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Abstract: Recently, the extensive research of efficient bifunctional electrocatalysts (oxygen evolution
reaction (OER) and hydrogen evolution reaction (HER)) on water splitting has drawn increasing
attention. Herein, a salt-template strategy is prepared to synthesize nitrogen-doped carbon nanosheets
encapsulated with dispersed CoSe2 nanoparticles (CoSe2-NC NSs), while the thickness of CoSe2-NC
NSs is only about 3.6 nm. Profiting from the ultrathin morphology, large surface area, and promising
electrical conductivity, the CoSe2-NC NSs exhibited excellent electrocatalytic of 10 mA·cm−2 current
density at small overpotentials of 247 mV for OER and 75 mV for HER. Not only does the nitrogen-
doped carbon matrix effectively avoid self-aggregation of CoSe2 nanoparticles, but it also prevents
the corrosion of CoSe2 from electrolytes and shows favorable durability after long-term stability
tests. Furthermore, an overall water-splitting system delivers a current density of 10 mA·cm−2 at a
voltage of 1.54 V with resultants being both the cathode and anode catalyst in alkaline solutions. This
work provides a new way to synthesize efficient and nonprecious bifunctional electrocatalysts for
water splitting.

Keywords: metal–organic frameworks; nitrogen-doped carbon; CoSe2; oxygen reduction reaction;
hydrogen evolution reaction

1. Introduction

Electrochemical water splitting has been an effective approach to generate sustainable
and clean H2 energy [1–4]. To accelerate the production of hydrogen, numerous endeavors
have been attempted to explore advanced and stable electrocatalysts that lower the overpo-
tential of OER and HER [5–7]. Thus far, precious metal-based catalysts (such as Ir-based for
OER and Pt-based for HER) are still the most effective oxygen electrocatalysts, but scarcity
and high costs have largely hindered commercial applications. Hence, numerous research
endeavors have been devoted to finding non-precious metal alternatives, including transi-
tion metal phosphates [8], nitrides [9], dichalcogenides [10,11], and borides [12–14], which
showed exceptional activity and stability for OER and HER. Among them, cobalt selenide
is a promising catalyst candidate. Its intrinsic metallic properties lead it to have higher
electrical conductivity and more active edge sites [15–17]. For example, Lan et al. fabricated
CoSe2 spheres via a facile hydrothermal process and the prepared samples exhibited an
excellent electrochemical activity toward OER and HER [18].

In order to achieve higher electrochemical catalytic properties and stability for CoSe2,
utilizing a nitrogen-doped carbon material as a supporter to enable CoSe2 particles is a feasi-
ble and widely used method. Metal organic frameworks (MOFs) have shown considerable
advantages as precursors, and the well-organized framework consists of inorganic metal
ions or clusters and N-containing organic ligands that can be converted in situ to nitrogen-
doped carbon through pyrolysis [19–22]. Dong et al. found that pyrolysis and selenization
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of in situ grown zeolitic imidazolium framework-67 (ZIF-67) can homogeneously anchor
CoSe2 nanoparticles (CoSe2/CF) to carbon fiber paper and the obtained CoSe2/CF shows
excellent long-term stability and electrocatalytic properties [23]. However, metal sites in the
MOF usually induce shrinkage agglomeration during high temperature calcination, which
would disrupt the structure of the MOF and prevent exposure of the active site. Jiao et al.
developed the SiO2 as templates to inhibit the Fe agglomeration during pyrolysis [24].
Notably, compared with the bulk counterparts, two-dimensional (2D) MOF nanosheets are
being increasingly studied in electrocatalysis due to their highly exposed active sites [25],
large surface area [26], and enhanced conductivity [27]. To date, synthetic methods of 2D
MOF nanosheet preparation usually depends on physical exfoliation and chemical vapor
deposition (CVD). Tang et al. prepared a series of ultrathin Ni/Co MOF nanosheets with
unsaturated coordination metal active sites by a simple ultrasonic method, and demon-
strated that ligand-unsaturated metal atoms are the main active centers of electrocatalytic
OER. Nevertheless, how to avoid the aggregation and restacking of exfoliated nanosheets
is still a challenge. Wurster et al. engineered heterobimetallic catalysts via CVD and the
obtained nanosheets exhibited 300 mV overpotential and high turnover frequencies for
OER [28]. Considering the low-yield of traditional methods, Huang et al. developed a
salt-template confined method to prepare ultrathin ZIF-67 nanosheets [29]. The Co, N
co-doped ultra-thin graphene nanosheets exhibited better electrocatalytic performance
than commercial Pt/C catalysts. Thus, there is an urgent demand to develop a simple and
cost-effective approach for designing 2D MOF derived efficient electrocatalysts with large
surface area and fast mass transfer.

