metabolic pathways and diverse mechanisms of 

product synthesis, metabolomics is still in its infancy, and gaps remain between metabo-

lomics findings and practical breeding applications. There is no single metabolomic anal-

ysis method that can cover all metabolites [94]. Methods of metabolite isolation, identifi-

cation, and data analysis used for different research objectives are also different and have 

strict requirements for sample processing techniques. The research performed in soybean 

to date has focused mainly on known metabolites, and the large number of unknown me-

tabolites obtained without appropriate structural information and identification impedes 

further studies and applications. Metabolomics also lacks deep integration with other ap-

proaches, making it a relatively narrow area of research. It remains difficult to effectively 

obtain comprehensive information on plant metabolites, and resolving these methodolog-

ical issues will be a breakthrough for future metabolomics research. 

2.5. Soybean Phenomics Research Progress 

Given the rapid development of sequencing technology and the sheer number of 

plant materials to be tested, the collection of phenotypic information by appropriate high-

throughput phenotyping technologies is particularly important for plant breeding. How-

ever, plant phenotypes are complex and dynamic, and they are easily affected by the en-

vironment. Manual investigation of plant phenotypes is characterized by low efficiency 

and large errors [95]. As an approach to solve these practical problems, plant phenomics 

has begun to receive significant attention [96]. At present, there are only 132 published 

articles related to high-throughput phenotyping in soybean, and 120 have been published 

in the past decade. The number of studies is increasing year by year, showing that breed-

ers are becoming increasingly aware of the importance of accelerating soybean breeding 

through phenotyping studies. 
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Plant growth and development follow a strict growth regime, but harvested plants 

differ in their cotyledon size, resistance to stress, and metabolic capacity. Small develop-

mental differences can result in dramatic changes in both physical traits and internal char-

acteristics of plants [97]. Plant phenomics leverages high-throughput, high-resolution 

phenotyping technologies and platforms to acquire phenotype data during and after plant 

production [98]. It is characterized by the large amounts of trait data acquired and the 

ability to divide the same trait into multiple smaller traits for testing. Data acquisition with 

fixed, quantitative, and uniform acquisition standards facilitates high-throughput auto-

mated analysis, enhancing the accuracy of crop phenotype identification and further pro-

moting the efficiency of plant breeding and cultivation management [99]. 

For example, professional unmanned aerial vehicles (UAVs) can be equipped with 

high-definition dual-camera multi-spectral equipment and can obtain accurate soybean 

yield estimates and efficient pod maturity classifications by reconstructing time course 

multispectral high-throughput image data [100]. Fusion of high-spatial-resolution RGB, 

multispectral, and thermal data from UAV systems has improved the estimation accuracy 

of soybean physiological, biochemical (e.g., chlorophyll content, nitrogen concentration), 

and biophysical parameters (e.g., leaf area index, aboveground fresh and dry biomass) 

[101]. The color and texture features of early-season RGB images of the soybean canopy 

have also been used to predict soybean yield, maturity, and seed size [102]. Professional 

UAVs equipped with expensive multispectral, hyperspectral, and thermal imaging equip-

ment are increasingly used for high-precision sampling of soybean canopy traits, such as 

height, area, temperature, and leaf wilting [103–105]. However, it is difficult to obtain 

higher-dimensional phenotypic traits from 2D images, and some estimates of some mor-

phological traits still require calibration. To this end, researchers have performed three-

dimensional reconstruction of plant morphology from two-dimensional image sequences 

using fully open-source structure from motion (SFM) and multi-view stereo (MVS) ap-

proaches [96]. For example, plant height and growth phenotype data can be obtained by 

establishing high-density 3D point clouds from plant image data [106]. In 2020, research-

ers used 3D reconstruction technology to analyze the “phenotypic fingerprint” and 

growth pattern of soybean plants throughout the growth period [107]. This cost-effective 

3D reconstruction method can replace expensive laser scanners, with the potential to au-

tomate some procedures. 

The use of high-throughput phenotyping to record plant responses to stress can en-

able the identification of resistant plants and the discovery of new genes [108]. When stud-

ying the biological effects of stress, a combination of high-throughput phenotyping 

ground vehicles, unmanned aerial systems, and digital images taken with smartphones 

can be used to automatically assess the severity of iron deficiency chlorosis (IDC) in real 

time [109], enabling field screening for large-scale soybean IDC tolerance [110]. Zhou et al. 

developed an automated plant phenotyping system in an established greenhouse and 

used it to analyze chlorophyll content and salt tolerance by continuously photographing 

and extracting image features with digital cameras (red, green, and blue), thereby demon-

strating its feasibility [111]. Soybean is sensitive to flooding stress. Researchers used five-

band multispectral and infrared thermal imaging cameras to extract canopy image fea-

tures from three flight altitudes and then used deep learning to estimate soybean flooding 

damage scores [105]. By measuring such phenotypes, QTLs or genes related to abiotic 

stress can be located, and new soybean varieties with strong stress resistance can be culti-

vated. 

