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Abstract: Intellectual disability (ID) is a neurological disorder arising from early neurodevelopmental
defects. The underlying genetic and molecular mechanisms are complex, but are thought to involve,
among others, alterations in genes implicated in axon guidance and/or neural circuit formation as
demonstrated by studies on mouse models. Here, by combining exome sequencing with in silico
analyses, we identified a patient affected by severe ID and cognitive regression, carrying a novel
loss-of-function variant in the semaphorin 3E (SEMA3E) gene, which encodes for a key secreted cue
that controls mouse brain development. By performing ad hoc in vitro and ex vivo experiments, we
found that the identified variant impairs protein secretion and hampers the binding to both embryonic
mouse neuronal cells and tissues. Further, we revealed SEMA3E expression during human brain
development. Overall, our findings demonstrate the pathogenic impact of the identified SEMA3E
variant and provide evidence that clinical neurological features of the patient might be due to a
defective SEMA3E signaling in the brain.

Keywords: semaphorin 3E; intellectual disability; cognitive regression; neurodevelopmental disorder

1. Introduction

Intellectual disability (ID) is a lifelong disorder that most likely arises from early
neurodevelopmental defects and is characterized by subaverage intellectual and adaptive
functioning due to abnormalities of brain structure and function, whose onset occurs before
the age of 18 [1]. The DSM-V (Diagnostic and Statistical Manual of Mental Disorders)
characterizes the severity of ID in four levels, from mild to profound, based on a person’s
adaptive functioning and on the amount of a support that a person needs. Multiple factors
are involved in the etiology of neurodevelopmental defects characterized by ID and the
heterogeneity makes genetic and clinical diagnosis challenging. Genetic factors include
genetic variations such as aneuploidies, copy number variations (CNVs), and tandem
repeats in specific genes [2]. However, the most frequent form of ID is the Down Syndrome.
Among the environmental factors, prenatal exposure of the fetus to toxic substances (e.g.,
alcohol, UV radiation) and infections during pregnancy (e.g., rubella, cytomegalovirus) are
reported to cause ID. In addition, multiple problems during or after birth, such as lack of
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nutrition, may cause brain damage, leading to ID [3]. Although the etiological factors of ID
are very broad, half of the cases are still unexplained [4].

Among them, recent evidence suggests that mutations of genes encoding for key
molecules controlling neuron migration, axon guidance, or neural circuit formation during
brain development might be involved [5,6]. The appropriate development and maturation
of neural circuit strongly relies on the tightly coordinated action of long- and short-range
axon guidance cues. In this context, semaphorins (SEMAs) are fundamental players in
mediating cell–cell communication and controlling a wide variety of cellular functions [7,8].
Although originally discovered as repelling signals for growing axons, these guidance
molecules have been shown to play diverse developmental functions that shape the nervous
system, including regulation of neuronal cell migration, dendritic arborization, apoptosis,
synaptic plasticity, and targeting [7,9,10]. Transmembrane plexin (PLXN) proteins represent
predominant high affinity SEMA receptors [11]. In addition, several co-receptors also
associate with SEMA receptors and have profound effects on the signaling outcome upon
SEMA binding. These proteins directly bind SEMAs and initiate signaling (e.g., integrins),
act as ligand binding co-receptors (e.g., neuropilins (NRPs)), and/or work as part of
multimeric receptor complexes (e.g., receptors tyrosine kinases (RTKs), such as vascular
endothelial growth factor receptor (VEGFR)) [12,13].

Provided their many roles are in brain development and function, SEMAs and their
related receptors have been implicated in both developmental and adult-onset nervous
system diseases [13,14]. In particular, mutations in members of the semaphorin–plexin
signaling have so far mainly been linked to GnRH deficiency (GD), which could be due
to the defective development or function of hypothalamic GnRH neurons that control
the reproductive axis [8]. Further, emerging evidence strongly supports that this class of
molecules might also be implicated in the pathogenesis of broader neurodevelopmental
disorders (NDDs). This has been highlighted by association of chromosome microdele-
tions, including SEMA5A and SEMA7A genes with autism spectrum disorder (ASD) and
co-diagnosed ID [15,16], as well as by recent studies unveiling links between PLXNA3,
PLXNA2, and PLXNA1 receptor variants with NDD syndromes [6,17,18].

Within the semaphorin family, the secreted class 3 Semaphorin 3E, encoded by the
SEMA3E gene (chr. 7q21.11), regulates key functions during mouse brain and vascular
development [19,20]. Unlike other class 3 SEMAs, SEMA3E can exert a biological effect
by directly binding, with high affinity, PLXND1 receptor. Nevertheless, different co-
receptors, including NRP1 and VEGFR2, have been shown to modulate SEMA3E/PLXND1
signaling [21–23]. Studies in knockout (KO) mice revealed that in the brain, SEMA3E, via its
PLXND1 receptor, regulates the migration of cortical hem-derived Cajal Retzius cells [24]
and of newborn neurons in the post-natal olfactory bulb [25]. SEMA3E is also required
for the patterning of several axonal tracts, such as subiculo-mamillary [21] and entorhino–
hippocampal axons [26]. In addition, SEMA3E has been found to play a role in the survival
of hypothalamic GnRH neurons that control the reproductive axis [27]. Accordingly,
missense mutations in this gene have so far been found in a few patients affected either
by Kallmann or by CHARGE syndrome, which share GD and consequent reproductive
defects [14,27]. Yet, although Sema3e-null mice display several brain abnormalities that
could be associated with ID in humans, no reports of SEMA3E mutations in human patients
displaying similar phenotypes to have been reported.

