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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease causing progressive cognitive
decline until eventual death. AD affects millions of individuals worldwide in the absence of effective
treatment options, and its clinical causes are still uncertain. The onset of dementia symptoms
indicates severe neurodegeneration has already taken place. Therefore, AD diagnosis at an early
stage is essential as it results in more effective therapy to slow its progression. The current clinical
diagnosis of AD relies on mental examinations and brain imaging to determine whether patients
meet diagnostic criteria, and biomedical research focuses on finding associated biomarkers by using
neuroimaging techniques. Multiple clinical brain imaging modalities emerged as potential techniques
to study AD, showing a range of capacity in their preciseness to identify the disease. This review
presents the advantages and limitations of brain imaging modalities for AD diagnosis and discusses
their clinical value.

Keywords: neuroimaging; multimodal imaging; brain imaging; Alzheimer’s disease; early diagnosis;
preclinical biomarkers

1. Introduction

Dementia is a set of symptoms of impaired cognitive functioning that can develop in
the damaged brain [1]. There are several different causative diseases from which dementia
can arise, with Alzheimer’s Disease (AD) being the most common cause, entailing severe
forms of cognitive dysfunction. The most significant risk factor for AD is aging, and cases
are expected to continuously rise year by year, remaining one of the most critical chal-
lenges associated with the aging population (Figure 1) [1]. Deviating from the normal path
of aging, Alzheimer’s dementia leads to notable brain damage, followed by subsequent
functional disorders. The exact causes of this brain degeneration have yet to be clearly
explained, but the leading hypothesis regarding its pathology involves the development
of abnormal proteins between neurons. Currently, diagnosis requires the presence of ex-
tracellular senile plaques and intracellular neurofibrillary tangles that show stereotypical
distribution patterns spreading throughout the brain [2]. These senile plaques are known
to contain neurotoxic amyloid-β (Aβ), and neurofibrillary tangles are comprised of hyper-
phosphorylated tau protein, whose accumulation ultimately results in the loss of synapses
and neurons in the affected regions [3]. These core neuropathologies are known to spread
in spatiotemporal stages that lead to neuronal degeneration in the brain [4], resulting in the
appearance of clinical symptoms of dementia such as memory loss and behavioral changes.
While aging is the most critical factor, carrying genetic risk factors, such as mutations in
presenilin genes, amyloid precursor protein (APP), or the apolipoprotein E gene (APOE),
also increases the risk of developing plaques and tangles [3].
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Figure 1. AD population and diagnostic neuroimaging modalities. (A) Projected number of people
aged over 65 in the U.S. population with Alzheimer’s dementia from 2020 to 2060. Adapted from [1]
with permission from John Wiley and Sons. (B) Multimodal neuroimaging modalities to diagnose
AD patients.

AD is characterized by a long preclinical stage where pathological changes can start
years before clinical symptoms manifest. Having these pathological markers, however, does
not always mean that patients will develop severe cases of dementia, and patients in the
mild cognitive impairment (MCI) stage may not meet the criteria for clinical diagnosis [2].
The difficulty in distinguishing between asymptomatic and non-AD MCI groups makes
diagnosis trickier, which may explain the challenges observed in clinical trials [5,6].

Brain imaging modalities provide time-sensitive information and have the potential
to enable early diagnosis, even before the cascade of neurodegenerative processes begins,
which can classify patients into different stages. Showing cognitive impairment likely
indicates advanced disease progression, and various imaging methods have been utilized
to delineate the characteristics of AD-related groups (Table 1). The diagnostic criteria of
AD include not only measuring the changes in the white matter, gray matter, and blood
vessels in the brain, but also finding synaptic dysfunctions caused by the accumulated Aβ

and tau proteins, both of which rely heavily on neuroimaging. However, each diagnostic
methodology may lead to some discrepant conclusions, making it difficult to differentiate
clinical cases and determine staging. A comprehensive analysis of the available brain
imaging modalities is thus needed. Herein, we review multiple neuroimaging techniques
that can be utilized in AD research and discuss their strengths and limitations as well as
their reliability as clinically informative tools for AD research.

Table 1. Neuroimaging findings in AD patients.

Imaging Method Principle Main Findings Refs.

Structural MRI MR with hydrogen Cerebral atrophy, ventricular enlargement [7–10]
FDG-PET Radioluminescence of FDG, amyloid, tau, etc. Reduced cerebral glucose metabolism [11,12]

fNIRS NIR light for hemodynamics Reduction in HbO concentration [13]
fMRI MR for hemodynamics Hyper- and hypo-activation in the task-related regions [14–22]

EEG Electrical signal of brain Altered functional connectivity pattern, slowing,
decrease in complexity, alterations in microstate [23–30]

MRI, magnetic resonance imaging; FDG-PET, fluorodeoxyglucose-positron emission tomography; fNIRS, func-
tional near-infrared spectroscopy; fMRI, functional MRI; EEG, electroencephalography.
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2. Neuroimaging Modalities in AD
2.1. Structural MRI
2.1.1. Basic Principles