With the development of remote sensing, robotics, visualization, and artificial intel-

ligence, plant phenomics research has entered a stage of rapid growth. However, the huge 

amounts of data and numbers of pictures also present unprecedented challenges. Machine 

learning, the foundation of artificial intelligence whereby algorithms make predictions 

and learn from data without explicit programming, has been used in attempts to solve 

this problem [112]. Deep learning, a new field within machine learning, was originally 

proposed in 2006 [113]; it now includes approaches such as convolutional neural networks 
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(CNNs), multilayer perceptrons (MLPs), and recurrent neural networks (RNNs) [114]. 

CNNs have been most widely applied to plant phenotyping, and commonly used CNN 

deep learning frameworks include TensorFlow [115], PyTorch [116], and Caffe [117]. At 

the same time, the development of deep learning has been supported by advances in cloud 

computing and GPU parallel computing. At present, there is a high demand for modern, 

high-frequency, multi-site, standardized phenotype acquisition, and the standardization 

and storage of phenotype data is a current subject of concern. Nonetheless, deep learning 

and low-cost sensors have been applied to a number of image-based tasks with impressive 

results [114]. 

For example, machine learning, multi-modal data fusion, and deep learning have 

been applied to soybean multi-sensor data from UAV systems to enable accurate predic-

tion of soybean yield [118,119]. Riera et al. developed a multi-view-image-based fusion 

architecture for monitoring soybean pods and estimating yield through deep learning and 

demonstrated its effectiveness [120]. In another study, a novel high-throughput image 

analysis method was developed to rapidly determine and analyze the morphology and 

color of 39,065 soybean seeds from 400 lines [121]. Algorithms such as random forests and 

deep CNNs are well suited to many vision-based computer problems. For example, a sys-

tem based on an image processing algorithm could detect materials other than grain 

(MOGs) in harvested soybeans on a large scale [122]. UVA-based multispectral images 

combined with a random forest approach enabled estimation of soybean maturity in dif-

ferent lines [106]. Compared with traditional image analysis methods, CNN is simultane-

ously trained end-to-end without an image feature description and extraction process, 

and it has been used to efficiently segment single soybean seeds and calculate their mor-

phological parameters [123,124]. Soybean phenotype data include not only aboveground 

information but also belowground root phenotype data, and the fully automated soybean 

nodule acquisition pipeline (SNAP) combines RetinaNet and UNet deep learning archi-

tectures for nodule detection and segmentation. Compared with traditional methods, 

SNAP reduces the labor and inconsistency associated with nodule calculations and ena-

bles earlier assessment of the effects of genetic and environmental factors and their inter-

actions on nodules [125]. 

These methods enable timely, efficient, and accurate prediction of soybean pheno-

types in different regions and scales, revealing the regional differentiation and evolution 

of soybean phenotypic traits and assisting with soybean breeding and cultivation deci-

sions. 

The main soybean phenotypic traits currently investigated by phenomics include 

yield [126], maturity [102], leaf area index [101], plant height [106], cotyledon size, color 

[121], and response to abiotic stresses [105,109,111]. Image analysis techniques include 

fluorescence imaging [127], thermal imaging [128], two- or three-dimensional color imag-

ing [129], and infrared spectral imaging [130]. Despite recent advances in plant phenomics 

research, the study of plant phenotypes has been limited mainly to the description of ex-

ternal physical traits and has largely failed to address internal and biochemical character-

istics, hindering its application to practical breeding. In addition, there are many issues 

that require further research. Phenotyping equipment is costly and expensive, and alt-

hough it greatly reduces labor, it still requires personnel with a specific biological and 

technical background who can follow a standardized process. Some of the equipment can 

be operated only under strict environmental and weather conditions, and large-scale field 

data collection can be subject to large deviations due to weather conditions, particularly 

for spectral equipment, which requires high light levels. Some cutting-edge technologies 

for crop phenotyping, such as artificial intelligence techniques and CT imaging, have 

rarely been used in soybean breeding. In the context of the big data era, the information 

obtained by machine learning is a huge multidimensional matrix. It will be important to 

help breeders filter useful information from such massive datasets and integrate this in-

formation with other biological data in order to ultimately perform deep data mining for 

the selection of new plant varieties. 
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3. Molecular Breeding in Soybean 