In recent years, the advent of novel forms of genetic testing helped in the identifi-
cation of genetic causes in patients with unexplained ID. However, the molecular and
circuit mechanisms underlying the pathophysiology of this disorder remain elusive and,
consequently, effective treatments have not yet been established. Thus, for effective early
interventions, it becomes important to investigate the specific biological and molecular
causes of ID in each patient.

Here, we report for the first time a 19-year-old male patient affected by cognitive
regression and severe ID, and carrying a novel frameshift SEMA3E mutation, whose func-
tional relevance was dissected by applying tailored in vitro and ex vivo models. Our results
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reveal the loss-of-function nature of the identified mutation, which prevents SEMA3E from
exerting its biological functions during early brain development and plausibly explains the
patient’s neurological signs.

2. Results
2.1. Clinical Features of the Patient

A 5-year-old male, a second child from non-consanguineous healthy parents of Spanish
origin, was referred to our clinic. Partum occurred via uncomplicated caesarean section
after 39-weeks of pregnancy. Apgar scores were 9–10 at 1 and 5 min, respectively. Birth
weight was 2950 g. Family history was not relevant; his parents and his sister were healthy.

He started walking unsupported at 13 months, but his initial language and communi-
cation abilities were delayed; the first bisyllabic words occurred at 30 months. At the age of
5 years, he used some words and short sentences.

The clinical examination disclosed a weight of 19 kg (35th centile), a height of 110 cm
(30th centile), and an OFD of 51.2 cm (50th centile), without dysmorphic features; neuro-
logical examination was normal, including cranial nerve exam, tone, DTR, and sensory
and coordination abilities. Observation of the patient revealed verbal and nonverbal
communication deficits.

Neuropsychological evaluation revealed an intellectual and developmental quotient
of 83 and 70 according to the Weschler Preschool and Primary Scale of Intelligence III
and Cumanin respectively. Specific problems in executive functions, attention and lan-
guage abilities were demonstrated in this study (<1st centile according to Peabody Picture
Vocabulary Test and Illinois Test of Psycholinguistic Abilities)

Routine laboratory screening including thyroid function and neurometabolic tests
were within the normal range. Brain MRI, sleep video-EEG test and auditory evoked
potentials displayed normal results.

Conventional genetic studies (karyotype and array-based comparative genomic hy-
bridization with a 400 k custom array) revealed no abnormalities (Table 1).

Table 1. Summary of the patient’s clinical features at the age of 5 years. Abbreviations: WPPSI-III,
Wechsler Preschool and Primary Scale of Intelligence III; MRI, Magnetic Resonance Imaging.

Clinical Features And Studies

Age 5 years

Weight 19 kg (35th centile)

Height 110 cm (30th centile)

Occipital-frontal diameter 51 cm (50th centile)

Communication deficits Verbal and nonverbal

Neuropsychological evaluation Intellectual Quotient: 83 (WPPSI-III)
Developmental Quotient: 70 (CUMANIN)

Neurometabolic tests
Normal: blood count, blood biochemistry, hepatorenal

function, thyroid hormones, ammonium, lactic, pyruvic,
amino acids and organic acids in blood/urine.

Brain 3T MRI Normal

Genetic studies Normal: Karyotype and 400k aCGH

At the age of 10 years, complex motor tics appeared, associated to atypical behaviors
(checking doors, repetitive table tapping, etc.). During adolescence, conceptual prob-
lems worsened, presenting problems in social adaptation, excessive shyness, and less
autonomy for daily activities. This worsening was not related to psychological factors or
medical treatments.

At the ages of 7, 10, and 19 years, different cognitive evaluations using Weschler Scales
(WISC-IV and WAIS, according to his age) revealed an IQ of 63, 50, and 38, respectively
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(Table 2). At 10 years, severe executive and attention problems were registered (scores <1st
centile in Continuous Performance Tests, Test of Memory and Learning (Tomal-2), Rey
complex figure test, and Neuropsychological Evaluation of Executive Functions in Children,
ENFEN (Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños). Adaptative
skills were evaluated with the Adaptive Behavior Assessment System II at the age of 19,
showing severe problems in all domains (<5th centile in conceptual, social, practical, and
general domains).

Table 2. Worsening of the patient’s IQ scores going from childhood to adolescence. Scores have been
measured according to Weschler Scales (WPPSI-III, WISC-IV, and WAIS).

Age (Years) IQ Score

5 83

7 63

10 50

19 38

According to this evolution, the observed cognitive regression and the presence of a
severe intellectual disability, the medical study was completed with WES in trio.

2.2. A De Novo Frameshift SEMA3E Mutation in the Patient

Whole exome sequencing (WES) trio analysis revealed a de novo SEMA3E variant
in the 19-year-old boy patient affected by cognitive regression and severe ID. Segregation
analysis confirmed the heterozygosity state, not present in parents, and the mutation was
confirmed by Sanger sequencing (data not shown). No other missense variants with CADD
score > 15 or loss-of-function variants with a clear phenotypic association or compatible
segregation pattern were identified (data not shown).