Here, CoSe2-NC nanosheet electrocatalysts were prepared using NaCl as a template.
Inorganic salt has excellent chemical stability and a smooth surface, which is suitable as a
template to build 2D structures. During pyrolysis, the outer layer of ZIF-67 served as the
nitrogen source and carbon source for the in situ synthesis of nitrogen-doped carbon. The
resultant compounds showed a higher electrochemically active surface area (ECSA) and
stability. It also displays excellent OER and HER activity. In addition, the water-splitting
cell, based on CoSe2-NC bifunctional catalysts, shows good electrochemical performance,
demonstrating that the catalysts with 2D MOF-derived nanosheet structures have great
potential for practical applications.

2. Results and Discussion
2.1. Characterization of CoSe2-NC NSs

Commercial NaCl powder was selected as template for the one-step synthesis of 2D
CoSe2 nanosheets. A schematic diagram of the material fabrication process is shown in
Figure 1. First, NaCl powder was mixed with cobalt (II) nitrate and 2-methylimidazole
precursors. After vigorous grinding, the organic ligands of imidazole coordinate to Co2+

at room temperature (Figure S1). It should be noted that, in this approach, the excess of
NaCl is used to avoid the aggregation of Co during selenization. The EDS images of the
NaCl@MOF (Figure S2) show the uniform growth of ZIF-67 on the NaCl surface. SEM
image of the 2D MOF which removed the salt template (Figure S3) evidenced that the salt
template successfully synthesized ZIF-67 nanosheets. The diffraction peaks of NaCl@MOF
and NaCl@CoSe2 (Figure S4) both match the NaCl crystallinity, and no other peaks were
displayed, indicating that the formed ZIF-67 layer was relatively thin. Afterwards, the
ZIF-67 shell and Se powder were calcined at 750 ◦C in a N2-protected tube furnace and
converted to CoSe2-NC.

To further expand the applicability of the synthetic method, amorphous nanosheets
with a thickness of about 3.6 nm were effectively corroborated by XRD, Raman, and AFM.
As shown in Figure 2, the nanosheets showed no obvious diffraction peaks, indicating
that CoSe2-NC NSs are amorphous materials [30]. The graphite (002) peak in CoSe2-NC
NSs implied graphitization. Compared with the 3D counterpart, the diffraction peaks of
CoSe2-NC NPs were a perfect match with the simulated patterns (JCPDS, No. 09-0234),
suggesting high crystallinity. As is known, the activity and number of exposed active
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sites directly affect the activity of electrocatalysts. Compared to its crystalline counterpart,
the non-crystalline structure possesses more unsaturated coordination sites and effective
active sites. Raman spectroscopy (Figure 2b) showed two peaks. The peak at 1355 cm−1

was due to the disordered sp3 carbon (D-band) and the peak at 1580 cm−1 indicated the
existence of graphite sp2 carbon (G-band) [31]. Typically, the G-band corresponds to the
lattice characteristics of graphite, while the D-band corresponds to the vibrational modes
of carbon atoms at the edges of graphene [32,33]. The degree of carbon disorder is usually
estimated by the value of ID/IG [34,35]. The calculated ratios of ID/IG were 1.63 for CoSe2-
NC NSs and 1.26 for CoSe2-NC NPs. The results showed that the salt template prepared
nanosheets with a higher ID/IG than the 3D structure, which indicated that the nanosheets
had abundant defects and were considered catalytically active sites [36,37]. The AFM
images (Figure 2c) were also used to evaluate the thickness of CoSe2-NC NSs. As revealed
in the AFM images, Figure 2d suggests that CoSe2-NC NSs exhibited ultrathin nanosheets
with a thickness of 3.6 nm. Ultrathin nanosheets can expose abundant catalytic active sites
during the OER and HER multiphase reaction interface.
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To obtain more details of the structure, the morphologies of the CoSe2-NC NSs were
observed using TEM. Figure 3a demonstrates that CoSe2-NC was in a sheet-like morphology.
According to Figure S6, the dodecahedral shapes of the CoSe2-NC NPs could be well
preserved, with dimensions of around 500 nm. Figure 3b shows that the CoSe2 particles
were densely interconnected with the graphene layers. HRTEM showed that the interplanar
distance of the lattice fringes was 0.258 nm, corresponding to the (111) plane of CoSe2,
and 0.35 nm, corresponding to the (002) plane of graphite [38]. Moreover, the elemental
mapping images (Figure 3d–h) verified that abundant C and N distributed throughout the
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entire sample. The results indicated the CoSe2 particles were encapsulated in nitrogen-
doped carbon layers, which can induce greater stability during the corrosion of electrolytes.
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2.2. Electronic States of CoSe2-NC NSs

