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Abstract: Elevated blood pressure and hyperglycaemia frequently coexist and are both components
of metabolic syndrome. Enhanced cardiovascular risk is strongly associated with diabetes and the
occurrence of hypertension. Both hypertension and type 2 diabetes, if treated inappropriately, lead
to serious complications, increasing the mortality of patients and generating much higher costs of
health systems. This is why it is of great importance to find the missing link between hypertension
and diabetes development and to simultaneously search for drugs influencing these two disorders
or even drugs aimed at their pathological bases. Standard antihypertensive therapy mainly focuses
on blood pressure reduction, while novel drugs also possess a wide range of pleiotropic modes of
actions, such as cardio- and nephroprotective properties or body weight reduction. These properties
are especially desirable in a situation when type 2 diabetes coexists with hypertension. This review
describes the connections between diabetes and hypertension development and briefly summarises
the current knowledge regarding attempts to define targets for the treatment of high blood pressure
in diabetic patients. It also describes the standard hypotensive drugs preferred in patients with type 2
diabetes, as well as novel drugs, such as finerenone, esaxerenone, sodium–glucose co-transporter-2
inhibitors, glucagon-like peptide-1 analogues and sacubitril/valsartan.
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1. Introduction

The prevalence of hypertension and type 2 diabetes (T2D) is still increasing worldwide.
The International Diabetes Federation reported that the number of cases of diabetes was
estimated to be 463 million in 2019 and would increase to 700 million by 2045 [1]. In 2010,
there were about 1.39 billion diagnosed cases of hypertension [2]. A global burden of
disease analysis conducted in 2015 indicated that the prevalence of systolic blood pressure
(BP) ≥ 140 mmHg increased from 17.3% to 20.5% between 1990 and 2015 [3].

Hypertension influences diabetes, and so diabetes affects hypertension. It has been
shown that patients without controlled blood pressure despite hypotensive treatment
have an increased risk of diabetes development [4]. Systolic BP may be a predictor of the
development of T2D, especially in the 40 to 49 years age group, independent of obesity or
the presence of peripheral vascular disease [5]. On the other hand, individuals with T2D
have up to a three times higher prevalence of hypertension in comparison to their healthy
counterparts [6].

Hypertension and diabetes are components of metabolic syndrome; they coexist and
affect each other’s courses. Constantly elevated blood pressure occurs in 50–80% of patients
suffering from T2D and in 30% of individuals with type 1 diabetes [7,8]. The coexistence of
these two diseases is associated with a six-fold increased risk of cardiovascular events in
comparison to healthy individuals [9]. Hypertension in patients with diabetes is associated
with a 57% increased risk of any cardiovascular disease event and a 72% increased risk of
all-cause death after adjustment for demographic and clinical variables [10]. In individuals
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with T2D and hypertension, microvascular and macrovascular complications are signif-
icantly more common than in those without hypertension [11]. Discovering the missing
link between these two diseases is essential to protect this growing group of patients from
unfavourable cardiovascular events. It can also aid the search for new therapies aimed
at the exact cause of homeostatic failure. Today, new drugs are investigated in terms of
hypotensive features in diabetic patients in order to protect them from complications as
much as possible.

This review briefly describes the pathophysiology of hypertension, especially under
the condition of T2D, and outlines attempts over the years to define targets for the treat-
ment of high blood pressure in patients living with diabetes. It mentions the standard
hypotensive treatment and focuses on novel drugs that have pleiotropic properties, such
as finerenone, esaxerenone, sodium–glucose co-transporter-2 inhibitors, glucagon-like
peptide-1 analogues and sacubitril/valsartan.

2. Pathophysiology of Hypertension in Diabetes

Hypertension may be divided into secondary hypertension, which has a precise known
cause, for instance, renal artery stenosis, aortic coartaction, hyperthyroidism, or sleep apnea,
and essential hypertension. Essential hypertension is defined as elevated BP without any
known causes (after the exclusion of secondary reasons), usually clustering with aging,
obesity, insulin resistance, diabetes and hyperlipidaemia—factors which are known to
be cardiovascular risk factors [12]. Inappropriate control of hypertension may lead to
hypertrophy of the left ventricle, damage to the kidneys manifested in microalbuminuria
leading to renal failure, stroke or heart attack, cognitive dysfunction and dementia [12].

