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Abstract: Intensive care unit (ICU) patients with venous thromboembolism (VTE) and/or cancer
suffer from high mortality rates. Mortality prediction in the ICU has been a major medical challenge
for which several scoring systems exist but lack in specificity. This study focuses on two target
groups, namely patients with thrombosis or cancer. The main goal is to develop and validate
interpretable machine learning (ML) models to predict early and late mortality, while exploiting all
available data stored in the medical record. To this end, retrospective data from two freely accessible
databases, MIMIC-III and eICU, were used. Well-established ML algorithms were implemented
utilizing automated and purposely built ML frameworks for addressing class imbalance. Prediction
of early mortality showed excellent performance in both disease categories, in terms of the area
under the receiver operating characteristic curve (AUC–ROC): VTE-MIMIC-III 0.93, eICU 0.87,
cancer-MIMIC-III 0.94. On the other hand, late mortality prediction showed lower performance,
i.e., AUC–ROC: VTE 0.82, cancer 0.74–0.88. The predictive model of early mortality developed
from 1651 VTE patients (MIMIC-III) ended up with a signature of 35 features and was externally
validated in 2659 patients from the eICU dataset. Our model outperformed traditional scoring
systems in predicting early as well as late mortality. Novel biomarkers, such as red cell distribution
width, were identified.

Keywords: venous thromboembolism; cancer; mortality; ICU; interpretable machine learning

1. Introduction

Venous thromboembolism (VTE) and cancer are major causes of death worldwide [1]
and their prevalence is continuously rising due to the doubling of life expectancy [2],
the tripling of the world population over the last 70 years, changes in lifestyle, the increased
prevalence of chronic diseases [3], and the COVID-19 pandemic [4]. VTE can present
with clots in the veins, most frequently as deep vein thrombosis (DVT) and pulmonary
embolism (PE). Despite the recent advances in treatment, fatality rates have increased
in the last decade, with notable racial and geographical disparities [5]. Patients with
VTE or cancer occasionally need advanced support and suffer from significant morbidity,
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prolonged intensive care unit (ICU) stay, and high mortality rates, not only early during
hospitalization but even after several months.

Mortality prediction in ICU patients has been a major challenge in the area of medical
informatics [6] and has long been used as a quality indicator. Mortality is a major end
point in epidemiological and interventional studies in the ICUs [7]. Published studies so far
mainly focus on the prediction of in-hospital or early mortality, irrespective of the primary
diagnosis and related comorbidities [8–12], whereas studies focusing on late mortality pre-
diction are quite rare [13,14]. It is generally accepted that the initial diagnosis of a patient
and the evaluation of the reasons for ICU admission could significantly affect the overall
survival; thus, it would be interesting to study individually the different disease outcomes
and identify the specific disease-related clinical features with prognostic significance. Even
more importantly, it is necessary to predict post-discharge mortality, which is a very chal-
lenging task, since patients admitted to the ICU usually suffer from a high comorbidity
burden [15]. Prompt identification of factors associated with late mortality could help
physicians to re-orientate medical clinical practices (e.g., extended anticoagulation), iden-
tify modifiable factors, and reasonably allocate health resources in the ICUs, which are
extremely restricted, especially during the COVID-19 pandemic period.

On the other hand, there is a growing availability of automated ICU patient surveil-
lance systems and healthcare big data that remains unexploited, whereas they could provide
the opportunity to examine data-driven research solutions using modern machine learning
(ML) methods. The wealth of available ICU data combined with the use of ML-based
approaches have impacted medical predictive analytics and clinical decision support sys-
tems, since ML algorithms can learn from complex data patterns and identify associations
that could help in the improvement of patient care and survival, as well as lowering
hospitalization costs [16].

This article is organized as follows. Section 2 reviews previous work on ICU mortality
prediction. Specifically, traditional clinical scores considering the standard clinical practice
based on a limited number of features, collected during admission to the ICU, are compared
with recent approaches using state-of-the-art ML algorithms and routinely collected data
from medical records. Section 3 presents the motivation and the aim of our work, which is
early and late mortality ML-based prediction focusing on patients with thrombosis or cancer.
Section 4 describes the datasets used in our study, the selection of cohorts, the time-
dependent features used to build the prognostic model, the data manipulation, and the two
adopted ML frameworks. Sections 5 and 6 provide an extensive discussion of the results
on early and late prediction in ICU patients with thrombosis or cancer, the main predictive
features, along with their interpretation and the external validation of the model. Finally,
Section 7 summarizes the main outcomes and highlights the fundamental contributions
of the current study.

2. Related Work

Since the early 1980s, several clinical scores have been introduced into clinical practice
to predict in-hospital ICU mortality. The Simplified Acute Physiology Score (SAPS) [17],
Acute Physiology and Chronic Health Evaluation (APACHE) [18], and Sequential Organ
Failure Assessment (SOFA) [19] score are considered as validated tools in predicting ICU
mortality [20]. Nevertheless, these scores have several limitations. They have been devel-
oped based on different target populations with heterogeneous inclusion and exclusion
criteria; thus, during the validation process, they provide modest performance. They are
based on multivariate statistical methods, such as logistic regression models, disregarding
the non-linear relationships that exist between variables in real-life medical data. Since
the scores are computed on health data collected during the first 24 h of ICU admission
or instant-based measurements (e.g., the worst or average value), they do not consider
time-based measurements, which could contain important information about clinical de-
terioration [21]. It is worth noting that inter-rater agreement is low between the various
clinicians, mostly affected by personal experience, and thus a potential bias in the scores’
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interpretation exists [22]. Finally, these clinical prediction scores have poor generalization
and inadequate model calibration, especially in the high-risk patients, which is the type
of patients that we study [23].

Other thrombosis-specific clinical scores, such as the Pulmonary Embolism Severity
Index (PESI) [24], have been mostly used to identify low-risk patients that could benefit
from outpatient treatment or early discharge, although they have also been validated to
assess the probability of 30- and 90-day mortality post-PE [25–28]. Overall, it is unclear
if clinicians routinely use these risk stratification tools, since only a small proportion of low-
risk patients based on the PESI score are discharged earlier [24]. Thus, the clinical usefulness
of these risk stratification scores needs to be proven. A recent meta-analysis combining
all available risk stratification tools for PE showed that although most of them have high
sensitivity, the low specificity in the range of 50% discourages clinicians from universal
acceptance and employment in everyday clinical practice [29].