Magnetic resonance (MR) imaging is one of the most common imaging techniques
employed to visualize the internal organs in the body and can also be used to image the
anatomy of the brain. MR imaging uses strong magnets and low-energy radiofrequency
signals to gather information from atomic nuclei within the body [31,32]. Hydrogen, a
common atom present in every molecule in organic compounds, is highly suitable for
imaging because of its abundance in the human body. In the context of imaging, hydrogen
nuclei can be regarded as small bar magnets with north and south poles that spin on their
axes. Figure 2A illustrates the magnetic moments of hydrogen in the body. When a human
is exposed to a strong external magnetic field, the hydrogen nuclei align parallel or anti-
parallel to the external magnetic field. Without a magnetic field, the magnetic moments of
the nuclei are distributed at random, and thus the net magnetization factor is zero. Simply
aligning hydrogen nuclei with an external magnetic field is not enough to produce a signal
for imaging due to their static state. To obtain a signal, hydrogen nuclei need to be exposed
to a radiofrequency energy pulse (resonance frequency). When exposed, the protons in
hydrogen nuclei attain a high-level energy state, and the net magnetization changes to
90◦. The MRI system measures the alternating current from the receiver coil, which occurs
from the rotating transverse magnetization of hydrogen nuclei. With structural changes
contributed by dendritic and neuronal losses in the AD brain [33], MRI utilizes the fact that
hydrogen nuclei within the atrophied regions cannot be detected clearly, thus enabling the
assessment of disease progression.

2.1.2. Applications in AD Diagnosis

The pathological nature of AD is expressed as structural changes in the brain, including
anatomical location, cortical thickness, volumetry, and other morphological characteris-
tics [34]. Structural MRI scanning is widely used to measure changes in brain morphometry
related to the loss of neurons, synapses, and dendritic de-arborization in AD progression
over time [35,36]. MRI results show that grey matter atrophy starts even in the preclinical
stages of AD when the brain is cognitively normal, with regional cortical thinning appear-
ing prior to the onset of AD dementia [37]. The earliest sites of atrophy typically occur at the
entorhinal cortex in the medial temporal lobe, followed by the hippocampus and adjacent
structures [33]. Due to its early volumetric reduction, the medial temporal region, including
the hippocampal area, has been the main target of analysis [8,9,38], with the hippocampal
volume being a better indicator of AD neuropathology in a post-mortem MRI scanning
study of individuals who remained non-demented but had memory impairment [8].

The anatomical characteristics of AD are not limited to volumetric reductions in the
whole brain or hippocampal area. Other measures such as cortical thickness or ventricular
enlargement in correlation with the accumulation of senile plaques and cortical neurofib-
rillary tangles also represent a quantitative index for MRI assessment [10,39,40]. The
progressive atrophy is depicted in Figure 2B, where the increased atrophy in the medial
temporal lobe and the enlarged ventricles are visually apparent in the different images. The
ability to quantitatively measure these morphological features using MRI has led to a surge
of methodological development in predicting and classifying AD [41].

2.1.3. Pros and Cons of Using MRI in AD

The major strength of MRI is its widespread availability to be used in AD research.
MR images provide excellent anatomical detail, and hippocampal atrophy measured on a
high-resolution T1-weighted MRI serves as a critical criterion for the clinical diagnosis of
AD. Manually segmented images and automated algorithms provide reliable classification
results with high diagnostic accuracy that correlate well with the underlying pathology [36].

Although measuring atrophy possesses clinical strength, structural MRI lacks the
molecular specificity to directly determine the neural source of volume or thickness loss
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and whether it is cell loss or dendritic and synaptic loss [34]. Cerebral atrophy, hippocampal
atrophy, or ventricular dilation are often present to some degree in normal aging and other
diseases, which may be caused by factors other than the progression of neuronal loss.
Moreover, structural MRI cannot assess functional changes, so the combination with other
measurements may enhance the accuracy of AD detection.

Figure 2. MR imaging. (A) Principles of MR imaging. (B) MR images of healthy control (HC) subject,
mild cognitive impairment (MCI) subject who converted to AD after three years, and an AD patient.
Adapted from [41] with permission from Springer Nature.

2.2. FDG-PET
2.2.1. Basic Principles

Positron emission tomography (PET) imaging measures metabolic changes using
different radioactive tracers depending on the intended target [42]. PET imaging is a
coincident detection of gamma rays released from annihilation events of positrons from the
radiotracer. Here, the radioactive tracers are analogous to common biological molecules
such as glucose, peptides, and proteins, in which a radioisotope is used to substitute one
of the atoms of the tracer [43,44]. When a radioactive tracer is injected into the subject,
the tracer arrives at the targeted organs or tissues through the circulatory system and
participates in metabolic processes [42]. As shown in Figure 3A, the radioisotopes in the
tracer decay due to their instability, and during this decay process positrons are ejected
and collide with the electrons of an adjacent atom, resulting in an annihilation process [45].
The annihilation produces two 511 keV gamma rays with a separation of approximately
180 degrees, which are absorbed by scintillation crystals and converted into low-energy
visible photons [45]. A photosensor then converts the light signals into electrical signals. A
detector is formed from scintillators, detectors, and readout electronics that record three
metrics: the time when the gamma ray hits the detector, the position where the gamma
ray hits, and the energy of the gamma ray [46]. These electronic signals are then processed
to generate an image through corrections and reconstructions [45]. Depending on the
radiotracer, PET imaging varies in its ability to map different signatures, including brain
metabolic activity, amyloid burden, or tau-tracer retention (Figure 3B). PET is used as
a diagnostic tool to compare the scans of AD patient and non-patient groups to see the
differences in uptake patterns [44].