The main phenomena controlling blood pressure are peripheral vascular resistance
and circulatory fluid volume. Peripheral vascular resistance results from vascular tension,
which is affected by the rennin–angiotensin–aldosterone system (RAAS), other vasocon-
strictors and vasodilators, the activity of the sympathetic nervous system, and vascu-
lar remodelling [13]. The overexpression of RAAS in insulin-sensitive tissues results in
the impairment of metabolic signalling responses to insulin; an increased level of an-
giotensin II leads to decreased signalling through the phosphoinositol-3-kinase/protein
kinase C [14–16]. Vascular remodelling and endothelial dysfunction refer to small-resistance
arteries, which largely contribute to the decrease in precapillary blood pressure, and thus
are largely responsible for vascular resistance [17,18]. Dysfunction of the endothelium man-
ifests in the increased production of reactive oxygen species and reduced bioavailability
of nitric oxide as a consequence [19,20]. This leads to decreased endothelium-dependent
relaxation to endothelial agonists such as acetylcholine [21]. Moreover, reduced vasodi-
latation caused by the endothelial dysfunction hinders insulin and glucose in reaching
the peripheral tissues and weakens glucose uptake stimulated by insulin [22,23]. In the
Framingham Offspring Study it was proven that the von Willebrand factor antigen or
plasminogen activator inhibitor-1 antigen—plasma markers indicating the dysfunction of
endothelium—were connected with a higher risk of new-onset type 2 diabetes [24]. This
association was independent of other risk factors of diabetes development, such as inflam-
mation, insulin resistance and obesity [24]. Increased BP was found to enlarge the level of
markers of inflammation connected with the insulin signalling pathway and function of β
cells, likely participating in the development of diabetes in this way [25,26]. On the other
hand, circulatory fluid volume is regulated by body fluid volume, which is mainly affected
by sodium balance and cardiac contractile force, in turn influenced by the function of the
heart and activity of the sympathetic nervous system and RAAS [13]. An imbalance at any
stage of this homeostatic system results in hypertension. A short summary of hypertension
pathogenesis and targets of typical hypotensive drugs is presented in Figure 1.
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consequence, promote hypertension development. Typical hypotensive drugs are tar-
geted towards these imbalance changes, modifying the course of hypertension. α- and 
β-blockers inhibit the sympathetic nervous system, and angiotensin-converting enzyme 
inhibitors and angiotensin receptor blockers influence RAAS activity. Calcium channel 
blockers affect calcium channels in the vasculature, promoting the release of vascular 
smooth muscles. Diuretics intensify natriuresis, which decreases the concentration of 
sodium. 

T2D results from the functional failure of β-cells, which is triggered by insulin re-
sistance [27]. It is characterised by hyperinsulinemia and hyperglycaemia. It has been 
observed that non-obese individuals without glucose tolerance impairments and with 
hypertension who are not treated with hypotensive drugs show hyperinsulinemia and 
insulin resistance [28,29]. This observation suggests that insulin resistance may play an 
important role in hypertensive patients. Further studies confirmed a significant rela-
tionship between the concentration of insulin and BP [30,31]. An increased level of glu-
cose leads to increased osmolarity of the plasma and escape of water from the cells into 
the vasculature, resulting in increased circulatory fluid volume [32]. Moreover, hyper-
glycaemia also leads to an increase in glucose filtered in the glomerulus, which ultimately 
leads to sodium reabsorption [33,34]. Under the condition of hyperinsulinemia, sodium 
reabsorption is accelerated in renal tubules, also leading to hyperosmolarity [35]. In ad-
dition, hyperinsulinemia activates the sympathetic nervous system, among other pro-
cesses, through the leptin-mediated activation of the pro-opiomelanocortin pathway, and 
stimulates the excretion of renin, which ultimately leads to a cardiac output (CO) increase 
and higher peripheral vascular resistance [36,37]. Insulin also promotes fat accumulation 
and obesity development, leading to the activation of the sympathetic nervous system, 

Figure 1. The pathogenesis of hypertension and targets for typical hypotensive drugs.

Figure 1 shows the changes in the balance between the sympathetic nervous system,
RAAS, vascular tension, hearth function and sodium level. These changes lead to an
increase in peripheral vascular resistance and the volume of circulatory fluid and, as a
consequence, promote hypertension development. Typical hypotensive drugs are targeted
towards these imbalance changes, modifying the course of hypertension. α- and β-blockers
inhibit the sympathetic nervous system, and angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers influence RAAS activity. Calcium channel blockers affect
calcium channels in the vasculature, promoting the release of vascular smooth muscles.
Diuretics intensify natriuresis, which decreases the concentration of sodium.