There is increasing interest in the literature in using modern ML algorithms, such
as random forests (RF) and gradient boosting machines, since it has been shown that they
can predict more accurately clinical outcomes (e.g., mortality) in comparison with classical
logistic regression [30]. Some of the recent works on mortality prediction in ICU patients
show the superiority of the ML-based predictive models against the traditional clinical
scores [10,31,32]. These studies are not focused on a specific diagnostic group of patients
and only use a limited feature set [8,11,12,33].

Prediction of mortality in critically ill patients with thrombosis or cancer using ML
algorithms has not been extensively studied so far. To the best of our knowledge, the only
study in the literature that investigates ICU patients with thrombosis is [32]. The study is
based on a relatively small number of patients, and the authors used only admission data,
developing two models for 30-day mortality prediction based on logistic regression, and
least absolute shrinkage and selection operator (Lasso) for feature selection. Regarding
patients with cancer, there is a paucity of studies predicting mortality in the ICU. In [34],
the authors provide a systematic review on ML-based early mortality prediction in cancer
patients (but not critically ill patients). The average area under the receiver operating
characteristic curve (AUC–ROC) is 0.72–0.92 and differs between the various cancer types.
The absence of studies in this field can be partly explained by the fact that the admission
of cancer patients to the ICU is considered frequently unavailing, and physicians some-
times discourage their patients and families from proceeding with aggressive treatment.
Nevertheless, it is highly important to recognize the patients who would benefit from
intensive care treatment. Traditional clinical scores, such as APACHE, fail to predict ac-
curately individual outcomes in these patients [35,36], and thus there is a need for more
sophisticated models.

3. Motivation of the Current Work

Motivated by the lack of studies in the two particular diagnostic groups of patients
mentioned above, as well as by the limitations of the traditional clinical scores, we aim to de-
velop and validate prognostic models for early and late mortality using state-of-the-art ML
algorithms, while exploiting almost all available data in the electronic health record. Since
healthcare datasets are unstructured and heterogeneous, manual features’ engineering
and extraction is time-consuming; thus, combined bioinformatician and clinician expertise
is needed. This can be attenuated by adopting ML models trained on multidimensional
data [33]. Our initial hypothesis was that the utilization of all the information stored
in the electronic health record, i.e., demographics, laboratory tests, medications, diagno-
sis, and relevant procedures, along with their detailed timeline information, could help
a clinician to dramatically improve the decision-making process. We were also interested
in identifying the most informative features in a medical record, and thus we performed
feature discriminative analysis during the analysis of the various groups of features.

Towards this direction, two different open-access high-dimensional multicenter retro-
spective datasets were used (MIMIC-III and eICU databases). The derived models were
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compared with traditional clinical scores, externally validated to prove generalizability, and
finally interpreted by identifying clinically meaningful predictive features. Additionally,
we introduced a custom-based ML approach combined with an oversampling method
to address the dataset imbalance. We recognized some interesting biomarkers, which,
although readily available, are currently disregarded during clinical practice. We strongly
believe that our work will be of added value in refining conventional clinical scores and
rediscovering easily measurable and low-cost biomarkers.

4. Materials and Methods
4.1. Ethics Statement

This is a retrospective study based on two freely accessible databases, MIMIC-III [37]
and eICU [38], both created in accordance with the Health Insurance Portability and
Accountability Act (HIPAA) standards, where all investigators with data access were
approved by PhysioNet [39]. Patient data were de-identified. MIMIC-III patient data
are date-shifted and age over 89 years old was set to 300 years old, whereas in eICU,
older patients are referred to as >89 years old. All pre-processing and data analysis were
performed under Physionet regulations.

4.2. Dataset Description and Cohort Selection
4.2.1. MIMIC-III Database

The Medical Information Mart for Intensive Care Database (MIMIC-III, version 1.4) [37]
is a single institutional ICU database from Beth Israel Deaconess Medical Center, com-
prising health-related data from 38,597 adult patients and 49,785 admissions in the ICU
between 2001 and 2012. Two groups of patients were studied, namely patients with
(i) thrombosis and (ii) cancer. Initially, we selected all patients aged >15 years old hospital-
ized in the ICU with a primary diagnosis of thrombosis based on 35 distinct ICD-9 codes.
We excluded age <15 years (n = 3), pregnancy and puerperium complications (n = 40),
and patients with a “do not resuscitate” (DNR) code (n = 169). Overall, 2468 patients
(6.4% of total patients in MIMIC-III) were selected. As a second group, we utilized all pa-
tients aged >15 years old hospitalized in the ICU with a primary diagnosis of solid cancer
or hematological malignancy based on 101 different ICD-9 and ICD-10 codes. Overall,
5691 patients (14.74% of total patients in MIMIC-III) were selected. Patients with age
<15 years (n = 0), pregnancy and puerperium complications (n = 15), and patients with
DNR code (n = 358) were excluded. After the exclusion, a total number of 5318 patients
remained in the study.

4.2.2. eICU Database

The eICU Collaborative Research Database (eICU, v2.0) [38] is a multi-center ICU
database with over 200,000 admissions for almost 140,000 patients, admitted to more
than 200 hospitals between 2014 and 2015 across the USA. We selected patients aged
>15 years old with a primary diagnosis of VTE based on 18 different ICD-9 and ICD-10
codes. The same inclusion and exclusion criteria were used, as described above. Over-
all, 4385 VTE patients (3.15% of total patients in the eICU database) were identified.
Detailed demographic and clinical characteristics of patients from both databases are
shown in Table 1.
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Table 1. Demographic and clinical characteristics of patients with VTE or cancer from eICU and
MIMIC-III databases. SD denotes the standard deviation, and LOS length of stay. p-Values between
“surviving” and “non-surviving” patients are reported.

VTE VTE Cancer

Characteristic eICU p-Value MIMIC-III p-Value MIMIC-III p-Value

Thrombosis
- PE
- DVT

3724
2739 (62.4%)
2220 (50.6%)

0.71
0.95

2468
960 (38.9%)
1543 (62.5%)

0.92
-

5128
-
-

Sex
- Female
- Male
- Unknown

1788 (48 %)
1934 (52 %)
1

0.24
0.24

1024 (41.5%)
1444 (58.5%)
-

0.53
0.53

2192 (41.2%)
3126 (58.8%)
-

0.07
0.07

Ethnicity
- White
- Black
- Other

2845 (76.4%)
522 (14%)
357 (9.6%)

0.36
0.16

1801 (73%)
246 (10%)
421 (17%)

0.27
0.47

4049 (76%)
378 (7.1 %)
891 (16.8%)

0.57
0.83

Age, years
Average (SD)
Min
Max

60.28 (16.26)
15
90

<0.001 62.64 (16.7)
17.4
98.7

<0.001 66.2 (14.2)
18.9
98.9

<0.001

Cancer
diagnosis 409 (9.3 %) <0.001 605 (24.5%) <0.001

LOS, days
Mean (SD)
Median:

11.22 (12.24)
7.01

0.002 7.06 (10.06),
153.9 days

<0.001 4.4 (6.5)
2.2

<0.001

Mortality (%):
Early:
Late:
“Survivor”:

267 (7.16 %)
N/A
3457 (92.84%)

348 (14.1%)
817 (33.1%)
1303 (52.8%)

902 (17%)
2659 (49.9%)
1757 (33.1%)

Death time(days)
Average (SD):
Median:

N/A 390 (647)
83

328.5 (536.55)
365

4.3. Feature Pre-Analysis Selection

To investigate potential novel discriminatory attributes, features that were extracted
from the database and used to build the prognostic model were chosen based on the clinical
experts’ opinion and, following a liberal approach, we tried to simulate a real-life scenario
where the medical practitioner exploits all relevant clinico-laboratory information available
on the electronic health record.