Food security is among the most important topics for human society. Plant breeding, 

as a major approach to increasing the food supply, is one of the oldest agricultural prac-

tices in human civilization. To date, there have been three major innovations in plant 

breeding: artificial selection, cross breeding, and molecular breeding. A fourth innovation, 

optimization and precision design breeding, is also underway [95]. Molecular breeding 

refers to the application of molecular biology techniques to breeding, i.e., breeding at the 

molecular level, and it is the most widely used breeding approach at present. 

Long ago, our ancestors began to domesticate wild plants. They selected desired phe-

notypes and individuals from among the plants they cultivated and began to intentionally 

control plant reproduction, ushering in the first stage of plant breeding, artificial selection. 

Breeding for selected phenotypes continued for thousands of years through the 19th cen-

tury, when Mendel’s law was first proposed in 1865 [131]. After that, pedigree breeding 

was developed on the basis of segregation, and plant breeding entered the second stage, 

hybridization. The structure of DNA was discovered in 1953, and life science entered the 

molecular era [132]; on this basis, molecular biology techniques were developed to per-

form breeding at the molecular level. These techniques currently include marker-assisted 

selection [133] and transgenic breeding [134]. Molecular marker-assisted breeding 

(marker-associated breeding) is based on the close linkage between molecular markers 

and genes that determine target traits. By detecting specific molecular markers, the pres-

ence of target genes can be determined, enabling the selection of target traits. This ap-

proach is rapid, accurate, and free of interference from environmental conditions. Trans-

genic breeding uses genetic engineering to produce new varieties with desired character-

istics through the introduction of specific genes. These methods have transformed plant 

breeding from pure phenotypic selection to a combination of genotypic and phenotypic 

selection, enabling the production of new varieties that meet human requirements. 

Since the assembly of the first plant genome in Arabidopsis thaliana 20 years ago, de-

velopments in high-throughput sequencing technology have provided reference genomes 

for more than 800 land plants. High quality reference genomes and large amounts of gen-

otyping data provide great convenience for quantitative genetic analysis of complex traits. 

Experiments with the obtained genes have increased the oil content of soybeans, in-

creased the content of soybean oleic acid, and reduced the content of linolenic acid. In 

2010, Pham [135] et al. found that three polymorphisms in the FAD2-1B allele of two soy-

bean lines resulted in missense mutations. The mutant FAD2-1B allele was associated with 

an increase in oleic acid content. Pham [136] et al. also found that high-oleic-acid soybeans 

could be obtained by combining the mutant FAD2-1A and FAD2-1B genes. However, de-

spite their high oleic acid content, these soybeans still contained 4–6% linolenic acid, 

which may be enough to cause oxidation instability in the oil. Therefore, one or two mu-

tated FAD3 genes were added into a high-oleic-acid background to further reduce lino-

lenic acid content [137]. Recently, a high-oleic-, low-linolenic-acid soybean variety with 

elevated vitamin E content was developed by molecular-assisted breeding [136]. Oleic 

acid levels affect human health, and producing high quality soybeans with high contents 

of oleic acid and other health-promoting components should continue to be the focus of 

further research. Molecular-assisted breeding has also been used to improve carbohydrate 

profiles [136], pod shatter [138,139], yield and latitude adaptation [19,20,140], and seed oil 

and protein content [21] in soybean breeding. 

Soybean molecular breeding involves the integration of multiple disciplines. With 

progress in science and technology, simple integration of theories from individual disci-

plines is no longer sufficient for the continued development of soybean molecular breed-

ing. Although only a few genes identified from omics approaches have been used in soy-

bean breeding to date, the integration of one to four genes into a new variety has been 

achieved with the assistance of genomics tools. Nonetheless, continued improvements in 

soybean breeding will be dependent on advances in multiple omics. In addition to the 

traditional omics methods mentioned above, new omics techniques have also emerged, 
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including metagenomics, single-cell omics, and various types of epigenetic omics. These 

new omics methods provide more data for the characterization of complex traits. None-

theless, it remains a challenge to integrate different omics approaches into an overall om-

ics strategy to dissect the detailed connections among different omics datasets and further 

our understanding of complex trait regulation. 