T2D results from the functional failure of β-cells, which is triggered by insulin re-
sistance [27]. It is characterised by hyperinsulinemia and hyperglycaemia. It has been
observed that non-obese individuals without glucose tolerance impairments and with
hypertension who are not treated with hypotensive drugs show hyperinsulinemia and
insulin resistance [28,29]. This observation suggests that insulin resistance may play an
important role in hypertensive patients. Further studies confirmed a significant relationship
between the concentration of insulin and BP [30,31]. An increased level of glucose leads to
increased osmolarity of the plasma and escape of water from the cells into the vasculature,
resulting in increased circulatory fluid volume [32]. Moreover, hyperglycaemia also leads
to an increase in glucose filtered in the glomerulus, which ultimately leads to sodium
reabsorption [33,34]. Under the condition of hyperinsulinemia, sodium reabsorption is
accelerated in renal tubules, also leading to hyperosmolarity [35]. In addition, hyper-
insulinemia activates the sympathetic nervous system, among other processes, through
the leptin-mediated activation of the pro-opiomelanocortin pathway, and stimulates the
excretion of renin, which ultimately leads to a cardiac output (CO) increase and higher
peripheral vascular resistance [36,37]. Insulin also promotes fat accumulation and obesity
development, leading to the activation of the sympathetic nervous system, and increased
CO and heart rate [32–40]. CO rises proportionally to the level of oxygen and perfusion
demands in obesity [41].
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Amylin is a peptide that is cosecreted with insulin by β-cells and participates in
carbohydrate metabolism, inhibiting the incorporation of glucose into muscular glycogen
and decreasing the secretion of insulin [42,43]. Under the conditions of insulin resistance
and hyperinsulinemia, the concentration of this peptide is subsequently elevated [44–46].
It has been indicated that amylin increases the concentration of active rennin and may
be responsible for RAAS activation, thus participating in the hypertension development
under the condition of insulin resistance [47,48]. Moreover, RAAS may be overactivated
by the factors secreted by adipose tissue that promote the release of angiotensinogen and
aldosterone [49].

Hyperglycaemia, hyperinsulinemia, inflammation and oxidative stress development,
alongside the dyslipidaemia associated with T2D, contribute to vascular remodelling.
This in turn causes arterial stiffness and an increase in peripheral vascular resistance,
leading to the loss of blood pressure autoregulation [13]. Under physiological conditions,
insulin enhances nitric oxide release and promotes vasodilatation induced by acetylcholine,
but under the condition of insulin resistance, endothelium-dependent vasodilatation is
reduced [50–52]. Moreover, insulin stimulates the growth signalling cascade via mitogen-
activated protein kinase and promotes cell proliferation, whereas hyperinsulinemia may
promote vascular remodelling in this way [53]. Insulin resistance and hyperinsulinemia
may also accelerate the process of atherogenesis [54,55]. This combination of changes
occurring in diabetes may impact the main phenomena involved in the development of
hypertension. The influence of T2D on hypertension development is presented in Figure 2.
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Insulin resistance is the main phenomenon underlying the pathophysiology of dia-
betes. Hyperglycemia and hyperinsulinemia, as well as other accompanying states, for
instance inflammation, oxidative stress, dyslipidaemia or increased atherogenesis, affect the
homeostatic system that regulates blood pressure. They activate the sympathetic nervous
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system and RAAS, trigger the remodelling of the vasculature leading to a larger peripheral
vascular resistance and increases in CO and circulatory fluid volume. As a result, T2D
participates in hypertension development.

3. Attempts to Define Targets for Treatment of High Blood Pressure in Diabetic Patients

Both hypertension and diabetes are risk factors for cardiovascular disease, leading
to an increase in mortality due to coronary artery disease, heart failure or stroke [56,57].
Therefore, it is hypothesised that a reduction in BP should bring benefits for patients
with T2D.

The first trial that focused on this issue was the UK Prospective Diabetes Study
(UKPDS). In the study, tight blood pressure control (<150/85 mmHg) was associated with
a 24% reduction in end points related to diabetes, a 32% reduction in deaths associated
with diabetes, a 44% reduction in strokes, and a 37% reduction in microvascular end points,
mainly due to a decreased risk of retinal photocoagulation, in comparison to the less
tight control of BP (<180/105 mmHg) [58]. In the long-term follow-up from the Action to
Control Cardiovascular Risk in Diabetes-Blood Pressure (ACCORD-BP) trial, a subgroup
of patients with T2D and a high risk of cardiovascular diseases was analysed. After 9
years of intensive blood pressure control (systolic BP < 120 mmHg), a 25% reduction
in composite cardiovascular death, nonfatal stroke and nonfatal myocardial infarction
was observed, which was achieved mainly due to the reduction in nonfatal myocardial
infarction [59]. Another trial, the Systolic Blood Pressure Intervention Trial (SPRINT),
enrolled 9361 participants without diabetes but with systolic blood pressure ≥130 mm
Hg and increased cardiovascular risk. Patients were randomised into two groups—a
standard treatment group with a systolic BP target of between 135 and 140 mm Hg, and an
intensive treatment group with a target of <120 mmHg. The mean systolic blood pressure
of 121.4 mmHg in the intervention group was reached, compared to 136.2 mm Hg in the
standard treatment group. After 3 years, a significant reduction in all-cause mortality and
primary composite outcomes in the intensive treatment group was shown [60]. The post
hoc analysis of SPRINT participants with prediabetes also demonstrated the beneficial
effects of intensive systolic blood pressure treatment in this subgroup, supporting the
statement that this effect may also be present in patients with diabetes [61]. A meta-analysis
of 19 trials, including five trials enrolling patients with diabetes, suggested that intensive
antihypertensive treatment diminished the risk of cardiovascular events by 14%. The
reductions in stroke, myocardial infarction and albuminuria progression were statistically
significant [62]. Another meta-analysis of 40 trials, including diabetic patients, shows
that a reduction in systolic BP to below 130 mm Hg was associated with a lower risk of
retinopathy, stroke and albuminuria [63].