4.3.1. MIMIC-III

A total amount of 1471 features including demographics, clinico-laboratory informa-
tion, medications, and procedures were extracted. Apart from the features extracted directly
from the database, we computed through SQL queries various meta-features (known as con-
cepts), such as clinical severity scores and first-day labs available as scripts on GitHub.
Unstructured notes written by clinicians in free text format were extracted as text entities
using the Sequence Annotator for Biomedical Entities and Relations (SABER) [40], which
is a deep learning tool for information extraction in the medical domain. A detailed de-
scription of these features’ and meta-features’ processing, as well as a natural language
processing overview, can be found in [41].
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4.3.2. eICU

Out of 31 tables, we selected variables from the following tables: patient (demographics,
admission, and discharge information), diagnosis, admission_dx (primary and other diag-
noses), physicalExam, vitalPeriodic (vital signs), apachePredVar, apacheApsVar (clinical scores),
lab (laboratory measurements), admissiondrug, infusion, treatment (drugs administered prior
to and during ICU stay). The description of the selected features for each group is given
in Appendix A Table A1.

4.3.3. Traditional Clinical Scores

The eICU database contains information from APACHE version IV and IVa and Acute
Physiology Score (APS) version III scores, whereas the MIMIC-III database contains SOFA,
SAPS, Outcome and Assessment Information Set (OASIS), Logistic Organ Dysfunction
Score (LODS), Multiple Organ Dysfunction (MODS), APS III, as well as comorbidity scores
such as Elixhauser. We compared the performance (AUC–ROC) of the derived model using
the extended feature set with the available medical scores recorded in the databases.

4.4. Data Manipulation and Transformation

Age adjustment has been originally applied in both datasets to comply with pri-
vacy regulations. Older patients were all assigned as 90 years old, given that the risk
of thrombosis is homogeneously high in those more than 85 years old.

JADBio automatically performs pre-processing of the data—that is, mean and mode
imputation of missing data, constant feature removal (features that contain only one
value for all the outputs in the dataset and therefore are meaningless are removed), and
standardization of the feature range.

A significant challenge that had to be addressed manually during attribute selection was
the redundancy of the features in both datasets. For example, several drugs are prescribed
either with the trade name or the active compounds (e.g., enoxaparin or lovenox), whereas
misspellings of the names are frequent (e.g., agatroban or argatoban instead of argatroban).
The most important medication groups extracted were anticoagulants, antiplatelets, cardio-
vascular, antidiabetic, antilipidemics, thrombolytics, vasopressors, antibiotics, chemothera-
peutics, and corticosteroids. Dosage and duration of treatment was not taken into account
in the current experiments. Laboratory tests, such as complete blood count, kidney and liver
function tests, acid base balance, clotting, and biochemical and enzyme tests, were extracted.
For each of these features, the first and the average value from the whole ICU stay were
selected. Time stamps were defined as the average values per 6 h, during the first 48 h
of the ICU stay. Finally, vital signs were recorded as average values per 1 h, during the first
48 h in the ICU, first, and average values during the ICU stay.

4.5. Automated Machine Learning Framework: JADBio

The automated ML (AutoML) platform JADBio automatically tries and evaluates
numerous ML pipelines, optimizing the pre-processing, feature selection, and model-
ing the steps and their hyper-parameters [42]. It employs the Bootstrap Bias Corrected
Cross-Validation (BBC-CV) to provide an unbiased estimation of performance that adjusts
(controls) for trying multiple ML pipelines [43,44]. Pre-processing, normalization, mode
and mean imputation, constant feature removal, and feature selection are not applied to
the complete dataset before cross-validation, thus avoiding overestimation and over-fitting.
The classification algorithms used are linear, ridge, and Lasso regression, decision trees,
random forests (RF), and support vector machines (SVMs) with Gaussian and polynomial
kernels. For feature selection, JADBio uses the Lasso and Statistically Equivalent Signature
(SES) [45] algorithms. JADBio applies best practices of ML to eliminate any over-fitting
of the model and overestimation of its out-of-sample predictive performance, even for small
sample sizes; a detailed evaluation of JADBio can be found in [43].
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4.6. Custom Machine Learning Framework: XGBoost

The custom ML framework is depicted in Figure 1. A stratified train–test split
of 80–20% is applied to the initial dataset, where the missing values are imputed by using
mean imputation (for numerical features) and mode imputation (for categorical features).
Then, the data preparation phase corresponds to the one-hot encoding of categorical fea-
tures and correlation-based feature selection, where features with high Pearson correlation
values are more linearly dependent, having almost the same effect on the dependent vari-
able, and thus can be removed. Specifically, the pairwise Pearson correlation matrix is
computed and the features with a correlation ratio higher than 0.9 are dropped. Bayesian
optimization [46] is adopted during the hyper-parameter tuning and a stratified five-fold
cross-validation strategy is followed. It is also important to notice that JADBio addresses
imbalanced classes through stratified cross-validation and diversified class weights during
SVM learning. Since the imbalanced ratio in the eICU dataset is 3457 vs. 267 class samples
for classes 0 and 1, respectively, we aim at examining the class balancing effect in light
of oversampling combined with a state-of-the-art ML classifier, where, in the current work,
we investigate the XGBoost (eXtreme Gradient Boosting) classifier’s performance. Towards
achieving a balanced ratio between the two classes, the Synthetic Minority Oversampling
Technique (SMOTE) [47] is adopted. In each cross-validation fold, resampling is applied to
the data, and as a final step, we use the hyper-parameters for which the cross-validation
achieved the best performance as well as SMOTE on the total training set.

Figure 1. Custom machine learning pipeline: XGBoost.