2.2.2. Applications in AD Diagnosis

While structural imaging captures the downstream pathological changes, it is not
appropriate for reflecting changes that precede protein deposition. With evidence that
asymptomatic individuals with a genetic risk of AD show metabolic changes that precede
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atrophy [47], there is a presumption that there are functional biomarkers that can be detected
prior to the distinct protein signatures associated with progressed AD [48]. According to a
meta-analysis [49], PET imaging with 18F-fluorodeoxyglucose (FDG) performs better than
structural MR imaging in predicting conversion to AD dementia and, therefore, is more
useful for early diagnosis.

The biomarker of neurodegeneration detected by FDG-PET in dementia patients is
brain hypometabolism [44], and the changes in FDG uptake in AD patients correlate with
cognitive decline [50]. Although a decrease in glucose metabolism is also found in normal
aging [51,52], the dementia caused by AD carries different metabolic changes. Comparing
patients with AD and healthy controls in their regional cerebral glucose metabolism, the
patients with AD show a much greater decline in glucose metabolism and had additional
reductions over 1 year compared to the healthy controls [11]. The significant deviations
in cortical metabolism in AD patients compared to healthy controls are also illustrated in
Figure 3C [53]. Longitudinal studies show that glucose metabolic reductions can precede
clinical diagnosis and predict cognitive decline years before symptomatic onset [12,54],
which makes glucose hypometabolism a viable predictor for the disease.

The diagnostic ability of FDG-PET in AD has been the subject of many studies. It
was once shown that FDG-PET can achieve 90% sensitivity in identifying AD [55], but
later studies disproved this result, showing that patients with MCI who converted to AD
could be diagnosed using the pooled estimates of FDG-PET with 78.7% sensitivity (95% CI,
68.7–86.6%) and 74.0% specificity (95% CI, 67.0–80.3%) [56]. It has been validated that the
use of deep learning algorithms can lead to an improved predictive ability prior to final
diagnosis, with one model achieving up to 82% sensitivity and 100% specificity [57]. A
recent review based on meta-analyses of articles regarding the identification of AD patients
among healthy individuals resulted in pooled sensitivities up to 96%, with specificities
up to 90% [58]. This data-driven approach needs consistency in its feature extraction.
Therefore, the need for a reliable segmentation of reference regions in FDG-PET studies has
been raised [59].

2.2.3. Pros and Cons of Using FDG-PET in AD

Brain dysfunction measured by FDG-PET can be diagnostically superior to simple vol-
umetric measures, as FDG-PET can capture neurodegeneration in AD earlier than MRI [44].
Although its high resolution adds value to its relatively high reliability in identifying the
early stages of AD, PET scanners have limited availability due to their high cost. Moreover,
FDG-PET requires an injection of radiolabeled tracers, which is considered more invasive
than other neuroimaging modalities. Nevertheless, FDG-PET can provide a more detailed
diagnosis of brain cognitive metabolism and synaptic dysfunction by quantifying toxic Aβ

and tau proteins in the brains of AD patients, which drive healthy neurons into the diseased
state [60–62]. Moreover, hypometabolism is a result of neurodegeneration and therefore
might not be suitable to detect the signs of AD in the earliest stages before neuronal loss
occurs [63].
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Figure 3. FDG-PET imaging. (A) Structure of PET detector and detection flow chart. Adapted
from [45] with permission from MDPI. (B) Comparison of 18F-FDG-PET, amyloid-PET, and tau-PET
images from healthy controls (top row) and individuals with late-onset AD (bottom row). Adapted
from [44] with permission from Elsevier. (C) A 3D surface projection of 18F-FDG PET findings in
AD (top row) and a statistical comparison with a healthy control population; green or yellow shows
high deviation and black or blue shows no or low deviation (bottom row). Adapted from [53] with
permission from Elsevier.

2.3. Functional MRI
2.3.1. Basic Principles

Functional MRI methods image neural activation indirectly by detecting changes in
the hemodynamics of brain vessels. The hemodynamic response is one method to confirm
activation in brain regions depending on the amount of oxy- and deoxy-hemoglobin present.
The blood oxygenation level-dependent (BOLD) technique relies on the paramagnetic
properties of deoxy-hemoglobin in the blood [64] and on intact neurovascular coupling.
That is, the increase in oxygen consumption in the brain that follows a surge of neuronal
activity is normally associated with enhanced cerebral blood flow (CBF) and blood volume
(CBV) to the activated area [65], with the converse taking place during decreases in neuronal
activity. The magnetic susceptibility of the deoxygenated blood is low, causing the MRI
signal to decay faster [66]. Oxygenated blood flow in the activated regions of the cortex
increases the MRI signal with a more magnetically uniform environment, which is then
recorded in the fMRI (Figure 4A). fMRI images examine the correlation between the BOLD
signal and brain regions by comparing the cognitive condition to a control condition or
by investigating functional connectivity during the resting state [33]. Considering the
cognitive impairment in the course of AD, fMRI techniques can monitor brain dysfunction
related to AD.