Specifically, the identified proband carries a single base pair deletion (NM_012431.3:
c.621delG; p.R208Dfs*15) in the exon 6 of SEMA3E gene, which encodes for the functional
SEMA domain of SEMA3E protein (Figure 1A). The deletion leads to a frameshift that
generates a premature stop codon 15 amino acids downstream of the variant position, thus
resulting in the production of a truncated protein lacking a large portion of SEMA domain
and the entire PSI and Ig-like domains (Figure 1B).

Genomic coordinates on human GRCh37 genome assembly for the identified variant
were chr7:83037733delC (Figure 1C). The variant, which was not found in 1000 genome
project, ExAC, and gnomAD database (accessed on 3 April 2022), is predicted to be disease
causing and likely pathogenic according to MutationTaster online an bioinformatics tool [28]
and ACMG guidelines [29], respectively (Figure 1C).

Finally, the affected residue is partially conserved across species as per an average
GERP score of 1.0075 (Figure 1D) and by multi-species alignment (Figure 1E). Of note,
despite only primate and Gallus gallus orthologue proteins having a fully conserved R208
residue, in rodents this residue is replaced by a lysine, which belongs to the same chemical
class of polar, positively charged amino acids, indicating conservation between amino
acids with strongly similar properties. Instead, Danio rerio orthologue protein displays
an asparagine at position 204, indicating conservation between amino acids of weakly
similar properties.
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Figure 1. Identification of a de novo Semaphorin 3E (SEMA3E) frameshift variant in a patient with
intellectual disability (ID). (A,B) Diagram of wild-type (WT) (A) and mutant (B) SEMA3E transcript
and protein. (C) Chromosome position on human GRCh37 genome assembly, mRNA, and protein
changes of the identified SEMA3E frameshift variant. The variant is predicted to cause disease with a
probabilistic score above 0.99 [28]. (D) Genomic evolutionary rate profiling of sequence constraint
for the mutated SEMA3E residue using GERP++ analysis provided a RS score of 1.0075, which
indicates an intermediate level of conservation across all mammalian species. (E) Alignment of
partial protein sequences of indicated vertebrate SEMA3E orthologues shows that the R208 residue is
evolutionarily conserved in most species (dark green). Homo sapiens mutated residue is labeled in
red; the asterisk indicates a premature stop codon. Abbreviations: Chr, chromosome; Ref, reference;
subst, substitution.

2.3. The R208Dfs*15 Mutation Causes Altered Protein Localisation by Inducing Retention in the
Endoplasmic Reticulum

To confirm the predicted pathogenicity of the identified SEMA3E variant (Figure 1),
we performed cellular and biochemical assays. First, we tested if the R208Dfs*15 mutation
affected protein localization. To achieve that, we overexpressed wild-type (WT) or mutant
Alkaline Phosphatase (AP)-tagged human SEMA3E in COS-7 cells and applied an im-
munofluorescence protocol [30] to visualize protein localization using a previously tested
anti-SEMA3E antibody [27]. Phalloidin staining was used to reveal actin cytoskeleton and
overall cell morphology. As shown in Figure 2A–D, WT SEMA3E normally localized in the
cytoplasm, as typical of secreted proteins. Instead, R208Dfs*15 SEMA3E mutant protein
primarily localized in a perinuclear region, resembling the endoplasmic reticulum (ER) and
thus suggesting a possible mechanism of protein retention and impaired secretion.
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Figure 2. The R208Dfs*15 frameshift mutation causes defective SEMA3E localization, secretion,
and binding. (A,B) Immunofluorescence for SEMA3E (green) on COS-7 cells at the indicated time-
points revealed that WT SEMA3E localizes in the cytoplasm (white arrowheads), (C,D) whereas
mutant SEMA3E localized in a restricted perinuclear region (white arrows). Cytoskeletal actin was
visualized with TRITC-conjugated phalloidin (red). (E,F) Immunofluorescence for SEMA3E (red) and
endoplasmic reticulum (ER) (green) on COS-7 cells revealed a partial co-localization of WT SEMA3E
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with the ER (E; white arrowhead) and an exclusive co-localization of the mutant (F; white arrow),
which was not detected in the rest of the cytoplasm (F; ∆). Nuclei were counterstained with DAPI
(blue). Scale bars: 25 µm. (G) Western blot for SEMA3E on cell lysates from transfected COS-7 revealed
the presence of bands of ~165 kDa for the WT protein and of ~95 kDa for mutated SEMA3E (mut),
indicative of a truncated protein. GAPDH (37 kDa) was used as loading control. Immunoblotting
of SEMA3E on conditioned media (CM) revealed that the R208Dfs*15 mutation prevents SEMA3E
protein secretion as confirmed by absent bands. (H–J) PlexinD1 (PLXND1) expression in GN11 cells
is confirmed by RT-PCR (H) and immunofluorescence (J). No primary antibody was used as negative
control. W, water. Scale bars: 100 µm. (K–M) Alkaline Phosphatase (AP)-binding assay on GN11
cells with CM from transfected COS-7 cells revealed the binding of WT (K), but not of mutant (L)
SEMA3E. CM from COS-7 transfected with an empty vector was used as negative control (M). Scale
bars: 100 µm.