The target threshold of antihypertensive treatment has been changed multiple times
over the past decade in response to various guidelines. Currently, guidelines state that
antihypertensive treatment should be implemented in patients with diabetes if their BP
is ≥140/90 mmHg and should be sufficiently intensive to reduce it to lower than 130/80
(<140/90 in elderly patients) [64].

4. Standard Antihypertensive Drugs in the Therapy of Patients with Diabetes

Commonly used antihypertensive drug classes include angiotensin-converting en-
zyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), calcium channel block-
ers (CCBs), thiazide-like diuretics, mineralocorticoid receptor antagonists (MRAs), and
β-blockers. Less commonly used antihypertensive treatments include α-blockers, renin
inhibitors, loop diuretics, substances affecting the central nervous system such as methyl-
dopa or clonidine, and drugs that directly lower the tension of vascular smooth muscle, for
instance dihydralazine. The exact choice of hypotensive drugs depends on various factors,
such as comorbidities, estimated glomerular filtration rate, side effects and ethnicity.

ACEIs and ARBs consistently and significantly reduce the incidence of T2D when used
in patients suffering from hypertension or congestive heart failure, likely because of an im-
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provement of insulin secretion and insulin sensitivity [65]. They are strongly recommended
as first-line therapies in patients suffering from hypertension, diabetes and coronary artery
disease, as they are proven to reduce cardiovascular events in diabetic patients [66–69].
They should be added to the therapy as early as possible in order to prevent blood vessels
from remodelling [70]. Moreover, they ought to be the first option for BP control in pa-
tients with diabetes and coexisting severe albuminuria (albumin-to-creatinine ratio, ACR,
>300 mg/g) and should be considered when ACR is between 30 and 299 mg/g because
they lead to a reduction in the risk of kidney disease progression [71]. In the HOPE trial
treatment with ramipril, one of the ACEIs, significantly reduced the risk of the composite
end points, all-cause mortality, and hospitalizations caused by heart failure when used in
diabetic patients with present microalbuminuria [72]. The Action in Diabetes and Vascular
Disease: Preterax and Diamicron Modified-Release Controlled Evaluation (ADVANCE)
trial indicated that the addition of perindopril and indapamide to therapy reduces all-cause
and cardiovascular disease mortality and decreases macrovascular and microvascular
outcomes in comparison to a placebo [73]. The Avoiding Cardiovascular Events through
Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial
showed that therapy with an ACEI and a dihydropyridine CCB is superior to therapy
with an ACE inhibitor and a thiazide diuretic in reducing adverse cardiovascular events
in patients with and without diabetes; however, the dose of hydrochlorothiazide used in
the trial was lower than the level shown to effectively decrease cardiovascular disease
events [74,75].

MRAs, spironolactone and eplerenon, are other drugs which affect RAAS. The addi-
tion of spironolactone to standard hypotensive treatment was found to reduce the level of
albuminuria in patients with diabetes complicated by diabetic nephropathy [76]. Moreover,
the addition of spironolacton to a maximal dose of lisinopril resulted in greater nephropro-
tective properties in patients with diabetic kidney disease in comparison with the addition
of losartan to the same dose of ACEI [77].

CCBs are recommended as first-line treatment in diabetic patients, especially in elderly
individuals with isolated systolic hypertension [78]. Previous studies suggested that
CCBs might prevent diabetes by the inhibition of β-cell apoptosis and improvement of
β-cell function, but in a meta-analysis conducted by Noto et al., this hypothesis was not
proven [79,80].