Int. J. Mol. Sci. 2022, 23, 6079 7 of 22

2.3.2. Applications in AD Diagnosis

Early AD research with fMRI focused on task-induced brain activation differences in
AD patients compared to normal elderly individuals, and these task-activated paradigm
studies revealed several AD-like alterations in the brain that correlate with functional
deficits. Figure 4B demonstrates cortical deactivation during the processing of repeated
face–name pairs, an example of an fMRI image typically acquired in AD patients compared
to normal controls [67]. With memory impairment being the most critical sign of AD during
the symptomatic phase, the most common findings have reported decreased activation in
the hippocampus or medial temporal lobe during memory performance tasks in MCI or AD
patients [68,69]. The amount of activation detected by fMRI in AD patients varied greatly.
However, there is evidence of an increased activation phase during the prodromal stage
of AD [69]. Longitudinal fMRI assessments in elderly individuals revealed that subjects
who showed the highest baseline hippocampal activations had the most rapid declines
in hippocampal activation [70] as well as amyloid and tau-related increases in the brain
and activated downstream pathways [19,21]. Discrepant results may likely be attributed to
differences in specific paradigm demands, stages of impairment, or behavioral performance.
However, both hyper- and hypo-activation have been found in AD cohorts [16,17,20],
indicating a nonlinear effect of fMRI activation patterns along the AD continuum from the
initial hyperactivity of cognitive regions in preclinical or mild AD cases to the distinct loss
of activation in the later stages. Data also suggest the possibilities of preclinical biomarkers
that can be used for early diagnosis. AD pathology in the asymptomatic stages also
correlated with aberrant fMRI activity [14,18,21,71], which is different from the functional
decline resulting from normal aging.

Resting-state fMRI (rs-fMRI) examines the synchronous and spontaneous BOLD sig-
nal fluctuations in the absence of any experimental tasks during scanning [72]. Analyses
largely focus on the default-mode network (DMN), which mainly includes the posterior
cingulate cortex (PCC), precuneus, and medial temporal lobes, representing disruptive
changes in metabolism and structure in AD [73]. Since severely impaired patients may be
too limited to perform cognitive tasks during scanning, rs-fMRI may be more feasible to
monitor disease progression in later stages. Studies have found alterations in this large-
scale functional network as the disease progresses, where AD patients display deficient
network connectivity compared to normal controls [23,74,75]. Figure 4C illustrates the
difference map between control subjects and AD patients, where the controls have greater
functional connectivity in the medial posterior cortex and extending to the hippocampal
area [76]. Figure 4D also shows differential resting state hippocampal connectivity, where
healthy controls show greater connectivity to multiple brain regions (top row) compared
to the AD group (bottom row) [77]. The lower functional connectivity within the default
mode network in AD patients was clinically relevant to cognitive dysfunction [24]. The
connectivity showed a nonlinear pattern that also tracked with amyloid and tau deposi-
tion [26], agreeing with the findings from task-based fMRI studies that AD is characterized
by both increased and decreased activation. Aggregated data of fMRI findings in AD have
led to a surge in methodological research regarding patient classification. Novel methods
of feature extraction with fMRI images have been proposed. For example, Guo et al. [78]
showed an accuracy, specificity, and sensitivity of 91.6%, 90.5%, and 93.5%, respectively, by
combining brain region features and subgraph features. Amini et al. [79] utilized multiple
machine learning methods for identifying disease severity, which achieved an accuracy and
sensitivity up to 91.7% and 98.1%, respectively. The automated classification and diagnosis
of AD using the rs-fMRI dataset [80–82] also provide a new approach to improve diagnostic
accuracy and capture brain alterations.

2.3.3. Pros and Cons of Using fMRI in AD

The noninvasive nature of fMRI systems enhances the usability along with other
imaging systems, such as MRI, and the spatial resolution tops other imaging systems in
demonstrating activated brain networks when subjects undertake tasks. The excellently
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formulated graphics are, however, the reflection of surrogate signals that measure mass
neuronal activity, which is easily subject to many internal and external disruptions. When
there is significant motion of the subject or variation in metabolic blood levels, the magni-
tude of the BOLD response is affected, and its reliability in localizing activity decreases. The
application of data analysis techniques is another important area for further development.
The recent use of fMRI imaging for AD recognition has been extended to machine learning
and deep learning techniques, but different algorithms and analysis methods lead to many
controversial findings. The major drawback of AD imaging using fMRI, and many other
imaging systems in general, is that functional changes are not AD-specific. For example,
reduced DMN connectivity is found in patients with other psychiatric disorders or diseases,
thus requiring a more innovative approach to draw conclusions.

Figure 4. fMRI imaging. (A) BOLD effect in MRI. (B) Areas of decreased fMRI task-induced deac-
tivation in posteromedial cortical areas in patients with AD compared to older controls. Adapted
from [67] with permission from Hindawi. (C) Spatial maps of resting-state networks (RSNs, trans-
parent yellow) overlaid with clusters showing significantly lower (red) or higher (blue) functional
connectivity in AD compared to control subjects (CTR). Adapted from [76] with permission from BMJ
Publishing Group Ltd. (D) Right hippocampal connectivity maps in the healthy age-matched control
group (top row) and AD group (bottom row). Adapted from [77] with permission from Elsevier.