To verify the possible subcellular ER-retention of mutant SEMA3E, we performed
co-localization experiments in COS-7 cells co-transfected with WT or R208Dfs*15 AP-
SEMA3E and the mEmerald-ER-3 vector, used as a direct fluorescent ER marker. As
shown in Figure 2E,F, mutated SEMA3E protein (red), detected with an anti-SEMA3E anti-
body, clearly and exclusively co-localized with the ER marker (green), while WT SEMA3E
was also expressed in the cytosol. These findings confirmed that the mutation found in
the patient affects protein localization and induces ER-retention, possibly impairing its
physiological secretion.

2.4. The R208Dfs*15 Mutation Causes SEMA3E Truncation and Prevents Its Secretion and
Binding to Immortalised Neurons

To assess the effect of the R208Dfs*15 mutation on SEMA3E production and secretion,
we performed a Western blot (WB) analysis on cell lysates and conditioned media (CM)
from COS-7 cells transfected for 24 and 48 h with WT or mutant SEMA3E. As shown in
Figure 2G, the WB analysis on protein lysates revealed the presence of an expected band
of ~165 KDa, corresponding to the SEMA3E monomer (95 KDa) and the AP-tag (70 KDa),
for WT SEMA3E. Instead, and in agreement with in silico predictions, overexpression of
mutant SEMA3E revealed a smaller band of ~95 KDa, corresponding to a short SEMA3E
protein of 25 KDa plus the AP-tag (70 KDa), thus confirming the effect of the mutation to
induce the formation of a truncated protein.

A similar WB analysis on CM from COS-7 cells transfected with WT or mutant
SEMA3E revealed the normal presence of WT SEMA3E, but the complete absence of
mutated SEMA3E. These results together with the localization studies confirmed that the
patient’s frameshift mutation induces the formation of a truncated protein that is retained
in the ER and is not secreted, thus strongly confirming the loss-of-function nature of
the mutation.

To verify that R208Dfs*15 SEMA3E mutation induced ER retention and defective
secretion, we assessed the ability of the CM from COS-7 cells transfected with AP-tagged
WT or mutant SEMA3E to bind to the membrane of PLXND1-expressing GN11 cells, an
immortalized cell line of immature neurons (Figure 2H–J), as previously described [27,31].
The conditioned media from COS-7 cells transfected with an empty AP-vector was used
as negative control. As displayed in Figure 2L,M, WT SEMA3E-CM bound to the surface
of GN11 cells, as revealed by the presence of a violet staining given by the deposition
of the insoluble reaction product. Instead, R208Dfs*15 SEMA3E-CM failed to produce a
colorimetric reaction, confirming absent secretion and consequent inability of the medium
to bind to the surface of neurons.

2.5. The Enriched Conditioned Media of WT but Not Mutant SEMA3E, Binds to Embryonic Brain
Tissue Expressing PLXND1

To further confirm that R208Dfs*15 mutation abolishes the physiological functions
of SEMA3E during brain development, we mimicked the effects of this mutation with
an ex vivo approach and performed similar binding assays on embryonic mouse brain
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tissues. First, by in situ hybridization and immunohistochemistry, we confirmed the
expression pattern of Sema3e and PLXND1, respectively, on sections from WT mouse brain
at embryonic day (E) 14.5 (Figure 3A–C).
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Figure 3. SEMA3E and PLXND1 are expressed in the human/mouse embryonic brain and human
SEMA3E binds to embryonic mouse brain ex vivo. (A) Schematic representation of a coronal section
plane of a mouse embryonic day 14.5 (E14.5) head (dotted line). (B) In situ hybridization for Sema3e
on E14.5 mouse sections revealed expression in the globus pallidus (GP), ventricular/subventricular
zone of the dorsal neocortex (NCx), and ventricular zone of the lateral ganglionic eminence (LGE)
(arrowheads). Scale bar: 500 µm. (C) Immunohistochemistry on E14.5 mouse sections for PLXND1
showed its expression in the striatum (Str), piriform cortex (PCx), cortical plate (CP) cells, and subplate
cells from dorsal to lateral cortical regions (arrowheads). Some expression was also observed in the
hippocampal and dentate neuroepithelium and cortical hem (CH). Scale bar: 500 µm. (D) Schematic
representation of the sagittal section plane of an embryonic human head at Carnegie stage (CS) 19.
(E,F) Immunohistochemistry on sections from CS19 human head for SEMA3E (E) and PLXND1
(F) revealed that both are expressed in the CP. SEMA3E is also expressed in ventricular regions
(arrowheads). Scale bar: 500 µm. (G–I) AP-binding assay on E14.5 coronal mouse sections showed
binding at the level of CP and CH (arrowheads) only upon exposure to CM containing WT protein (G),
whereas mutant SEMA3E did not show any binding (H), as was shown with the negative control (I).
Scale bar: 500 µm.
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We then extended expression studies on a human embryo at Carnegie Stage (CS) 19,
corresponding to E12.5 in mouse (Figure 3D–F). As displayed in Figure 3B, Sema3e is ex-
pressed in several mouse brain regions such as the globus pallidus, the ventricular zone
of the dorsal neocortex, and lateral ganglionic eminence, while PLXND1 is expressed in
the striatum and piriform cortex, by cortical plate cells and subplate cells from dorsal to
lateral cortical regions and by cells residing in the hippocampal formation and cortical
hem (Figure 3C), as previously described [24,32]. Further, these experiments revealed
that SEMA3E and PLXND1 are present in similar regions of the embryonic human brain
(Figure 3D–F), strongly supporting a conserved biological role of SEMA3E/PLXND1 sig-
naling in both mouse and human species.