4.7. Machine Learning Models’ Performance Evaluation

The performance of ML classification tasks is typically assessed by various well-
known metrics, such as sensitivity (or recall), accuracy, specificity, F1 score, and area under
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the receiver operating characteristic curve (AUC–ROC). The significance of the AUCs
was measured using a significance level of a = 0.05 [48]. The classification threshold was
optimized for F1 score.

5. Results

In this section, we describe the predictive models of early and late mortality for patients
with thrombosis or cancer, using an automated ML tool. Performance metrics, feature
discriminative analysis, comparison with conventional scores, and validation of the model
are reported in detail. In the last part of this section, the results of the custom ML framework
that addresses the class imbalance problem are presented.

5.1. Automated Machine Learning
5.1.1. Prediction of Early Mortality in ICU Patients with Thrombosis

As early or in-hospital mortality define the outcomes of patients at discharge from
the hospital, two different datasets were used and two groups of patients with thrombosis
were extracted: from the MIMIC-III database, 348 non-survivors vs. 1303 survivors, and
from the eICU database, 267 non-survivors vs. 3457 survivors.

MIMIC-III Dataset

Prediction of early mortality in patients with thrombosis, using all clinico-laboratory
features, achieved excellent performance (AUC–ROC = 0.93, CI 0.91–0.95), where CI de-
notes the confidence interval. The winning algorithm was random forest (RF), training
500 trees with the deviance splitting criterion and minimum leaf size = 3. Detailed in-
formation regarding metrics of performance and feature discriminative analysis can be
found in [41]. As shown in Figure 2 and Appendix A Table A3, our model significantly out-
performed nine well-known traditional medical scores, such as SAPS [17] and SOFA [19].
Specifically, among the various scores, the best performance was achieved by SAPSII
(AUC–ROC = 0.85, CI 0.81–0.89), and when a combination of all available scores was used,
the achieved performance was AUC–ROC = 0.86, CI 0.81–0.88.

Figure 2. Cont.
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Figure 2. Receiver operating characteristic (ROC) curves for early mortality in ICU patients with
thrombosis from MIMIC-III database using all features: (a) AUC–ROC curves and comparison
with traditional scores (APS, Acute Physiology Score; LODS, Logistic Organ Dysfunction Score;
MLODS, Multiple Logistic Organ Dysfunction Score; OASIS, Outcome and Assessment Information
Set; SAPS, Simplified Acute Physiology Score; SIRS, Systemic Inflammatory Response Syndrome;
SOFA, Sequential Organ Failure), (b) Precision–recall (PR) curve.

eICU Dataset

The RF classifier (training 1000 trees with deviance splitting criterion, minimum leaf
size = 5) was chosen as the winning algorithm in the AutoML approach, using the extended
feature approach. Among the various feature groups, the model with the best performance
was trained with the dataset containing all features (AUC–ROC = 0.87, CI 0.84–0.9) and labs
(AUC–ROC = 0.87, CI 0.83–0.9), followed by drugs (AUC–ROC = 0.82, CI 0.77–0.86) vital signs
(AUC–ROC = 0.81, CI 0.76–0.85), whereas medical history (AUC–ROC = 0.6, CI 0.56–0.64) and
medications prior to admission (AUC–ROC = 0.55, CI 0.5–0.59) had the worst performance,
as shown in Figure 3. The AUC of the precision–recall curve was 0.45 regarding early
mortality in ICU patients with VTE from the eICU dataset. The use of the extended feature set
significantly outperformed traditional clinical scores APSIII and APACHE IVa. A detailed
comparison of the various metrics of performance between the various feature groups and
clinical scores is shown in Table 2. From an initial number of 2300 attributes in all features and
891 in the labs subsets, the Test-Budgeted Statistically Equivalent Signature (SES) algorithm
(hyper-parameters: maxK = 2, alpha = 0.05, and budget = 3 · nvars) used a signature of only
25 features, predictive of early mortality, as shown in Figure 4a,b, respectively.

Table 2. Detailed metrics of performance for the predictive models of early mortality in patients with
thrombosis from the eICU dataset (JADBio).

AUC–ROC F1 Score Accuracy Specificity Sensitivity

All features 0.87 (0.84, 0.9) 0.42 0.92 0.95 0.42
Labs 0.87 (0.83, 0.9) 0.43 0.92 0.95 0.50
Vital Signs 0.83 (0.78, 0.87) 0.37 0.92 0.95 0.38
APSIII 0.79 (0.75, 0.84) 0.32 0.92 0.96 0.29
APACHE IVa 0.78 (0.73, 0.82) 0.30 0.89 0.92 0.38
Drugs 0.82 (0.77, 0.86) 0.53 0.94 0.99 0.23
Diagnosis 0.73 (0.68, 0.77) 0.26 0.82 0.92 0.30
Medical History 0.60 (0.56, 0.64) 0.27 0.93 0.98 0.06
Medication prior to admission 0.55 (0.5, 0.59) 0.41 0.92 0.99 0.01
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Figure 3. ROC curves for early mortality in ICU patients with VTE from eICU dataset: (a) AUC–ROC
curves, feature discriminative analysis and comparison with clinical scores (APS, Acute Physiology
Score; APACHE, Acute Physiology Age Chronic Health Evaluation), (b) Precision–recall curve.

Figure 4. Cont.
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Figure 4. Plot showing predictive features of early mortality in ICU patients with thrombosis, using
(a) all f eatures and (b) labs datasets. Green bars represent the average percentage drop in predictive
performance when the feature is removed from the model. (Abbreviations: avg, average; bun,
blood urea nitrogen; fiO2: fraction of inspired oxygen; rdw, red cell distribution width; peep,
positive end expiratory pressure; wbc, white blood cells; 0–6, 6–12, 24–30, 42–48 is the time in hours
after admission).

5.1.2. Prediction of Early Mortality in ICU Patients with Cancer

We extracted 902 non-survivors vs. 1757 surviving patients with various solid can-
cer and hematological malignancies from the MIMIC-III database. SVM of type C-SVC
with linear kernel (cost = 1.0) was the best-performing model for early mortality predic-
tion (AUC–ROC = 0.94, CI 0.92–0.96). The Lasso feature selection [45] (penalty = 1.0,
lambda = 4.183 × 10−2) algorithm revealed the following features with high predictive per-
formance: endotrachial intubation, 1st day respiratory rate, coexistence of metastatic cancer,
albumin, systolic blood pressure, and Red Cell Distribution Width (RDW)
(Appendix A Table A2). Using the all features set outperformed traditional medical scores
OASIS (AUC–ROC = 0.83, CI 0.79–0.87), SAPS (AUC–ROC = 0.86, CI 0.82–0.9), and SOFA
(AUC–ROC = 0.78, CI 0.73–0.83), as shown in Figure 5 and Table 3.