Crop production is increasingly difficult owing to water shortages, climate change, 

and extreme weather events caused by the current global environment. Therefore, new 

innovations in precision design breeding (i.e., Stage 4.0 breeding) will be required to feed 

the growing world population. The development of new technologies, especially the de-

velopment of cross-disciplines based on economics, has brought Stage 4.0 breeding to the 

forefront. A prerequisite for precision design breeding is the accurate association of gen-

otype with phenotype. Therefore, it is necessary to determine the genetic anatomy of ag-

ronomic traits and identify the corresponding genotypic variations. In the past 40 years, 

multiple revolutions in DNA sequencing technology have significantly improved se-

quencing throughput and quality, and sequencing costs have continued to decline, greatly 

promoting functional genomics research [95,141]. Nonetheless, the challenge of integrat-

ing large, dissimilar datasets remains. 

4. Further Perspectives 

With the growth of the human population, continuous improvements in living stand-

ards, and the potential threat posed by global environmental change to food production, 

it is necessary to perform intensive research into the molecular mechanisms of high and 

stable crop yields under adverse conditions. The excellent alleles and germplasm re-

sources of China have been established independently. A design innovation system for 

environmental adaptive breeding has been established in China and combined with big-

data climate modeling and accurate predictions to produce high-quality, stable crop 

yields and provide important guarantees for national food security and people’s life and 

health [95,142]. 

Here, we propose a conceptual workflow for the use of multiple omics datasets to 

identify key factors that regulate soybean yield, seed quality, stress biology, and other 

factors. First, wild and cultivated soybean reference genomes, pan-genome databases, and 

analysis platforms can be expanded to include a wider range of soybean germplasm re-

sources in the future. The integrative analysis of multi-omics data can be used to construct 

the regulatory networks of individual traits, analyze the synergistic relationships among 

traits, and improve our overall understanding of molecular regulatory networks. The 

comprehensive use of genetics, multi-omics, molecular biology, and other technical ap-

proaches can identify key regulatory genes involved in relevant pathways and clarify 

their effects. To obtain further details, genome-wide association studies (GWAS), tran-

scriptome-wide association studies (TWAS), metabolite-GWAS (mGWAS), and popula-

tion genetics can enable fine mapping of a hub gene in natural germplasm populations or 

segregation populations. The hub gene can then be cloned to create overexpression or 

knock-out plants for phenotype validation. Multiple omics strategies can accelerate the 

identification of the hub gene and can provide a better understanding of its regulatory 

network. During the hub gene screening process, identification of excellent alleles and 

further utilization of genomic resources from wild soybean are also important future di-

rections. Germplasm with excellent alleles can be selected for crossing with the main cul-

tivated variety. With the assistance of marker development for the hub gene(s) and a high-

throughput phenotyping system, important hub genes can be integrated into the molecu-

lar design of a new soybean variety by high-throughput molecular-assisted breeding se-

lection (Figure 2). The sharing of information and resources from different groups should 

be strengthened worldwide, and hub genes and their excellent alleles can be used to ac-

celerate the development of soybean breeding [142,143]. 
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Figure 2. Multi-omics approaches for soybean molecular breeding. 

5. Conclusions 

Multiple omics approaches show promise for the efficient improvement of soybean 

breeding in future research. The genome is the basic foundation of soybean germplasm, 

whereas the transcriptome, proteome, metabolome, and phenome are the upper layers. In 

soybean breeding practices, genomics, transcriptomics, proteomics, metabolomics, and 

high-throughput phenotyping will need to be better integrated to construct the regulatory 

networks of complex traits and efficiently identify hub genes. Genome editing of specific 

hub genes will also help with their functional validation. After marker development for 

the hub gene(s), important or specific hub genes can be integrated to design a new soy-

bean variety. Further development of integrated multi-omics resources can promote the 

efficient and accurate discovery of excellent alleles, providing more possibilities for soy-

bean breeding. 

6. Supplementary Research Methodology  

Keywords for each omics technique were used for literature searches at PubMed 

(https://pubmed.ncbi.nlm.nih.gov/); search terms included soybean genome, soybean 

transcriptome, soybean proteome, soybean metabolome, soybean high-throughput phe-

notype, and soybean multi-omics. All literature on each technique was collected as com-

pletely as possible, and we focused on milestone literature on soybean and literature pub-

lished in the most recent 3–5 years. We developed the present review from these collected 

references, summarizing the research questions, important data, research methods, and 

major results of each paper. 
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