Last, we exposed E14.5 fresh–frozen mouse sections to the CM of COS-7 transfected
with WT or mutant SEMA3E. As shown in Figure 3G–I, while WT SEMA3E-CM bound to
the brain of E14.5 mouse embryos, R208Dfs*15 SEMA3E-CM failed to react, as confirmed
by the absence of violet precipitates. Altogether, these results strongly support a loss-of-
function effect of the identified mutation, which impairs SEMA3E secretion and binding to
its target cells during brain development.

3. Discussion

To the best of our knowledge, this is the first study identifying a de novo frameshift
SEMA3E mutation in a patient affected by severe ID and cognitive regression.

Given the conserved expression pattern of SEMA3E and PLXND1 in mouse and human
embryonic brain and our in vitro and ex vivo experiments confirming a loss-of-function
effect of the human mutation, it is plausible to hypothesize that the clinical neurological
features of our patient might be due, at least in part, to a defective SEMA3E signaling
during embryonic brain development.

Although genetically engineered mice carrying the patient mutation would represent
the closest model to study the effects of R208Dfs*15 variant ex vivo, our data suggest the
mutation, by preventing protein secretion, is likely to abolish the physiological functions of
SEMA3E during brain development, thus mimicking the brain defects observed in Sema3e
knockout mouse models.

In this respect, the available phenotypic analyses of Sema3e-null mice revealed the
presence of several neurodevelopmental defects that highly correlate with the clinical signs
of our patient, which include worsening of his social, adaptive, and personal autonomy
skills, cognitive regression according to scores on intelligence scales, ID, and tics.

Specifically, SEMA3E signaling was found to play a role during early development
of descending axon tracts in the forebrain, including the corticofugal, striatonigral, and
subiculo-mamillary tracts, which were mispatterned in Sema3e-null mice. As a consequence,
adult Sema3e-null mice displayed several behavioral problems, including decreased anxiety
and memory impairment [21], which are consistent with the patient phenotype.

In addition, SEMA3E signaling negatively regulates the migration of hem-derived
Cajal-Retzius cells during early neocortical development. Accordingly, increased migratory
capabilities of these cells were observed in adult Sema3e-null mice, resulting in an aberrant
layering of the neocortex and consequent deficits in emotional behavior and working
memory [24]. Considering that SEMA3E/PLXND1 is also a cell-intrinsic pathway regulat-
ing olfactory bulb newborn neuron migration [25], the R208Dfs*15 variant we identified
might concurrently contribute to defective cortical layering, which could be linked with
the cognitive regression of the patient.

Last, another study highlighted a role for SEMA3E signaling in the hippocampus, with
Sema3e-null mice displaying abnormal entorhino–hippocampal connections, misrouted
ectopic mossy fibers, and increased network excitability. Such changes in mossy fiber distri-
bution have been shown to correlate with deficits in spatial and non-spatial memory [26],
again in agreement with the patient’s clinical symptoms.

Interestingly, a previous work from our laboratory has also identified a role for
SEMA3E in the survival of the hypothalamic GnRH neurons that control reproduction [27].
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Further, the same work along with another paper [14] reported missense SEMA3E muta-
tions in patients’ neurodevelopmental syndromes, such as Kallmann (KS) and CHARGE,
both associated to GnRH deficiency and consequent reproductive defects. In this context, it
will be interesting to expand SEMA3E mutational screenings in cohorts of patients with
NDDs/ID or KS/CHARGE. This will help to understand the mechanisms underlying pos-
sible genotype–phenotype correlations and to study the biological relevance of missense
versus non-sense mutations in the different neuronal subtypes affected by SEMA3E. This
information will be vital to ameliorate diagnosis and therapeutic intervention of these
disorders, which are still largely idiopathic.

In general, mutations in SEMA3E and in other members of the family, including
neuropilin and plexin receptors, have so far mainly been linked to GD [8]. However, recent
evidence, including this work, strongly supports that this class of molecules might also be
implicated in broader NDDs [6,15–18].

Yet, the underlying genotypic–phenotypic correlations between SEMA mutations and
different clinical manifestations are not known. Given the key role of SEMA signaling
during several aspects of brain development [9], it will not be surprising if further genetic
alterations in this class of molecules will emerge in patients affected by ID, whose genetic
cause is still unknown.

Further studies are therefore needed to better understand the role of this family of
genes in the susceptibility to NDDs. Such information will be vital to ameliorate diagnosis
and therapeutic intervention of these disorders, which are still largely idiopathic.