2.4. fNIRS
2.4.1. Basic Principles

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging modal-
ity that monitors the hemodynamics of blood vessels, similar to fMRI, which uses light
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from the NIR window (700–900 nm). Since NIR light is less scattered and absorbed by few
biological chromophores, it easily passes through biological tissues [83] and can penetrate
the skull, being absorbed by oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) with
different absorption spectra [84]. The changes in oxygenation–deoxygenation states are
calculated by the amount of transmitted light through the tissue (Figure 5A) using the
modified Beer–Lambert Law, and the summation reflects the total blood volume during
brain activity [85]. As more blood flows to the activated brain regions, NIRS can be used to
detect neural dysfunction when brain shrinkage occurs by neurodegeneration.

2.4.2. Applications in AD Diagnosis

fNIRS studies are generally similar to fMRI studies in that they measure the inten-
sity and pattern of neuronal activities and highlight the activated regions underlying a
performed task. The focus of using fNIRS in AD is typically to investigate the overall
functional activation, as depicted in Figure 5B, which tracks the concentration changes
in oxyhemoglobin and deoxyhemoglobin in AD patients compared to controls during a
line orientation task, where AD patients showed difficulty with only a marginal metabolic
increase [86]. Consistent with fMRI findings, the cognitive functioning in AD detected by
fNIRS observes decreased oxygenation levels compared to non-AD groups.

The neurofunctional deficit in AD, indicated by a reduced oxygenation level, is charac-
terized by various features. It was, for instance, associated with hemispheric asymmetry,
with AD patients demonstrating the loss of lateralized activation in a verbal task, but
involving global activation in the right hemispheric regions, which was not observed in the
controls [87]. A multiscale entropy (MSE) analysis pointed out different signal complexity
in its relevance to clinical symptoms of AD [88]. Such abnormal patterns of hemodynamic
response open up the possibility of tracking the progression and early detection, as the
patterns are not observed uniformly within varying degrees of AD [13].

Functional connectivity analysis can also be performed for the characterization of
intrinsic brain activity using fNIRS. As shown in Figure 5C, findings are similar to rs-fMRI,
with AD patients showing reduced signal complexity in most brain regions [89]. Moreover,
the synchronization of fNIRS signals is reduced in mild AD subjects compared to normal
aging controls, with a loss of regularity within the brain network with disease progres-
sion [90]. Though these typical statistical analyses based on the region of interest (ROI)
are suitable for detecting differences between groups, they cannot provide an individual
diagnosis. The development of novel classification methods is also being studied, for
example, utilizing the change in oxygenated hemoglobin at specific time points to identify
the patient group by a convolutional neural network (CNN) [91], promising that future
studies could be improved by using advanced deep learning techniques.

2.4.3. Pros and Cons of Using fNIRS in AD

Compared to other systems, fNIRS is a novel modality with the benefits of being non-
invasive, safe, and relatively low-cost. Frequent brain scanning is possible with relatively
good temporal resolution, and its portability and robustness to motion enable monitoring
during action [90]. Its feasibility with AD assessment has been proven, as NIRS revealed
activation deficits in the parietal lobes of AD patients during cognitive task performances
compared to controls [86], which opens the possibility of NIRS becoming an early detection
method in the future.

However, the abnormal plaques and neurofibrillary tangles observed in patients’
brains are said to be responsible for the disconnection of neuronal networks. Functional
connectivity, which reveals the neuronal communication network, is therefore more relevant
than brain activation, which only demonstrates hemoglobin changes in individual brain
regions, and should be considered in future studies. More importantly, as other cognitive
disabilities yield similar findings [92], fNIRS may not yet be ready to be used as an AD-
specific diagnostic tool. The non-established standard of data processing also makes it
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challenging to provide individual diagnosis results, leaving more room for improvement
in clinical applications.

Figure 5. fNIRS imaging. (A) Schematic diagram of functional near-infrared spectroscopy (fNIRS)
system. Adapted from [85] with permission from Elsevier. (B) Average increase in O2Hb during
the baseline (BL) and activation phase (AC) for AD and comparison groups in the line orientation
task. * P <0.05. Adapted from [86] with permission from Elsevier. (C) Brain activation represented by
spatial maps of multiscale entropy (MSE) analysis in HC, aMCI, and AD groups. Adapted from [89]
with permission from OSA Publishing Group.

2.5. EEG
2.5.1. Basic Principles

As shown in Figure 6A, electroencephalography (EEG) can record the joint electrical
activity generated by the brain between millions of active neurons using electrodes at
the surface of the scalp or intracranially [93,94]. The EEG activity mainly reflects the
more or less synchronous activation of a large population of neurons and, more precisely,
their postsynaptic activity. The intracranial mean measure of this postsynaptic activity is
called the local field potential. If a large population of neurons are spatially aligned and
have synchronous activity, the resulting superimposed electrical field will be detected by
electrodes at the scalp surface. This situation is often encountered for cortical pyramidal
neurons since they are oriented perpendicularly to the cortical surface, meaning their
activity is most likely to be detected by EEG [94,95]. EEG tracks the electrical activity
and compares the patterns and connectivity to find any abnormalities present in the
patient group.