Therefore, ACEIs, ARBs, CCBs and thiazide-type diuretics are all acceptable options
for diabetic patients as an initial hypotensive treatment. It is crucial to also consider the
adverse effects of antihypertensive drugs, especially those associated with cardiometabolic
consequences. Treatment with thiazide-type diuretics such as chlorthalidone may result
in hyperglycaemia because of their properties that influence insulin resistance [81–83].
Moreover, most β-blockers are not recommended as first-line treatment in patients with
diabetes because of their negative cardiometabolic effects: increasing triglyceride level, de-
creasing HDL cholesterol level, hiding symptoms of hypoglycaemia and impairing insulin
sensitivity [84]. Moreover, it is supposed that they may also increase the risk of diabetes de-
velopment, especially when used in individuals with high body weight, in comparison with
an alternative substances [77]. On the contrary, not all β-blockers show such adverse effects
on glucose homeostasis. Carvedilol, nebivolol, labetalol and third-generation β-blockers
not only block β-adrenoreceptors, but also show additional properties promoting vasodi-
latation and resulting in less adverse effects on metabolism [85–92]. The Glycemic Effects
in Diabetes Mellitus: Carvedilol-Metoprolol Comparison in Hypertensives (GEMINI) trial
involved patients with T2D and hypertension. It compared the metabolic and glycaemic
effects of treatment with metoprolol tartrate to treatment with carvedilol. The use of
carvedilol did not affect glycaemic control and improved insulin sensitivity [93]. The
lowest probability of triggering diabetes due to hypotensive treatment seems to occur with
the use of ARBs and ACEIs, followed by CCBs [94].
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5. Novel Antihypertensive Drugs

Aside from standard hypotensive drugs, there are many new therapeutic possibilities
that show additional beneficial properties, which may be especially advantageous in
patients with T2D.

Finerenone is a novel non-steroidal mineralocorticoid receptor agonist with a more
selective activity than spironolactone and eplerenone. It prevents the activation of mineralo-
corticoid receptor by aldosterone, and thus helps to reduce remodelling, fibrosis and inflam-
mation processes, especially in the heart, kidney and peripheral vasculature. Finerenone is
mainly used in heart failure treatment, and it can cause a decrease in N-terminal pro-B-type
natriuretic peptides (NT-proBNP) levels. Aside from this, it is possible to use finerenone to
treat refractory hypertension and diabetic nephropathy due to its ability to reduce albu-
minuria. Because the activity of finerenone is more selective, it does not cause a significant
increase in serum potassium level [95]. Several trials were conducted to prove the beneficial
role of finerenone in the treatment of patients with T2D. The Finerenone in Reducing Kidney
Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) trial enrolled
13,911 patients with chronic kidney disease and T2D, 45.9% of whom had cardiovascular
disease at baseline. After a median follow-up of 2.6 years, patients treated with finerenone
had a reduced risk of composite cardiovascular outcomes, including myocardial infarction,
stroke, time to cardiovascular death or hospitalisation for heart failure, compared with
a placebo. Additionally, renal disease progression was reduced by 18% [96]. Another
trial, Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney
Disease (FIGARO-DKD), enrolled 7347 patients with T2D and stage 1 or 2 chronic kidney
disease with severely elevated albuminuria, or stage 2 to 4 chronic kidney disease with
moderately elevated albuminuria. The use of finerenone decreased chronic kidney dis-
ease progression and depleted the incidence of cardiovascular events by 13% [97]. The
FInerenone in chronic kiDney diseasE and type 2 diabetes: Combined FIDELIO-DKD and
FIGARO-DKD Trial programme analYsis (FIDELITY) showed that the renal composite
outcomes were reduced by 23%, and the cardiac composite outcomes were reduced by 14%
with finerenone treatment. The mean systolic blood pressure was reduced by 3.7 mmHg at
4 months, and the effects of the drug were independent of baseline systolic BP [98].

Esaxerenone, another novel non-steroidal mineralocorticoid receptor agonist, has
been already approved in Japan for the treatment of hypertension and diabetic nephropa-
thy [99]. Due to its high potency and selectivity for mineralocorticoid receptor compared
with eplerenone and spironolactone, the use of esaxerenone comes with the smaller risk
of hyperkalemia, gynecomastia, amenorrhea and impotence [100]. After treatment with
esaxerenone monotherapy, the reduction in sitting blood pressure from baseline to the
end of treatment was −18.5/−8.8 mmHg, and after treatment as an add-on therapy to a
renin-angiotensin system inhibitor the reduction was −17.8/−8.1 mmHg [101]. Moreover,
a phase III clinical trial Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microal-
buminuria (ESAX-DN) demonstrated that, in patients with T2D and microalbuminuria,
an addition of esaxerenone to hypertension therapy resulted in a reduced progression of
albuminuria [102].