4. Materials and Methods
4.1. Identification of Cases with Variants in SEMA3E Gene

511 cases of trio exome sequencing, collected in the Neurology Department of Hos-
pital Universitario Quirónsalud Madrid since 2014, were analyzed to search for SEMA3E
(Semaphorin 3E, NM_012431.3). Only loss-of-function mutations or variants with a CADD
score >15 [33], in a heterozygosity state, according to the haploinsufficiency of this gene,
were considered. All studies were performed on patients with neurodevelopmental disor-
ders of probable genetic origin.

4.2. Neuroimaging

The brain MRIs performed at our center always entail different sequences, includ-
ing DTI and 3D-MPRAGE T1, regardless of the reason for the study. DTI images were
obtained with a 3T system (GE Medical System, Milwaukee, WI, USA) by using a SS-SE
echoplanar Diffusion weighted image (DWI) sequence (TR: 12,000; FOV: 240 mm; sections
thickness: 3 mm, 0 spacing; matrix 128 × 128; bandwidth: 250; 1 nex; diffusion encoding
in 45 directions) with maximum b = 1000 s/mm2. Brain MRI analysis was conducted by a
specialized radiologist who was unaware of the patient’s genetic diagnosis.

3D-tractography was performed in an off-line workstation by using commercially
available processing software as provided by the manufacturer (Functool 3D Fiber Track-
ing, GE, Buc, France) based on fiber assignment by contiguous tracking (FACT) method,
achieved by connecting voxel to voxel. The threshold values were 0.3 for FA and 45◦ for the
trajectory angles, between the regions of interest (ROIs). DTI tracts were also co-registered
to the 3D-T1 weighted data set. Before the contrast gadolinium-enhanced images, we
included a prototype sequence to measure cortical perfusion called enhanced-ASL. This
sequence was used with the following parameters: TE 2.8 ms; TR 4894 ms; post-labeling
delay 2025 ms; bandwidth 62.5 kHz; field of view 22 cm; reconstructed image 128 × 128;
and slice thickness 4 mm. Qualitative cortical perfusion maps were obtained in an off-line
workstation with commercial software (Aw Server 3.2, GE, Buc, France).

The spectral technique used was the PRESS technique (Point Resolved Spectroscopy)
and the parameters used were TE 37 ms, TR 3000 ms, 64 averages without H2O suppres-
sion, sweep width = 5000 Hz, and autoshimming. The voxel used had dimensions of
15 × 15 × 20 mm and is located in basal ganglia or corona radiata. Four to six saturation
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bands were used to increase homogeneity and avoid elements of confusion. Concentrations
derived from the raw data obtained from the spectral curves in the MR were processed
by the quantification program LCModel (S. Provencher), analyzing the spectra as a linear
combination, based on a group of complete models of spectroscopies of metabolites in
“in vitro” solution.

3D volumetric analysis for each patient was performed after brain MR imaging parcel-
lation. Structural T1 weighted volumes were automatically segmented using FreeSurfer
image analysis suite 7.1 (https://surfer.nmr.mgh.harvard.edu/ (accessed on 1 April 2022)),
using default parameters. The result was a label map of isotropic voxel size (1 × 1 × 1 mm;
256 × 256 × 256 voxel) containing a plethora of brain regions, along with meaningful
anatomical information: volume, area, and cortical thickness for each region. These results
were compared with their control group, and matched for age and sex (normal pediatric
and adult data set). As in previous studies with this technique, cold colors (blue) indicate
less cortical thickness and warm colors (red) indicate greater cortical thickness vs. the
control group.

4.3. Neuropsychological Assessment

A complete neuropsychological evaluation was performed on all patients presenting
for neurodevelopmental disorders, depending on the patient’s age and medical history.
In this case, we conducted a neuropsychological assessment to measure intellectual and
language abilities, attention and executive functioning, and adaptive behavior. Specif-
ically, the following tests and scales Spanish version tests were used, according to his
age: Wechsler Preschool and Primary Scale of Intelligence, Third Edition, WPPSI-III [34];
Wechsler Intelligence Scale for Children, Fourth version, WISC-IV [35]; Wechsler Adult
Intelligence Scale; Fourth version, WAIS [36]; Cumanin battery (Cuestionario de Madurez
Neuropsicológica or Neuropsychological Maturity Questionnaire) [37]; Peabody Picture
Vocabulary Test, Third Edition, PPVT-III [38]; Illinois Test of Psycholinguistic Abilities,
ITPA [39]; Continuous Performance Test [40]; Test of Memory and Learning, Tomal-2 [41];
Rey complex figure test [42]; and Neuropsychological Evaluation of Executive Functions in
Children, ENFEN (Evaluación Neuropsicológica de las Funciones Ejecutivas en Niños) [43].
Adaptative skills were evaluated with the Adaptive Behavior Assessment System II [44].