The elemental compositions of CoSe2-NC NSs were determined by XPS analysis. The
XPS spectrum of Co 2p (Figure 4a) can be divided into Co 2p3/2 and Co 2p1/2, which
were located at 780.7 and 796.6 eV, and the corresponding satellite peaks were at 786.5 eV
and 803.2 eV, respectively. These results indicated the presence of Co2+ [39]. The measured
binding energy of 778.1 eV, relative to the reported binding energy of metallic Co, indicated
that the Co on the catalyst surface was oxidized by Se elements [40]. The measured binding
energy of 778.1 eV, relative to the reported binding energy of metallic Co, indicated that
Co on the catalyst surface was oxidized by Se elements [41]. Pyridinic N and pyrrolic
N can both coordinate with Co, so the peaks at 781.8 and 797.8 eV could be assigned to
Co-N structures. In the Se spectral region (Figure S10), the two main characteristic peaks
of CoSe2-NC NSs were located at 54.9 and 55.8 eV, which correspond to the Se 3d5/2 and
3d3/2 orbitals of Se2−, respectively. In addition, the peak located at 60.1 eV indicated the
presence of Se-O bonds on the surface. These relative peaks were from Co2+ coordinated to
Se ions. The peaks of the C 1s spectrum (Figure 4b) at 284.3 eV, which could be assigned to
sp2 hybridized carbons, and the peaks at 285.4 and 286.9 eV, due to the N-sp2 C and N-sp3,
demonstrated the successful doping of N into carbon [42]. Notably, the C 1s spectrum
of CoSe2-NC NPs (Figure 4e) could be only deconvoluted into sp2 C and N-sp2 C. The
presence of the sp3 carbon atoms could disrupt the long-range order of the carbon network
and were considered to be defective sites in the sp2 carbon matrix. The analysis results
in Figure 4c show that the characteristic peaks were located at 398.4, 399.6, and 400.7 eV,
corresponding to pyridine N, pyrrole N, and graphite N, further confirming the formation
of nitrogen-doped graphitic carbon [43]. Figure 4f shows that the pyrrole N peak of cobalt
selenide is prominent, indicating that the three-dimensional structure of CoSe2-NC NPs has
more pyrrole N in the annealing process. However, the pyrrole N species are nitrogen atoms
in a five-membered C-N heterocyclic structure, which are unstable due to their special
structure. These results indicated that the CoSe2 particles were successfully encapsulated
into N-doped carbon (NC) matrix. For increasing active sites, doping the carbon matrix
with nitrogen heteroatoms is useful. In addition, the nitrogen formed a strong bond with
the internal atoms, which resulted in a high stability of the composite [44].
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2.3. Electrochemical Performance of CoSe2-NC NSs

The performance of the OER catalysts were tested in 1 M KOH electrolyte. Typically,
the potential of the OER at a current density of 10 mA·cm−2 is defined as Ej=10. The
overpotential is subtracted from the Ej=10 value of the catalyst by 1.23 V. Figure 5a shows
the LSV curves for the OER electrocatalytic performance of CoSe2-NC NSs, CoSe2-NC NPs,
Co-NC, and IrC using a three-electrode configuration. It is a remarkable that the CoSe2-
NC NSs catalyst exhibited an advanced electrocatalytic activity with an overpotential of
246.7 mV, which is evidently better than that of other catalysts, and is even better than IrC
(overpotential = 322.8 mV. The Tafel slope of CoSe2-NC NSs (72.66 mV·dec−1), CoSe2-NC
NPs (91.97 mV·dec−1), Co-NC (78.03 mV·dec−1), and IrC (90.67 mV·dec−1) are displayed
in Figure 5b, and suggests that the morphology of the nanosheet directly increases OER
activity. Figure 5c shows the overpotential and Tafel slope data of CoSe2-NC NSs, CoSe2-NC
NPs, Co-NC, and IrC, indicating that CoSe2-NC NSs have a far greater OER activity than
the other samples. The synergistic effect of CoSe2 and nitrogen-doped carbon contributes
to the outstanding OER activity of CoSe2-NC NSs. Meanwhile, the stability of the catalyst
in electrolyte is a key parameter. As shown in Figure 5d, CoSe2-NC NSs maintained
a stable voltage at current density of 10 mA·cm−2 after 132 h of chronopotentiometry
testing. The outstanding stability mainly originates from the carbon layers protecting the
CoSe2 nanoparticles.