2.5.2. Applications in AD Diagnosis

The electrical activity measured with EEG reflects functional changes in the cerebral
cortex, and abnormalities in this activity can be used to detect the functional deficits caused
by neurodegeneration in AD. While the signal recording can be conducted in diverse
conditions, the resting-state EEG, in the absence of any cognitive activity, is easier to
perform with AD patients [96], as it avoids any patient discomfort or possibilities of not
being able to complete the required tasks. Commonly reported effects of AD on EEG
signals include gradual complexity loss, connectivity alterations, and changes in microstate
complexity. To diagnose AD using EEG, many researchers use various frequencies to
discriminate healthy persons from AD patients. For example, the 0.1–4 Hz (delta band)
range is used to detect the thalamus region and cortex, 4–8 Hz (theta band) to detect
cognition, behavior, and memory in the hippocampus, 8–12 Hz (alpha band) to detect the
thalamus region, 12–30 Hz (beta band) is associated with the motor cortex and anxious
thinking, and 30–100 Hz (gamma band) is used to detect various regions, including the
premotor, parietal, and temporal cortical regions [97]. Spectral analysis studies report that
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AD induces increased activity in the delta and theta frequency bands as well as decreased
activity in the alpha and beta bands [98–101].

A slowing of brain oscillatory activity, indicated by a higher power in low-frequency
bands and lower power in high-frequency bands, has been reported in non-demented
amyloid-positive patients [28], suggesting synaptic dysfunction starts from the early stages
of AD. The presence of genetic risk factors can also predict AD progression before its
clinical onset, as reported by signal complexity loss along the AD continuum with differing
complex patterns between APOE carriers and non-carriers [29]. Analyses of EEG signals
have also revealed disruptions in functional connectivity. Wang et al. [102] reported
decreased pairwise coherence in AD, along with decreased mean network connectivity in
AD patients for each frequency band (Figure 6B). The disruption in functional connectivity
was also demonstrated by aberrant lagged phase synchronization in AD, which correlated
with cognitive decline [98].

Among EEG analyses, the microstate analysis is thought to be a viable measurement
for exploring changes in brain dynamics within a millisecond scale that may signal im-
paired cognitive functioning in AD [30]. Instantaneous topographic maps are depicted
in Figure 6C, showing that the AD cohort has altered topography of microstate class
D, the frontoparietal network related to the attention and working memory cognitive
domains [30].

EEG biomarkers would expand upon the existing collection of AD pathology biomark-
ers [100] and could be used to distinguish AD cohorts in different stages. With mild
probable AD subjects, higher spectral power was found in the alpha band compared to
healthy controls during memory tasks [103], and Gaubert et al. [104] reported a non-linear
relationship between the amyloid burden and EEG metrics. These results point to a pattern
of EEG changes that appears to reflect the progression of the disease, starting with moderate
increases in power at the slow frequencies and, in the later stages of progression, a decrease
in the faster frequencies.

Data-driven methods also contribute to exploring the utility of EEG for the assess-
ment of cognitive decline due to AD. A novel distance measure between the probability
distribution function of theta and alpha power resulted in a significant improvement in
classification accuracy [100]. Specifically, by using epoch-based entropy and bump model-
ing, Houmani et al. [99] reported a classification accuracy of 91.6% when discriminating
subjective cognitive impairment patients from possible AD patients.

2.5.3. Pros and Cons of Using EEG in AD

EEG can provide neuronal information within a millisecond timescale. This high
temporal resolution is the most significant advantage of this technique compared to other
imaging techniques such as MRI or PET. However, the distance between the electrodes
and the actual source of neuronal activity is a vital drawback of EEG measurements since
it creates low-pass filtering on the source signal. Thus, the spatial resolution limitation
can become a problem when trying to precisely describe neuronal processes. Regarding
EEG processing, the manual selection of EEG epochs often introduces human biases, and
multiple unestablished processing methods may lead to differing classification results.
Although EEG can provide insight into possible spatiotemporal distribution patterns of
disease progression, subtle EEG abnormalities are hard to detect in the early stages of AD
and are not distinct from the markers of other neurodegenerative diseases (Table 2).
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Figure 6. EEG imaging. (A) The mechanism of capturing electroencephalogram (EEG) signals
and the generation of EEG network oscillations. Adapted from [94] with permission from Elsevier.
(B) The functional networks of AD and control groups in six frequency bands. Adapted from [102]
with permission from AIP Publishing. (C) Microstate topographies of healthy older adults (HOA, top
row) and AD (bottom row) cohorts. Adapted from [30] with permission from Springer Nature.

Table 2. The potential of neuroimaging methods in detecting AD.

Method Sensitivity Specificity Accuracy Pros Cons Refs.

MRI 80–95% 55–98% 89–97% Spatial resolution Temporal resolution,
MR exposure [36,105–108]

FDG-PET 43–100% 57–100% 50–100% Clear image FDG injection [44,47,57,63,109]
fNIRS 82–94% 72–88% 50–90% High speed, portability Spatial resolution [110,111]
fMRI 84–94% 68–91% 75–93% Spatial resolution Not portable/Expose MR [78,80,112]
EEG 35–88% 82–100% 62–92% High speed, portability Spatial resolution [99,101,103,113,114]

MRI, magnetic resonance imaging; FDG-PET, fluorodeoxyglucose-positron emission tomography; fNIRS, func-
tional near-infrared spectroscopy; fMRI, functional MRI; EEG, electroencephalography.