4.4. Genetic Analysis

Whole exome sequencing was performed using genomic DNA isolated from whole
blood from proband and parents. Genomic DNA extraction was carried out from blood
using the Magna Pure 24 equipment (Roche Diagnostics, Basel, Switzerland). Quantity
of extracted gDNA was measured with a fluorimeter (Quibit 3.0). The absorbance ratios
at 260/280 and 260/230 were also studied to determine the quality of the DNA obtained,
using NanoDrop ND-2000 equipment. In addition, integrity of the genomic DNA was
analyzed by electrophoresis in 0.8% agarose gels. Libraries were prepared using the
KAPA Hyper plus Kit (Roche Diagnostics) following the manufacturer’s specifications and
capture enrichment protocol with specific probes (KAPA HyperExome; Roche Diagnostics).
Then, we performed subsequent massive parallel sequencing in a NextSeq550 equipment
(Illumina, San Diego, CA, USA). Signal processing, base calling, alignment, and variant
calling were performed with Genologica variant analysis software (GenoSystem, Swindon,
UK). This software developed by Genologica contains an optimized algorithm that includes
(among other steps) the following: (a) initial quality control of the sequences, (b) filtering
the sequences by eliminating indeterminacies, adapters and low-quality areas, (c) second
quality control of the sequences, (d) mapping on the Hg19 reference genome, (e) obtaining
variants and CNVs, (f) mapping coverage study, and (g) annotating variants.

Finally, the prioritization variant was based on stringent assessments at both the gene
and variant levels, and taking into consideration the patient’s phenotype and the associated
inheritance pattern. Candidate variants were visualized using IGV (Integrative Genomics
Viewer). Candidate variants were evaluated based on stringent assessments at both the
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gene and variant levels, taking into consideration both the patient’s phenotype and the
inheritance pattern. Variants were classified following the guidelines of the American
College of Medical Genetics and Genomics (ACMG) [29]. A board of molecular clinical
geneticists evaluated each variant classified as pathogenic, likely pathogenic, or a variant of
uncertain significance, and decided which, if any, had to be reported. In every case, causal
variants were discussed with the referring physician and/or clinical geneticist.

4.5. Generation of Mutated SEMA3E Expression Vector

Site-directed in vitro mutagenesis was used to introduce the c.621delG mutation into an
expression vector containing AP-conjugated human SEMA3E [21] using the QuickChange
Lighting Kit (Agilent Technologies (Santa Clara, CA, USA) and the following oligonucleotides:
5′-ATGGGCCAGTCGCCCATGCTGCGG-3′, 5′-CCGCAGCATGGGCGACTGGCCCAT-3′.

4.6. Cell Lines

GN11 cells (gift of Dr. S. Radovick, University of Chicago, Chicago, IL, USA) and
COS-7 cells (American Type Culture Collection, Manassas, VA, USA) were grown as a
monolayer at 37 ◦C in a humidified 5% CO2 incubator in DMEM (Euroclone, Milano, Italy)
supplemented with 10% fetal bovine serum (FBS, Life Technologies, Carlsbad, CA, USA),
1% L-Glutamine and 0.1% penicillin/streptomycin solution, referred as complete medium.
Sub-confluent cells were harvested by trypsinization and cultured in 55 cm2 dishes at a
density of 100,000 cells/dish for routine passaging.

4.7. Transfection Experiments

For transfection, COS-7 cells (at 80% confluence) were plated in standard 24-well
plates at densities of 15,000 and 9000 cells/well to be fixed and immunostained 24 h and
48 h upon transfection, respectively. COS-7 cells were also plated at densities of 200,000 and
150,000 COS-7 cells/well in 6-well cell culture plates for the preparation of protein lysates
and conditioned media 24 h and 48 h after transfection, respectively. COS-7 cells were
grown in culture plates in complete culture medium for 24 h and transiently transfected
upon incubation for 6 h with the selected expression vectors (1 µg/mL) in reduced-serum
OPTIMEM medium (Gibco, Waltham, MA, USA) and in the presence of Lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. Six hours
after, the transfection medium was replaced with complete medium for 24-well plates
and high glucose DMEM without phenol red for 6-well plates. To visualize endoplasmic
reticulum (ER), the mEmerald-ER-3 vector (gift from Michael Davidson, Addgene plasmid
no. 54082) was co-transfected with the AP-SEMA3E vectors (ratio 1:4).

4.8. Immunoblotting

Cell lysates and conditioned media from COS-7 cells transiently transfected for 24–28 h
with WT or c.621delG SEMA3E plasmids were obtained as previously described [27]. Briefly,
conditioned media were collected, centrifuged at 13,000 rpm for 2 min and supernatant
was used for analysis. Cells were lysed in 150 mM NaCl, 50 mM Tris- HCl (pH 7.4), and 1%
Triton X-100, supplemented with protease and phosphatase inhibitors (Roche). Lysates were
centrifuged at 13,200 rpm for 10 min at 4 ◦C and protein concentration determined with the
Bradford assay (Bio-Rad, Hercules, CA, USA). Protein lysates (15 µg) or conditioned media
(20 µL) were used for SDS-PAGE (8% polyacrylamide gels, under reducing conditions).
Prestained Sharpmass VII (Euroclone) was used as protein molecular weight marker.
Proteins were transferred to nitrocellulose membranes (Bio-Rad) and, after blocking with
5% non-fat milk in PBS containing 0.1% Tween-20 (PBS-T 0.1%) for 1 h at room temperature
(RT), membranes were incubated overnight at 4 ◦C with primary antibodies: goat anti-
SEMA3E (1:500; R&D Systems, Minneapolis, MN, USA); rabbit anti-glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, 1:1000, Cell Signaling, Danvers, MA, USA); followed
by 1 h RT incubation with HRP-conjugated anti-goat and anti-rabbit antibodies (1:10,000;
Santa Cruz Biotechnology Inc., Dallas, TX, USA), respectively. Detection was performed
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with enhanced chemiluminescence detection kit reagents (WASRAR ηC ultra-2.0; Cyanagen,
Bologna, Italy).