Sodium–glucose co-transporter-2 inhibitors (SGLT-2is or flozins) and glucagon-like
peptide-1 analogues (GLP-1 analogues) are novel classes of antidiabetic drugs. Aside from
the ability to reduce glycaemia, they possess a wide range of pleiotropic modes of action,
such as cardio- and nephroprotective properties or body weight and blood pressure reduc-
tion. SGLT-2is act mainly by blocking glucose and sodium reabsorption in the proximal
renal tubule, resulting in glycosuria. Increased osmotic diuresis and natriuresis leads to
plasma volume depletion and, as a consequence, to blood pressure reduction. Drugs such as
canagliflozin, dapagliflozin, empagliflozin or ertugliflozin belong to the group of SGLT-2is.
SGLT-2is influence the mechanisms responsible for the pathogenesis of hypertension in
diabetic patients. They improve arterial stiffness and endothelial dysfunction, reduce
oxidative stress and preserve the circadian BP pattern [103].
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The sodium hydrogen exchanger-3 (NHE-3) plays a role in the regulation of extra-
cellular volume and blood pressure through the reabsorption of sodium in the kidney. In
patients with T2D, increased levels of insulin and glucose stimulate the activity of NHE-3.
Enhanced sodium influx causes a rise in peripheral vascular resistance, which increases
cardiac output [104]. Due to the similar localisation of NHE-3 and SGLT-2 in the kidney,
it seems possible that SGLT-2is trigger diuresis via NHE-3 inhibition [105]. They also
modulate the function of the sodium hydrogen exchanger-1 (NHE-1), mainly localised
in the heart and blood vessels, promoting cardiac contraction, oxidative stress reduction
and a vasodilating effect [106]. The very first trial that demonstrated the cardiological
benefits of empagliflozin was Empagliflozin Cardiovascular Outcome Event Trial in Type
2 Diabetes Mellitus Patients (EMPA-REG OUTCOME). The study enrolled 7020 patients
with T2D who received 10 mg or 25 mg of empagliflozin or placebo once daily. After a
median observation time of 3.1 years, patients treated with empagliflozin experienced
a 38% reduction in the risk of cardiovascular death, and the effect was independent of
the metabolic control of each group [107]. Similar trials were created with dapagliflozin
(DECLARE-TIMI 58) and canagliflozin (CANVAS) and showed that the use of SGLT-2is
helps to reduce the risk of hospitalization caused by heart failure [108,109]. Afterwards, the
beneficial effect of flozins on heart failure treatment was also confirmed for patients with-
out diabetes (DAPA HF trial with dapagliflozin) and with preserved and reduced ejection
fractions (EMPEROR-PRESERVED and EMPEROR-Reduced with empagliflozin) [110–112].
Moreover, SGLT-2is led to maintenance of the renal function by a reduction in hyperfil-
tration and intraglomerular pressure. In the CREDENCE trial, patients with T2D and
chronic kidney disease treated with canagliflozin had a reduced risk of serious renal and
cardiovascular events [113]. Additionally, in the DAPA-CKD study, patients treated with
dapagliflozin experienced a reduction in major adverse renal events, such as end-stage
renal disease, or a 50% decline in GFR, and decrease in the risk of renal and cardiovascular
death [114]. The Evaluation of Ertugliflozin Efficacy and Safety Cardiovascular Outcomes
Trial (VERTIS CV) showed that patients with T2D treated with ertugliflozin also had a
lower risk of first and total hospitalization for heart failure and death due to cardiovascular
reasons [115]. Promisingly, the combination of finerenone and empagliflozin in preclinical
hypertension-induced cardiorenal disease exhibits cardiovascular protective effects, such as
a reduction in proteinuria, blood pressure, creatinine and uric acid level, histopathological
cardiac and renal lesions, and mortality [116].