Table 3. Detailed metrics of performance for prediction of early and late mortality in ICU patients
with cancer using all features.

Mortality Prediction AUC–ROC Accuracy F1 Score Specificity Sensitivity

m0 0.94 (0.92, 0.96) 0.88 0.82 0.91 0.82
m1 0.88 (0.85, 0.91) 0.85 0.89 0.84 0.78
m3 0.84 (0.8, 0.87) 0.79 0.85 0.74 0.79
m6 0.78 (0.74, 0.82) 0.72 0.49 0.72 0.71
m12 0.76 (0.71, 0.8) 0.72 0.5 0.72 0.7
m > 12 0.74 (0.69, 0.74) 0.68 0.76 0.64 0.74
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Figure 5. ROC curves for early mortality in ICU patients with cancer from MIMIC-III database
using all features. (a) AUC–ROC curve and comparison with clinical scores (OASIS, Outcome and
Assessment Information Set; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ
Failure), (b) Precision-Recall curve.

5.1.3. Prediction of Late Mortality in ICU Patients with Thrombosis

Late mortality is defined as mortality after ICU or hospital discharge, as recorded
in a later admission or outside the hospital. The MIMIC-III database is suitable for late
mortality studies, since it offers longitudinal follow-up information regarding survival,
for months after their admission to the ICU, in contrast to the eICU database, where such
information is missing and it is not possible to chronologically order hospital admissions
for the same patient within the same year. Moreover, no censor outcomes are recorded,
since each admission has specific time stamps. For this binary classification task, 817 non-
survivors vs. 1303 survivor patients with VTE from MIMIC-III were included. On average,
patients with VTE died 549 days after admission, with a median of 225 days.

The best ML model was RF training 500 trees with the deviance splitting criterion and
minimum leaf size = 3. As expected, the task of predicting late mortality was less efficient
than that of the early mortality even using the whole feature space (AUC–ROC = 0.82,
CI 0.79–0.84 vs. 0.93, CI 0.91–0.95). Although traditional clinical scores were originally
designed to predict in-hospital mortality, their performance in predicting late mortality
is moderate and acceptable. The SAPSII (AUC–ROC = 0.76, CI 0.72–0.81) and Elixhauser
comorbidity scores (AUC–ROC = 0.74, CI 0.69–0.79) had the highest predictive performance
from the rest of the studied scores and were close to the use of a combination of the available
scores as shown in Figure 6.

Detailed performance metrics for both tasks of predicting early and late mortality
using all features in patients with thrombosis, and from both datasets, are summarized
in Table 4.
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Figure 6. ROC curves for late mortality in ICU patients with thrombosis from MIMIC-III database
using all features: (a) AUC–ROC curves and comparison with clinical scores. (b) PR curve.

Table 4. Detailed metrics of performance for prediction of early and late mortality of ICU patients
with thrombosis using all features.

Early Mortality Late Mortality

MIMIC-III eICU MIMIC-III

AUC–ROC 0.93 0.87 0.82
Accuracy 0.89 0.92 0.76
F1 score 0.72 0.97 0.60
Sensitivity 0.67 0.99 0.49
Specificity 0.95 0.1 0.90

5.1.4. Prediction of Late Mortality in ICU Patients with Cancer

Prediction of late mortality for cancer patients was further stratified based on the time
of death after admission (in months). When constructing the predictive models based on
time (months) after admission, AUC–ROC for months m1, m3, m6, m12 and m>12 were 0.88,
0.84, 0.78, 0.76, 0.74, respectively.

Detailed performance metrics are shown in Table 3 and Figure 7. The best perfor-
mance in the prediction of late mortality was achieved using all features, which outper-
formed classic clinical scores, especially in terms of F1 score, specificity, and sensitivity.
Among the clinical scores, SAPS showed modest performance to predict mortality at
1 month after admission (AUC–ROC = 0.82, CI 0.78–0.85) and at 3 months after admission
(AUC–ROC = 0.77, CI 0.73–0.81), although significantly lower than using the all features
set. Features that were selected to have high predictive performance can be found in
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Appendix A Table A2. The presence of metastatic cancer was the strongest predictor
of mortality, whereas, interestingly, transfusions with red blood cells were the strongest
predictor of mortality for more than a year after ICU admission.

Figure 7. ROC curves for late mortality in ICU patients with cancer from MIMIC-III database,
stratified based on the time of death after admission expressed in months (m0, m1, m3, m6, m12,
> m12). Comparison with traditional clinical scores.

5.1.5. Model Validation

The predictive model for early mortality in patients with thrombosis derived from
the MIMIC-III database ended with a signature of 35 predictive features that included
features from full blood cell count (white blood cells (WBC), eosinophils, lymphocytes, and
red cell distribution width (RDW)), biochemistry markers (glucose, blood urea nitrogen
(BUN), calcium, total protein, albumin, potassium, lactate, lactate dehydrogenase (LDH),
creatine phosphokinase (CPK), anion gap, arterial oxygen saturation (SaO2), pH), vital
signs (heart rate, respiration, lowest systolic blood pressure (BP), and current diastolic
BP), hemostasis (prothrombin time (PT), international normalised ratio (INR)), clinical
information (cancer, sepsis, Glasgow Coma Scale (GCS)), and medications (vasopressors
such as epinephrine, dopamine, and vasopressin and warfarin use). This model has been
later validated in the eICU dataset, as shown in Table 5 and Figure 8.

Table 5. External validation of a predictive model for early mortality in patients with VTE based on
a signature of 35 features.

AUC–ROC F1 Score Accuracy Specificity Sensitivity

MIMIC-III 0.93 [0.91, 0.96] 0.74 0.77 0.93 0.74
eICU 0.89 [0.87, 0.91] 0.56 0.86 0.89 0.7
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Figure 8. ROC curves for early mortality in ICU patients with thrombosis. Validation of the model
in the two datasets.

5.2. Custom Machine Learning Framework: XGBoost

The best XGBoost classifier configuration (after hyper-parameter tuning) is with
learning rate: 0.15, maximum tree depth: 12 gamma: 0.1, minimum sum of instance
weight: 1, colsample_bytree: 0.7. Similarly to the AutoML framework, among the various
feature groups, the model that achieved the best performance was the one trained with
the dataset containing all features (AUC–ROC = 0.84, CI 0.83–0.85), as shown in Figure 9.
The precision–recall curve AUC was 0.3 regarding early mortality in ICU patients with VTE
from the eICU dataset, and this low score can be attributed to the extremely high imbalance
class ratio. The detailed metrics of performance are shown in Table 6.