3. New Approaches of Neuroimaging in AD Research
3.1. Multimodal Imaging

The clinical manifestations of AD vary by symptomatic stages and the presence of
certain pathological markers. Different measurements, such as spinal fluid assessments,
cognitive tests, and imaging techniques, are combined for a clear examination and to
conclude the possibility of AD [115]. Neuroimaging studies of AD, therefore, cannot rely
on a sole system to evaluate neurodegeneration but require data from multiple systems.
Multimodality is the combination of “anatomy + activity + connectivity” analysis in the
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brain [115], and existing studies are often conducted in a paradigm where anatomical and
functional screening are both used.

Commonly seen in fMRI studies, prior assessment through MRI or PET systems gives
primary information on the patient groups, making between-group comparisons possible.
The findings report the presence of group-specific features of neurodegenerative signal
changes that might represent a biomarker of certain AD stages or identify the severity of
AD. Figure 7A shows a novel approach of AD assessments with both high-resolution MRI
and 18F-FDG-PET, in which the simultaneous screening may allow for more precise staging
of the disease by detecting both molecular and functional abnormalities [116].

Figure 7. Multimodal Imaging. (A) Simultaneous acquisition of PET and MRI images in an AD
patient. Adapted from [116] with permission from Society Nuclear Medicine and Molecular Imaging.
(B) Concurrent recording of EEG and fNIRS and the resulting representative EEG topographies
and fNIRS activation maps for the healthy subject and mild AD patient. (C) EEG and fNIRS:
Dynamic cortical connectivity alterations associated with AD. Adapted from [117] with permission
from Elsevier.

Meanwhile, each imaging system carries mechanistic limitations in deriving clinical
conclusions. In this case, researchers may adopt a multisystem approach to reinforce each
system in its diagnostic reliability. In EEG, insufficient spatial resolution and instability to
noise lower its effectiveness, but the fusion with fNIRS systems has been proven useful in
understanding the dynamics of brain activity [117]. Figure 7B is an example flowchart of
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integrative analysis in the EEG-fNIRS technique where EEG source localization is based on
spatial priors from fNIRS, which shows the EEG signal topographies and fNIRS activation
maps between a healthy subject and an AD patient [117].

Recently, several publicly available neuroimaging databases allowed combined anal-
yses from multiple data modalities. Studies report the effectiveness of employing the
hybrid model, for which new statistical methods or algorithms are used [118], and these
approaches enable the simultaneous quantification of clinical features and brain activation,
making their relationship clearer. For example, machine learning techniques in EEG-fNIRS
imaging could compensate for the shortcomings of each modality to assess cognitive abil-
ities and patient classification [118,119], and the use of novel deep learning processing
frameworks has been confirmed to be effective in the discrimination of patient groups and
whether the controls and MCI patients will convert to AD in the following years [120].
While there is an indication that these multimodal data are not always linearly related,
the newly proposed non-linear graph fusion technique achieved a high classification per-
formance [121], which validated the benefit of using complementary information for AD
classification. The differential approaches of using automated classification can assist
clinical decisions in neuroimaging diagnosis.

3.2. Noninvasive Fluorescence Imaging

Optical fluorescence imaging is the most powerful modality to diagnose AD pathology
and neural networking by confirming the fluorescence of Aβ and/or tau proteins and other
AD-associated proteins. Fluorescence imaging uses endogenous and/or exogenous fluo-
rophores that irradiate light upon laser excitation. Particularly, NIR fluorescence imaging
(650–1000 nm for NIR-I and 1000–1700 nm for NIR-II) can display high sensitivity and
specificity for the real-time imaging of biological systems due to minimal autofluorescence,
low light scattering, and low light absorption in neighboring tissues [122–127]. This offers
a multispectral and multiplexing capability that is suitable for the bioimaging of inherently
complicated neural systems. Fluorescence imaging probes for AD diagnosis are required to
(1) be (pseudo)permeable to cross the pathologically vulnerable blood–brain barrier (BBB),
(2) bind to AD-specific cells and proteins, such as Aβ and tau proteins in the brain, and
(3) have absorbance and fluorescence emission spectra in the NIR window (650–1700 nm)
for noninvasive imaging [122].

Figure 8 shows recent NIR fluorescence imaging using polymethine and other NIR
fluorophores for AD diagnosis. As shown in Figure 8A, CRANAD-2 is a representative
boron dipyrromethane (BODIPY) probe for detecting Aβ aggregates/fibrils and has a high
fluorescence intensity with a blue-shifted emission [128–130]. CRANAD-2 self assembles
in aqueous solutions, which increases its solubility, but is limited to detecting single Aβ or
oligomers. On the other hand, a combination of quinoline–malononitrile AIEgen (EDS) and
molybdenum disulfide (MoS2) enables the detection of Aβ oligomers and aggregates with a
high intensity (Figure 8A). Interestingly, a recent report shows that fluorescent nanoparticles
(NPs) can be used for AD theranostics. Upon surface functionalization of the mesoporous
silica layer of the Gd3+-based NPs with an Aβ oligomer-selective cyanine dye, NP@SiO2@F-
SLOH showed cell-membrane-permeability, BBB penetration, and Aβ-targeting with fast
clearance from the liver and kidneys (Figure 8B) [131]. This multimodal NIR/MRI contrast
agent is versatile and sensitive for the real-time detection of Aβ oligomers and plaques in
AD mice.