GLP-1 analogues act mainly by an incretin effect, stimulating insulin release, suppress-
ing glucagon secretion, delaying gastric emptying and promoting satiety [103]. They can
be divided into two groups according to their pharmacokinetics: short- and long-acting.
Belonging to the short-acting GLP-1 analogues, exenatide can be taken twice per day and
lixisenatide taken once daily. First of all, they reduce postprandial glucose levels and delay
gastric emptying, whereas the long-acting GLP-1 analogues are liraglutide, dulaglutide,
semaglutide and long-acting exenatide. They reduce mainly fasting glucose and HbA1c
levels. Most GLP-1 analogues are used as subcutaneous injections, except for semaglutide,
which also has an oral form [117]. Both groups of GLP-1 analogues cause body weight
reduction and insulin sensitivity improvements, which are important mechanisms of BP
regulation. Receptors of GLP-1 are situated in the vascular smooth muscle and endothelial
cells, and their activation results in nitric oxide release. Additionally, the diuretic and
natriuretic effects of GLP-1 analogues may influence blood pressure [103]. Moreover, GLP-1
analogues possess cardio- and nephroprotective properties. The Liraglutide Effect and
Action in Diabetes: Evaluation of Cardiovascular Outcome Results (LEADER) trial enrolled
9340 patients with type 2 diabetes and high cardiovascular risk. Each of them received
1.8 mg of liraglutide (or the maximal tolerated dose) or placebo. After a median follow-
up of 3.8 years, the risk of death from cardiovascular causes, nonfatal stroke or nonfatal
myocardial infarction among patients with T2D was lower with liraglutide than with a
placebo [118]. In the Trial to Evaluate Cardiovascular and Other Long-term Outcomes
with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-6) 3297 patients with T2D
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received once-weekly semaglutide in doses of 0.5 mg or 1 mg or a placebo for 104 weeks.
The beneficial effect of semaglutide on the reduction in cardiovascular adverse effects was
mainly due to the significantly lower amount of nonfatal stroke among patients receiving
semaglutide compared to the placebo group [119]. The LEADER and SUSTAIN-6 trials
also showed that GLP-1 analogues help to reduce the risk of diabetes nephropathy occur-
rence and progression by diminishing albuminuria [118,119]. The REWIND trial not only
showed that patients treated with 1.5 mg of dulaglutide have lower cardiovascular risk,
but also lower body weight, HbA1c, arterial pressure and cholesterol level [120], while in
the PIONEER 6 trial that enrolled 3183 patients receiving 14 mg of oral semaglutide, the
rate of all-cause death and cardiovascular events was significantly reduced [121]. Table 1
summarizes the effects of SGLT-2is and GLP-1 analogues on blood pressure.

Table 1. Effects of specific SGLT-2 inhibitors and GLP-1 analogues on blood pressure
[107,109,116,118–120,122,123].

Systolic Blood Pressure Diastolic Blood Pressure

Empagliflozin 25 mg/d −4.78 mmHg −1.90 mmHg

Canagliflozin −3.93 mmHg −1.39 mmHg

Dapagliflozin −2.70 mmHg −0.70 mmHg

Exenatide −1.57 mmHg +0.25 mmHg

Liraglutide −1.20 mmHg +0.60 mmHg

Dulaglutide −1.70 mmHg +0.12 mmHg

Semaglutide −2.60 mmHg +0.14 mmHg

Another new drug used mainly for the treatment of heart failure is a combination of
valsartan, an angiotensin receptor blocker, and sacubitril, a neprilysin inhibitor. Due to the
inhibition of neprilysin activity, the variety of endogenous vasoactive peptides increases,
which results in enhanced natriuresis, diuresis and vasodilatation, and a reduction in
cardiac fibrosis and hypertrophy [124]. A meta-analysis of five randomised controlled
trials showed that treatment with sacubitril/valsartan was associated with a significant
reduction in both systolic and diastolic blood pressure in elderly hypertensive patients
compared with angiotensin receptor blocker use [125]. In the Prospective Comparison
of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart
Failure (PARADIGM-HF) trial, median B-type natriuretic peptide (BNP) and NT-proBNP
concentration was measured after 4 to 6 weeks, 8 to 10 weeks, and 9 months of treatment
with sacubitril/valsartan. A study showed that these biomarkers can be used as a predictors
of the risk of major adverse outcomes in patients treated with sacubitril/valsartan [126].
A post hoc analysis of patients with diabetes and heart failure with reduced ejection
fraction enrolled in the PARADIGM-HF study revealed that individuals who received
sacubitril/valsartan had a greater reduction in HbA1c concentration over at a 3-year follow-
up than those receiving enalapril [127]. Sacubitril/valsartan is likely to improve glycaemic
control mostly through an improvement in insulin sensitivity [128]. The Aforementioned
Study to Evaluate the Effect of Dapagliflozin on the Incidence of Worsening Heart Failure
or Cardiovascular Death in Patients With Chronic Heart Failure (DAPA-HF) trial enrolled
4744 patients with heart failure and reduced ejection fraction. Of these patients, 10.7%
were treated with sacubitril/valsartan at baseline. The occurrence of primary endpoint
(heart failure worsening or cardiovascular death) was similar in both groups treated with
dapagliflozin and with or without sacubitril/valsartan. The use of both drugs together
could likely decrease morbidity and mortality in patients with heart failure and reduced
ejection fraction [110]. A comparison of the novel drugs is shown in Table 2.
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Table 2. Comparison of novel antihypertensive drugs [52,129–134].