Figure 9. ROC curve for early mortality in ICU patients with VTE from eICU dataset (XGBoost).

Table 6. Detailed metrics of performance for prediction of early mortality of ICU patients with
thrombosis using all features.

XGBoost All Features

AUC–ROC 0.84 (0.83–0.85)
Accuracy 0.87
F1 score 0.63

Sensitivity 0.29
Specificity 0.95
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6. Discussion

The main contribution of the current work is the investigation of an extended number
of clinico-laboratory features normally stored in the electronic health record, grouped into
clinically meaningful sets (e.g., vital signs, labs, medications, and procedures) and in time
stamps to examine their impact on the prediction of early and late mortality in ICU pa-
tients. Two homogeneous population cohorts based on their diagnosis (specifically venous
thromboembolism and/or cancer) were derived using two different open-access large
healthcare datasets, MIMIC-III and eICU. Patients with a DNR code were excluded as it
is known that DNR is an independent factor of dismal survival outcomes in the ICU [49].
Specifically, we compared different state-of-the-art ML algorithms, addressed the class
imbalance problem in the medical datasets, developed interpretable models and identified
clinically meaningful predictive signatures, compared the performance of the ML approach
with existing scoring systems, and finally provided an external validation of the model,
proving the generalizability of it. Similarly to Choi et. al. [10], our model outperformed
traditional clinical scores not only in the prediction of early mortality but also in the pre-
diction of late mortality. A multi-dimensional time series data-driven research approach
was used, as well as stratification over the different groups of features, to identify feature
groups with the highest predictive performance.

Towards constructing a robust model, training of two different ML strategies has been
employed, an AutoML and a custom approach based on the XGBoost algorithm [50]. The pri-
mary aim of using the two approaches was not to compare them, since this it would be unfair,
but to address the class imbalance through an oversampling method such as SMOTE [47].
Typically, class-imbalanced datasets constitute a common problem in medical informatics,
which might lead to degraded performance depending on the type/number of data, features,
etc., and thus an additional analysis should be performed in order to tackle this issue. JAD-
Bio addresses imbalanced classes through stratified cross-validation and diversified class
weights during SVM learning. We thought that adopting the SMOTE method, which is
considered a typical class balancing algorithm within the oversampling techniques frame-
work [51], would be of added value. In the custom approach, we observed that the predictive
accuracy was improved when features with more than XX missing values were removed.
However, the accuracy appeared to remain constant despite the adoption of the SMOTE
oversampling technique. Since SMOTE is a deterministic resampling method that selects
examples being close in the local feature space, a probabilistic approach, such as Generative
Adversarial Networks [52], which originally have been used in the area of image processing
to produce synthetic but realistic images, could be used to produce new samples within
a medical data analysis framework by learning from the overall class distribution. Moreover,
the experimentation and extraction of the best-performing ML model in the custom approach
is time-consuming since it requires substantial human and computational effort, artificial
intelligence expertise, and extensive tuning of hyper-parameters; for this reason, automated
ML tools are becoming popular among non-specialists in this area.

The AutoML approach based on the JADBio platform has been widely tested in biomed-
ical data and follows all good practices for analysis and efficiency reporting [42]. During
the experiments, the RF model was consistently found to be the winning algorithm, with
a few exceptions. A frequent problem in various studies [53] that use ML predictive models
is whether proper ML guidelines for over-fitting prevention and accurate performance
metrics are reported. It is obvious from the experimental evaluation that JADBio can handle
more efficiently than the custom ML framework high-dimensional datasets having a high
level of missing values. Prediction of early mortality in patients with thrombosis was less
efficient in the highly imbalanced dataset from the eICU compared with the one from
the MIMIC-III dataset. The difference in performance, as illustrated in the precision–recall
curve when compared to the ROC curve, is attributed to the highly imbalanced dataset.
In this sense, for the minority class, high recall can only come at the cost of low precision.
Feature discriminative analysis revealed that follow-up laboratory tests and vital signs
in the medical record have the higher predictive performance when building prognostic
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models for early as well as late mortality, outperforming traditional clinical scores. Among
traditional scores, the best performance for the prediction of early mortality in patients with
thrombosis or cancer was demonstrated for SAPS [17]. Regarding late mortality in patients
with thrombosis, SAPS and comorbidity showed modest performance, whereas in cancer
patients, SAPS could modestly predict mortality up to 3 months after ICU admission.

The interpretability of the ML predictive models is considered a prerequisite for physi-
cians in order to accept them as clinical decision support systems. To this end, both
of our approaches produced interpretable and comparable models. The automated ML
approach can produce “biosignatures” that can be intuitively explored and explained by
physicians [43], as confirmed by this study. For feature selection, Statistically Equiva-
lent Signature (SES) algorithms, inspired by the principles of constrained-based learning
of Bayesian networks, were consistently found to be superior to the feature selection method
Lasso. XGBoost has a built-in function for feature importance but different metrics can
be used, which could lead to misleading results [54]. Although both approaches derived
similar features, the ranking of importance was different.

Among the thousands of features that we extracted from the electronic health records
of the patients with thrombosis, a few features were selected that were clinically meaning-
ful, such as older age, cancer, respiratory, cardiovascular, and renal disease, vasopressor
support, and mechanical ventilation, which are well established clinical predictors of ICU
mortality [13]. Similarly to [13], sex was not found to be a predictor of ICU mortality.
Moreover, individual feature analysis confirmed that warfarin [55], RDW [56], red blood
cell transfusions [57], and blood urea nitrogen [58] are significant predictors of early and
possibly long-term mortality. RDW has been shown to play a significant negative predictive
role in ICU early mortality through the deregulation of erythropoiesis from inflammatory
cytokines and oxidative stress [59]. It has also been reported to be an independent risk
factor for cardiovascular diseases, dyslipidemia, diabetes, and renal and liver diseases.
Surprisingly, high RDW has been shown to correlate with cancer stage irrespective of comor-
bidities, and with early mortality in VTE patients. For all these reasons, it is not paradoxical
that RDW could be an easily applicable, new biomarker, useful not only for the prediction
of early but possibly of late mortality in patients with thrombosis and/or cancer. Another
interesting feature revealed by our prognostic model is eosinophil count, which is known
to have prognostic significance in ICU patients [60]. Markers such as RDW and eosinophils
are attractive since they are easily available and of low cost.