To assess the HER electrocatalytic activity, CoSe2-NC NSs, CoSe2-NC NPs, Co-NC,
and PtC were explored in 1 M KOH electrolyte using a three-electrode cell. The CoSe2-NC
NSs catalyst exhibited favorable electrocatalytic properties (Figure 6a). The overpotential
of CoSe2-NC NSs was only 75.6 mV, which is much less than CoSe2-NC NPs (121.1 mV)
and Co-NC (133.6 mV). The Tafel slope of 114.4 mV·dec−1 was measured for CoSe2-NC
NSs, and was lower than CoSe2-NC NPs and Co-NC. As shown in Figure 6d, the ECSA of
CoSe2-NC NSs (13.43 mF·cm−2) was much higher than CoSe2-NC NPs (10.48 mF·cm−2),
Co-NC (12.08 mF·cm−2), and IrC (7.25 mF·cm−2). The results indicate that there were
more active sites in CoSe2-NC NSs and that these abundant active sites were derived from
the low-dimensional nanosheets, which have a large specific surface area (Figure S10). To
further explore the HER kinetics, EIS measurements (Figure 6e) were taken in 1.0 M KOH.
The smaller semicircle diameter of CoSe2-NC NSs (1.21 Ω) demonstrates a smaller charge-
transfer resistance. This reveals that the electrochemical impedance of the CoSe2-NC NSs is
much lower, which can effectively accelerate the charge transfer between the electrocatalyst
and electrolyte interface.
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In view of the high performance of the prepared CoSe2-NC NS electrodes for both OER
and HER, a two-electrode cell was set up in 1.0 M KOH using CoSe2-NC NSs as both the
cathode and anode. Figure 7a shows the LSV curves of the CoSe2-NC NSs, which exhibited
excellent overall water splitting activity. For the LSV measurement, the cell voltage of the
CoSe2-NC NSs-based water splitting cell at 10 mA·cm−2 was only 1.54 V, even below that
of the PtC||IrC (1.65 V). After 12 h of constant current testing, the catalyst voltage showed
no obvious change, which indicated that the catalyst has good electrochemical activity and
stability. The salt template promotes the formation of ultrathin nanosheets. The strong
bonding of CoSe2 and the carbon layer ensures the immobilization of the active component,
which is beneficial for improving the durability of the electrochemical process for overall
water splitting.
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3. Materials and Methods
3.1. Materials and Reagents

Co(NO3)2·6H2O (99%), 2-methylimidazole (2-MeIm, 99%), and selenium powder
(99.999%) were supplied by Sigma Aldrich (Missouri, USA). Methanol (99%), ethanol (99%),
NaCl and KOH were bought from Chemical Reagent (Guangzhou, China). Nafion solution
(5%) was purchased from Hesen (Shanghai, China). The ultrapure water (18 MΩ) used in
the experiments was prepared using Hhitech equipment (Shanghai, China). Commercial
catalysts (Pt/C, 20 wt%, Ir/C, 5 wt%) for comparison were bought from Macklin (Shanghai,
China). All chemicals in the experiment were used directly without further purification.

3.2. Synthesis of Co-NC

A total of 1.97 g 2-methylimidazole was dissolved in a mixed solvent with 20 mL
of methanol and 20 mL of ethanol. Meanwhile, 0.87 g Co(NO3)2·6H2O was dissolved in
another mixed solvent with 20 mL of methanol and 20 mL of ethanol. Then, the above two
solutions were mixed under continuous stirring for 1 min and the final solution was kept
at room temperature for 24 h. The resultant purple ZIF-67 precipitate was collected using
centrifugation and washed several times with ethanol and ultrapure water and then dried
in an oven at 60 ◦C for 12 h.