Name of Drug Mode of Action Dosage Method and Route
of Administration Indications Contraindications Side Effects

Finerenone non-steroidal MRA 10–20 mg Oral use once daily
Diabetic kidney

disease
Heart failure

Hyperkalaemia
Kidney failure

Addison disease

Increased
level of serum

potassium

Esaxerenone non-steroidal MRA 1.25–5 mg Oral use once daily
Hypertension

Diabetic
nephropathies

Hyperkalaemia

Increased
level of serum

potassium
Hyperuricemia

Canagliflozin SGLT-2i 100–300 mg Oral use once daily Type 2 diabetes

Kidney failure
Ketoacidosis

Hospitalization
Hypotension

Hypoglycaemia
Candidiasis

Genito-urinary tract
infection

Dapagliflozin SGLT-2i 5–10 mg Oral use once daily
Type 2 diabetes
Chronic heart

failure

Kidney failure
Hypotension
Liver failure
Ketoacidosis

Hypoglycaemia
Dizziness
Dysuria

Genito-urinary tract
infection

Empagliflozin SGLT-2i 10–25 mg Oral use once daily
Type 2 diabetes
Chronic heart

failure

Ketoacidosis
Kidney failure
Liver failure

Hypoglycaemia
Dehydration

Genito-urinary tract
infection

Exenatide Short-acting GLP-1
analogue 5–10 µg Subcutaneous

injection twice daily Type 2 diabetes

Type 1 diabetes and
ketoacidosis

Allergy and anaphylaxis
Pregnancy and breast

feeding
Kidney failure
Gastroparesis

Nausea
Vomiting

Lixisenatide Short-acting GLP-1
analogue 10–20 µg Subcutaneous

injection once daily Type 2 diabetes
Pancreatitis

Kidney failure
Dehydration

Hypoglycaemia
Nausea

Vomiting
Diarrhoea
Headache

Dulaglutide Long-acting GLP-1
analogue 0.75–1.5 mg

Subcutaneous
injection once

weekly
Type 2 diabetes

Type 1 diabetes and
ketoacidosis

End-stage renal disease
Dehydration
Gastroparesis

Acute pancreatitis

Hypoglycaemia
Nausea

Vomiting
Diarrhoea

Stomach ache

Long-acting
exenatide

Long-acting GLP-1
analogue 2 mg

Subcutaneous
injection once

weekly
Type 2 diabetes

Type 1 diabetes and
ketoacidosis

Allergy and anaphylaxis
Pregnancy and breast

feeding
Kidney failure
Gastroparesis

Nausea
Vomiting

Liraglutide Long-acting GLP-1
analogue 0.6–1.8 mg Subcutaneous

injection once daily

Type 2 diabetes
Obesity and

overweight with
additional

metabolic disease

Congestive heart failure
Pancreatitis
Dehydration

Thyroid diseases
Gastroparesis

Nausea
Vomiting
Diarrhoea

Semaglutide Long-acting GLP-1
analogue

(0.25–1.0 mg)/
(3–14 mg)

Subcutaneous
injection once

weekly/oral use
once daily

Type 2 diabetes

Congestive heart failure
State after bariatric

operation
Acute pancreatitis

Hypoglycaemia
Nausea

Diarrhoea

Sacubitril/
valsartan

ARB and neprilysin
inhibitor

(24 mg/26 mg)-
(97 mg/103 mg) Oral use twice daily

Chronic heart
failure with reduced

ejection fraction

Kidney failure
Hyperkalaemia

Liver failure
Allergy and anaphylaxis

Hypotension

Hyperkalaemia
Hypotension

Kidney function
disorder

6. Conclusions

Patients with diabetes and hypertension belong to a group with very high cardiovas-
cular risk. Both diabetes and hypertension influence each other and often coexist with other
components of metabolic syndrome. Thus, it is of great importance to administer treatment
to these patients as early as possible that not only allows the alleviation of hypertension or
hyperglycaemia, but also poses a wide range of additional beneficial modes of action. Novel
non-steroidal mineralocorticoid receptor agonists, such as finerenone and esaxerenone, in
addition to BP regulation, may cause a reduction in microalbuminuria and reduce the risk
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of cardiovascular events. SGLT-2 inhibitors and GLP-1 analogues are antidiabetic drugs
with cardio- and nephroprotective properties and the ability to reduce blood pressure and
body weight. Sacubitril/valsartan is a combination used in heart failure treatment that also
has the ability to reduce blood pressure and improve glucose tolerance. Further studies are
needed to explain the exact mechanisms of the multifarious actions of these medications,
but their application should be considered from the very beginning of treatment in order to
better protect patients from the consequences of their diseases.
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