In patients with cancer, the strongest predictor of early and late ICU mortality is
the presence of metastatic cancer. Red blood cell transfusions are a negative predictor
of early mortality, as already known [61]. Interestingly, transfusions were found to be
the strongest predictor of late mortality, more than one year after admission to the ICU,
for patients with cancer. Red cell transfusions in patients with cancer not only increase
the risk of death but also the risk of relapse [61]. Unfortunately, information regarding
transfusion (red blood cells, plasma, and platelets) is missing in a significant number of pa-
tients, whereas in MIMIC-III, this information is scattered across two different information
systems that collect data (Metavision and Carevue), and again, a significant number of data
points are missing.

Head to head comparisons of the various studies in ICU mortality prediction are
difficult, since the various studies have different inclusion and exclusion criteria, different
types of studied features, and various definitions of mortality. Our study targeted two
specific groups of patients, patients with venous thromboembolism and patients with cancer.
Both diagnostic groups are high-risk patients, with a substantial risk of ICU admission and
mortality. Mortality prediction models for ICU patients with thrombosis or cancer that are
based on ML algorithms and use a large amount of clinical and laboratory data, structured
and unstructured, are almost completely absent in the literature. Moreover, traditional
scoring systems are not specific for these two diseases. To the best of our knowledge, only
one publication on a relatively small number of patients with venous thromboembolism has
been published [32]. Similarly to Runnan et al., we compared state-of-the-art ML algorithms
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with traditional scores, and we achieved comparable performance and identified similar
predictive features.

In medical machine learning/predictive models, external validation in different
datasets is imperative before clinical application. Classifiers usually perform well in the orig-
inal dataset from which they were trained but then perform poorly in independent datasets.
Another important consideration is that ML models in clinical practice are to be deployed
in different institutions or countries. A recent systematic review identified only 5 out
of 70 publications that used independent data to externally validate their model to predict
mortality [53]. One of the strengths of our study is that it used two independent datasets to
externally validate the ML prognostic model of early mortality derived from the MIMIC-III
dataset to the eICU dataset, which are derived from different institutions and have different
time periods. The results of the external validation were promising, with the exception
of the F1 score, which was inferior.

Some limitations of this study should be considered. First of all, the study was based on
retrospective data. Since the data were collected in the past, it is possible that many medical
practices have changed over time, such as the case of warfarin use in the ICU. Second,
the selection of the studied diagnostic groups was based solely on ICD-9 codes [62] and DRG
codes [63], and not on imaging studies. Third, time series data were processed in specific
time stamps, which increased significantly the dimensionality of the data. Moreover, we
observed that labs and vital signs in both datasets were infrequently reported in the first
48 h, thus leading to a dramatically increased number of missing data on the various time
stamps. Fourth, a direct comparison of our model with the only PE-specific score, PESI,
was not possible, since this is not included in the datasets.

One of the primary goals of our future work is to directly compare our model with
the PESI score and in a prospective cohort study. Inclusion of more features, such as genetic
information and imaging studies, would be ideal and would probably improve the pre-
dictive performance. We could also focus on features extracted on the day of discharge
to predict other outcomes, such as ICU readmission. Our future vision is to develop an
intelligent ML-based system that is continuously updated with new clinical events and
detailed information of the current clinical status of the patient, which could be a use-
ful assistant for the physician and their clinical decision-making. To this end, the use
of deep learning models, such as long short-term memory (LSTM) [14] for importing time
series data in high-frequency datasets, and neural networks [64] could probably achieve
better generalization performance with a significantly lower error rate. Shapley addi-
tive explanation (SHAP) analysis could be used to explain the output of our predictive
model [65]. Handling of the high imbalance ratio of the datasets could be performed with
other advanced resampling methods, such as Generative Adversarial Networks [52].

7. Conclusions

The presented research could be used as a proof of concept study that could be
further validated in prospective or more recent datasets. Prediction of in-hospital mortality
in patients with thrombosis or cancer is highly feasible, whereas prediction of late mortality
is a more difficult and complex task. The results of this study are promising and, most
importantly, interpretable, since the predictive features included in the model were clinically
meaningful. The discovery of novel biomarkers, such as RDW and eosinophils, and their
incorporation into the traditional clinical scores could possibly refine their performance.
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AC Acute
ALP Alkaline phosphatase
APACHE Acute Physiology Age Chronic Health Evaluation
APS Acute Physiology Score
AST Aspartate transaminase
AUC Area under the curve
AVG Average
BUN Blood urea nitrogen
COPD Chronic obstructive pulmonary disease
CPK Creatine phosphokinase
CV CareVue
DRG Disease-related group
DOACs Direct oral anticoagulants
DVT Deep vein thrombosis
FFP Fresh frozen plasma
fiO2 Fraction of inspired oxygen
FPR False Positive Rate
HIPAAA Health Insurance Portability and Accountability Act
GCS Glasgow Coma Scale
ICD International Classification Code
ICU Intensive care
LMWH Low-molecular-weight heparin
LOS Length of stay
LODS Logistic Organ Dysfunction Score
m Month
mean1stRR Mean value of respiratory rate on the 1st ICU day
MD Missing data
ML Machine learning
MODS Multiple Organ Dysfunction Score
MV Metavision
NOF Number of features
NOS Not otherwise specified
OASIS Outcome and Assessment Information Set
PaO2 Partial pressure of arterial oxygen
PaCO2 Partial pressure of arterial carbon dioxide
PE Pulmonary embolism
PESI Pulmonary Embolism Severity Index
sPESI Simplified Pulmonary Embolism Severity Index
PLT Platelet
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PT Prothrombin time
RBC Red blood cell
RDW Red cell distribution width
RF Random Forest
ROC Receiver operating characteristics
SBP Systolic blood pressure
SD Standard deviation
SaO2 Oxygen arterial saturation
SABER Sequence Annotator for Biomedical Entities and Relations
SAPS Simplified Acute Physiology Score
SES Statistically Equivalent Signature
SIRS Systemic Inflammatory Response Syndrome
SMOTE Synthetic Minority Oversampling Technique
SOFA Sequential Organ Failure
SVM Support Vector Machine
TPR True Positive Rate
VTE Venous thromboembolism
WBC White blood cells

Appendix A

Table A1. Description of attributes selected for patients with thrombosis and/or cancer from the
various tables of eICU dataset. NOF denotes the number of features, and MD the missing data.