4.9. RNA Extraction and RT-PCR

Total RNA was collected from GN11 cells and retrotranscribed to cDNA as previously
described [45]. RT-PCR was performed using 50 ng of cDNA, the Quick-Load® Taq 2X
Master Mix (New England Biolabs, Ipswich, MA, USA) and specific primers for Plxnd1 (FW
5′-TCCTAGACAGCCCTAACCCC-3′ and REV 5′-AGGCTCAATCGCTCGGATTT-3′) [27].
Amplification products were separated by 1% agarose gel electrophoresis and detected by
ethidium bromide fluorescence on a UV transilluminator (Bio-Rad Laboratories).

4.10. Immunocytochemistry

Immunocytochemistry on COS-7 cells or GN11 cells was performed as previously
described [30]. Primary antibodies were as follows: goat anti-human/mouse SEMA3E
and goat anti-human/mouse PLXND1 (1:150; R&D Systems, Minneapolis, MN, USA).
The following day, cells were incubated with Cy-3 or 488-conjugated donkey anti-goat
(1:200; Jackson Immunoresearch, West Grove, PA, USA). Nuclei were counterstained with
DAPI (1:10,000; Sigma, Burlington, MA, USA). To detect actin, cells were treated with
phalloidin-TRITC (1:400, in PBS; Sigma) for 30 min at 37 ◦C before mounting with Mowiol
(Calbiochem, San Diego, CA, USA).

4.11. Histology

Samples were dissected in PBS and fixed in 4% paraformaldehyde overnight at 4 ◦C
and either cryopreserved in 30% sucrose for OCT embedding or, after dehydration, infil-
trated and embedded in paraffin wax. Sagittal or coronal sections were cut at 20 µm using
a cryostat or at 10 µm using a microtome.

4.12. In Situ Hybridization

Paraformaldehyde (PFA)-fixed cryosections were incubated with digoxigenin (DIG)-
labeled anti-sense riboprobe for mouse Sema3e (Gift from Valerie Castellani). Hybridization
step was performed in hybridization buffer (50% formamide, 0.3M sodium chloride, 20 mM
Tris HCl, 5 mM EDTA, 10% Dextran sulphate, 1× Denhardt’s) overnight at 65 ◦C. Sections
were washed with a series of gradually decreasing saline sodium citrate (SSC) buffers and
then incubated overnight with AP-conjugated anti-DIG antibody (1:1500; Roche). mRNA
expression was revealed by colorimetric staining using 4-Nitro blue tetrazolium chloride
solution and 5-Bromo-4-chloro-3-indolyl phosphate disodium salt (NBT/BCIP, Roche).

4.13. Immunohistochemistry

PFA-fixed mouse cryosections (20 µm thickness) or paraffin-embedded human sections
(10 µm) were incubated with hydrogen peroxide to quench endogenous peroxidase activity
and then for 1 h at RT with PBS containing 10% normal horse serum and 0.1% TritonX-100.
The following primary antibodies were used for immunostaining: goat anti-human/mouse
SEMA3E or goat anti-human/mouse PLXND1 (1:50 and 1:200 respectively, R&D Systems).
Sections were the incubated with biotinylated anti-goat antibody (1:400; Vector Laboratories,
Burlingame, CA, USA) and then developed with the ABC kit (Vector Laboratories) and
3,3-diaminobenzidine (Sigma).

4.14. AP-Binding Assay

Human AP-SEMA3E proteins were prepared as previously described [31]. GN11 cells
(60,000 cells/well) or fresh–frozen mouse E14.5 sections were fixed for 5 min in methanol at
−20 ◦C, washed 5 times with PBS/MgCl2, incubated in PBS/MgCl2 containing 10% FBS for
1 h at RT and then reacted with the conditioned media from COS-7 cells transfected with
WT AP-SEMA3E, mutated AP-SEMA3E or empty AP-vector) for 2 h at RT. Cells were then
washed five times with PBS/MgCl2 and fixed with 4% PFA for 2 min at RT. Endogenous
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AP was heat inactivated by incubation at 65 ◦C for 3 h. Cell surface-bound, heat-stable
recombinant AP activity was detected as an insoluble reaction product after incubation
with nitro blue tetrazolium chloride and 5-bromo-4-chloro-3-indolyl phosphate (Roche).

4.15. Image Processing

Brightfield images were acquired using a Axiovert microscope (Zeiss, Jena, Germany).
Immunofluorescence preparations were examined with an epifluorescent fluorescent mi-
croscope (Zeiss), and images were acquired with a Zeiss LSM900 laser scanning confocal
microscope and a 40× objective (Zeiss Plan-Apochromat 40×, NA 1.3, Oil-immersion).
ZEN 3.0 software (Zeiss) was used to process z-stacks at 0.25 µm intervals and generate
maximal intensity projection images.
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