NIR fluorescence imaging is well-suited to the simultaneous identification of several
different targets due to its ability for multichannel multispectral imaging using different
irradiation wavelengths, but its noninvasive imaging has been a challenge. Using NIR
fluorescent ZW800-1C (Ex @760 nm and Em @780 nm, fluorescence lifetime imaging (FLIM)
enabled the noninvasive multi-detection of Aβ, tau protein, and blood vessels in transgenic
mouse models of AD [132]. Hou et al. used two zwitterionic NIR fluorophores with
slightly different logD and topological polar surface areas (TPSA): −3.35 and 167.18 Å2 for
ZW800-1A and −2.80 and 157.95 Å2 for ZW800-1C, respectively [132]. Interestingly, the
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high flexibility and hydrophilicity of ZW800-1A lowered its affinity to the surface of Aβ

and tau aggregates compared to ZW800-1C [133–136]. Since ZW800-1C is lifetime-sensitive,
it could be used to differentiate Aβ and tau proteins along with blood vasculature for
noninvasive AD pathology using FLIM tomography.

Figure 8. NIR fluorescence imaging for AD diagnosis. (A) CRANAD-2 and EDS with MoS2 fluo-
rophores for the detection of Aβ fibrils in AD mice. Adapted from [128,130] with permission from
Elsevier and John Wiley and Sons. (B) Gd-based NIR fluorescent NP@SiO2@F-SLOH for in vivo (a–d)
and ex vivo (e–h) fluorescence imaging in AD mice: (a,e) from the wild type mice, (b,f) 7-month-old
Tg mice, (c,g) 9-month-old Tg mice, and (d,h) 11-month-old Tg mice. Adapted from [131] with
permission from John Wiley and Sons.

4. Summary and Conclusions

One underlying cause of AD is accumulated Aβ and tau proteins in the brain, which
cause synaptic dysfunction, neuronal cell cycle re-entry, and neuron cell death, resulting in
the shrinking of structures and veins in the brain. Functional abnormalities such as severe
memory loss and impaired motor function are also significant signs for determining the
presence of the disease. However, the major limitation in AD theranostics is the lack of
diagnostic criteria to identify the disease early on while it is still treatable. Neuroimaging
improves our understanding of AD by drawing more critical connections between different
patient groups along the course of the disease, as shown by our discussion of multiple brain
imaging modalities in terms of their basic principles, detection of brain alterations related to
AD, and their advantages and limitations for clinical use. While a definite diagnosis of AD
still requires post-mortem confirmation, brain imaging provides a supportive window for
identifying and visualizing the characteristic patterns that AD entails. The existing systems
hold different advantages, yet there is still a need for multimodal imaging of biomarkers to
bring meaningful outcomes. Efforts will be needed at multiple ends, such as enhancing
resolution or developing clinically accessible probes. Furthermore, the potential to use
brain imaging for AD theranostics is expanding with the advances in machine learning and
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deep learning algorithms that enable the processing of an enormous amount of clinical data.
With more robust validations, these data analytic methods will also be integrated with
neuroimaging modalities to serve as valuable tools for clinicians to make early diagnoses
and prognoses of AD.

5. Limitations and Future Directions

This review mainly focuses on neuroimaging modalities that measure changes at the
cortical level that do not rule out the possibilities of other neurodegenerative diseases or
comorbidities. No single technique reveals all answers about the pathological processes and
the functional defects that come after. Therefore, current imaging methods only take up a
complementary role in diagnosis at the moment. Combining structural and functional brain
information clarifies the connection between pathophysiological hallmarks and neuronal
functions. It has been shown that the combination of different imaging modalities helps to
better classify and identify individuals in the mild symptomatic stage who may convert to
severe dementia. However, most of these results come from pre-selected cohorts, and given
the current evidence, future studies concerning the generalizability to broader populations
are critical.

The difficulty in establishing standardized criteria for accurate staging along with the
limited physiological signals associated with AD has opened up new passages for the more
precise imaging of this devastating disease. The utilization of optical contrast agents in the
NIR window enables the real-time noninvasive tracking of hallmark neuropathological
features of AD. Though its broader application to larger patient groups may take years, the
research community is making strides by developing new NIR fluorescent probes and non-
invasive optical neuroimaging systems that possess more clinical utility. Since the currently
available therapeutic outcomes are limited to mitigating symptoms, enhancing real-time
diagnostic abilities by combining multiple approaches would lead to breakthroughs in AD
diagnosis and treatment.
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Abbreviations

AD Alzheimer’s disease
APP amyloid precursor protein
Aβ amyloid-β
APOE apolipoprotein E gene
BOLD blood oxygenation level-dependent
BBB blood–brain barrier
BODIPY boron dipyrromethene
CBF cerebral blood flow
CBV cerebral blood volume
CTR control subjects
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CNN convolutional neural network
DMN default-mode network
HbR deoxy-hemoglobin
FLIM fluorescence lifetime imaging
HC healthy control
HOA healthy older adults
MCI mild cognitive impairment
MSE multiscale entropy
NPs nanoparticles
HbO oxy-hemoglobin
PCC posterior cingulate cortex
ROI region of interest
RSNs resting-state networks
TPSA topological polar surface areas
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