3.3. Synthesis of CoSe2-NC NPs

The ZIF-67 particles and 0.1 g Se powder were dispersed in ceramic boats and the
temperature in the furnace was raised to 750 ◦C at a rate of 2 ◦C·min−1. After that, the
furnace was naturally cooled to room temperature. During the pyrolysis, the furnace
was under a N2 atmosphere. To remove the free metal ions, the prepared black powder
product was stirred in 0.5 M hydrochloric acid for 12 h. The samples were collected by
centrifugation and washed repeatedly with deionized water and then dried at 80 ◦C.

3.4. Synthesis of CoSe2-NC NSs

First, 0.363 g Co(NO3)2·6H2O, 0.411 g 2-methylimidazole and 4 g NaCl salt were mixed
and ground in a mortar. After that, ZIF-67 coated on NaCl nanocrystals surface (denoted
as NaCl@ZIF-67) was obtained. Then, the as-obtained product and 0.1 g Se powder were
selenized under a N2 atmosphere at 750 ◦C for 2 h, 2 ◦C·min−1. After being cooled, the
powders were washed with 0.5 M HCl solution and deionized water to remove the NaCl
templates and impurities.

3.5. Material Characterization

X-ray diffraction (XRD) was carried out using an X’ Pert PRO with a Cu Ka radiation
diffractometer (k = 1.5418 Å). Raman spectra were detected using a Horiba JobinYvon,
LabRAM HR800. Atomic force microscopy (AFM) images were determined using a Bruker
Dimension ICON. The morphology and structures of the catalysts were measured by
scanning electron microscopy (SEM, ZEISS Sigma 300) and an energy dispersive spectrom-
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eter (EDS). Transmission electron microscopy (TEM) was performed on a Tecnai G2 F30.
The Brunauer–Emmet–Teller (BET) surface areas were measured at 77 K using a NOVA
2000 (Quantachrome, Boynton Beach, FL, USA). X-ray photoelectron spectroscopy (XPS)
analyses were performed on a Thermo Scientific K-Alpha with Al Ka radiation.

3.6. Electrochemical Performance

Prior to catalyst loading, nickel foam was acid washed to remove oxide impurities
from the surface. The 1 cm × 1 cm nickel foam was immersed in 1 M HCl solution
and sonicated for 15 min, and then sonicated in deionized water and anhydrous ethanol
solution for 15 min. A homogeneous suspension of the catalyst was formed by dispersing
2 mg of catalyst in a mixture of 250 µL of deionized water, 700 µL of anhydrous ethanol,
and 50 µL of Nafion with sonication for 1 h. Then, the suspension (100 µL) was dripped
onto the pre-polished nickel foam and dried in a vacuum at 60 °C. The mass loading of the
active materials in this paper was, on average, 0.2 mg·cm−2.

Electrocatalytic OER and HER measurements were tested at room temperature in
a standard three-electrode setup, which was carried out on a CHI 760E electrochemical
workstation (Chenhua, Shanghai, China). Nickel foam with electrocatalyst, graphite rod,
and Ag/AgCl electrode filled with saturated KCl were selected as the working electrode,
counter electrode, and reference electrode, respectively. The electrolyte used was KOH
solution at 1.0 M (pH 13.6). To ensure the O2/H2O equilibrium at 1.23 V vs. RHE, all
electrochemical experiments were performed in the O2 saturated condition. Linear sweep
voltammetry (LSV) and cyclic voltammetry (CV) curves were measured at a scan rate of
5 mV·s−1. Tafel slopes were calculated according to Tafel equation: η = a + b log(j). CV was
measured in the potential window of a non-Faraday process at different scan rates from
10 to 100 mV·s−1. The slope Cdl was obtained by fitting the current density versus scan
rate as a linear relationship To further investigate electrocatalytic kinetics, electrochemical
impedance spectroscopy (EIS) measurements were carried out in the frequency range
10 kHz to 10 mHz. The stability of the catalyst was determined by chronopotentiometry
measurements at j = 10 mA·cm−2.

4. Conclusions

In summary, CoSe2 nanoparticles embedded into nitrogen-doped carbon nanosheets
were successfully synthesized using a salt-template strategy. The ultrathin nanosheets
formed by the salt could effectively avoid self-aggregation of the CoSe2 particles, while
the 2D structure could promote more efficient electron transfer between reactants and
catalysts. In comparison with CoSe2-NC NPs and bare Co-NC NPs, the CoSe2-NC NSs
exhibited remarkable OER and HER properties. In addition, the robust structure can
maintain excellent stability during the reaction. As a result, this work provides a new
strategy for the design of CoSe2-based bifunctional electrocatalysts with excellent catalytic
performance and long-term stability.
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