Group Name
(as in eICU”)

Table in
eICU Description Number of

Features

Missing
Values
(Merged with
Patient)

Most
Common
Features

Patient
(“patient”) Patient

Basic
demographic
information,
LOS,
discharge status

11 0

Gender, age, ethnicity,
length of stay,
admission height,
admission weight,
discharge status

Diagnosis
“admission
_dx”

Diagnosis

Diagnoses
documented
during ICU
stay

61 395

PE, DVT, hypertension
acute respiratory failure,
altered mental status,
diabetes, pneumonia,
acute renal failure,
congestive heart, anemia
failure, chronic kidney,
cancer, disease, sepsis

APSIII
score

Apache-
ApsVar

Acute
Physiology
Score (APSIII)

24 529

Variables used in APS
III score, e.g., Glasgow
respiratory rate,
heart rate, temperature,
coma scale, paO2, etc.

APACHE
IV
score

Apache-
PredVar

APACHE
IV and IVa
versions

34 529
Variables used in
APACHE predictions,
e.g., presence of cirrhosis,
or metastatic carcinoma

Labs Lab Laboratory
tests 80 442

Hematocrit hemoglobin,
white blood cells,
platelets, potassium,
sodium, creatinine,
nitrogen, chloride, glucose,
calcium, bicarbonate,
PT, INR, aPTT, blood urea
MCH, MCHC, RDW

Vital signs

Physical
Exam Vital signs 8 597

Blood pressure diastolic
and systolic current,
highest, lowest, heart rate,
GCS, fiO2, SatO2
in 1 h intervals

Vital
Periodic Vital signs 10 433

Heart rate, respiration,
SatO2, blood pressure,
temperature
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Table A1. Cont.

Group Name
(as in eICU”)

Table in
eICU Description Number of

Features

Missing
Values
(Merged with
Patient)

Most
Common
Features

Medications
prior to
admission

Admission
Drug

Medications
taken prior
to ICU
admission

36 3263

Aspirin, furosemide
bronchodilator metoprolol,
warfarin, lisinopril,
atorvastatin, inhaled
corticosteroids insulin,
amlodipin, levothyroxin,
metformin, carbedilol,
LMWH, clopidogrel,
DOACs

Drugs

Infusion
Medications
Transfusions
Parenteral

30 2503

Heparin, epinephrine,
norepinephrine, insulin,
amiodarone, phenylephrine
vasopressin, t-PA,
diltiazem, dopamine

Treatment Medications 52 1040

Medications in groups,
e.g., anticoagulants
antibiotics, antiarrhythmics
vasopressor, ulcer
prophylaxis
and several procedures,
e.g., mechanical ventilation,
IVC filter, thrombolysis,
dialysis, embolectomy

Medical
history Pasthistory Past history of

chronic diseases 111 422

Hypertension,
insulin-dependent
diabetes, disease, cancer
chronic heart failure,
asthma, COPD, atrial
fibrillation, stroke,
DVT or PE within
6 months, dementia,
peripheral vascular disease

Table A2. Most important selected features with predictive performance for early and late mortality
in ICU patients with cancer. (Abbreviations: LOS, length of stay; SBP, systolic blood pressure; RDW,
red cell distribution width; RR, respiratory rate; AST, aspartate transaminase; GCS, Glasgow Coma
Scale; PaO2, partial pressure of arterial oxygen; FFP, fresh frozen plasma).

1st
Admission

Endotrachial
Intubation

Min
1st RR

Metastatic
Cancer Albumin Mean

1st RR SBP RDW

m1 Metastatic
cancer

OASIS
Elective
surgery

LOS
Renal
insuf-

ficiency

1st day
chloride

max

SAPSII
score PaO2

m3 Metastatic
cancer

Open
heart

surgery
ALP

OASIS
Pre-ICU

LOS
GCS

1st day
chloride

max
Age

m6 Metastatic
cancer AST Albumin RDW

Aorto-
coronary
bypass

OASIS
Elective
surgery

m12 Metastatic
cancer Age SAPSII

score Etoposide PaO2 FFP Lung
biopsy

>m12 Trans-
fusions
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Table A3. Analytical metrics of performance of predictive models for early mortality in patients
with thrombosis from MIMIC-III database (Abbreviations: APS, Acute Physiology Score; LODS,
Logistic Organ Dysfunction Score; OASIS, Outcome and Assessment Information Set; SAPS, Simpli-
fied Acute Physiology Score; SIRS, Systemic Inflammatory Response Syndrome; SOFA, Sequential
Organ Failure).

AUC–ROC F1 Score Accuracy Specificity Sensitivity

Early/Late Early/Late Early/Late Early/Late Early/Late

All features 0.94 (0.91–0.96) 0.87 0.83 0.93 0.79
All scores 0.85 (0.81, 0.88) 0.6 0.81 0.85 0.7
APS II 0.81 (0.76, 0.85) 0.55 0.8 0.85 0.6
Comorbidity 0.78 (0.74, 0.82) 0.5 0.736 0.76 0.65
LODS/MLODS 0.77 (0.72, 0.81) 0.5 0.77 0.8 0.6
OASIS 0.8 (0.76, 0.84) 0.55 0.76 0.77 0.7
SAPS 0.8 (0.76, 0.84) 0.53 0.78 0.82 0.6
SAPSII 0.85 (0.81, 0.89) 0.61 0.81 0.83 0.73
SIRS 0.64 (0.59, 0.68) 0.39 0.53 0.5 0.71
SOFA 0.76 (0.72, 0.81) 0.5 0.7 0.7 0.71

Table A4. Analytical metrics of performance of predictive models for late mortality in patients with
thrombosis from the MIMIC-III database (Abbreviations: APS, Acute Physiology Score; LODS, Logistic
Organ Dysfunction Score; OASIS, Outcome and Assessment Information Set; SAPS, Simplified Acute
Physiology Score; SIRS, Systemic Inflammatory Response Syndrome; SOFA, Sequential Organ Failure).

AUC–ROC F1 Score Accuracy Specificity Sensitivity

Early/Late Early/Late Early/Late Early/Late Early/Late

All features 0.83 (0.79, 0.87) 0.72 0.74 0.75 0.78
All scores 0.76 (0.71, 0.81) 0.64 0.69 0.7 0.7
APS II 0.65 (0.59, 0.7) 0.56 0.62 0.53 0.69
Comorbidity 0.74 (0.69, 0.79) 0.62 0.69 0.69 0.68
LODS/MLODS 0.57 (0.51, 0.62) 0.46 0.62 0.56 0.53
OASIS 0.68 (0.63, 0.69) 0.59 0.63 0.51 0.77
SAPS 0.68 (0.63, 0.72) 0.59 0.62 0.55 0.73
SAPSII 0.76 (0.72, 0.81) 0.63 0.7 0.78 0.63
SIRS 0.49 (0.48, 0.5) 0.54 0.62 0.34 0.65
SOFA 0.58 (0.52, 0.63) 0.52 0.62 0.35 0.73
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