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Abstract: Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s
disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progres-
sive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers
for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high
throughput quantitation of thousands of proteins from minimal sample volumes. We review recent
proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and
PD that identify proteins with potential utility as biomarkers. Further, we review disease-related
post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which
may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in
key biomarker studies in ALS and PD and discuss recent technological advancements which may
identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are neurodegenera-
tive diseases characterized by the progressive degeneration of neurons.

In ALS, the progressive degeneration of motor neurons occurs with a debilitating loss
of movement control. The majority (90–95%) of ALS cases are sporadic in origin and 5–10%
of cases are of known genetic origin [1]. Of the known genetic cases, mutations in the
C9ORF72, SOD1, TARDBP [2–4], NEK1 [5,6], UBQLN2 [7,8], KIF5A [9,10], and FUS [11,12]
genes contribute to familial ALS cases [13]. Other genes that contribute to familial ALS
includes VCP, ALS2, SETX, ANG, PFN1, MATR3, CHCHD10, TUBA4A, TBK1, GRN, C21orf2,
and OPTN [14].

In PD, the progressive degeneration of dopaminergic neurons occurs with a loss of
movement control. The majority (90%) of PD cases are sporadic in origin and 10% of cases
are of known genetic origin [15]. Risk for familial PD has been associated with 28 distinct
chromosomal regions called PARK genes [16–19]. Six genes are linked with monogenic
familial PD. They include SNCA and LRRK2 mutations that have been linked with an
autosomal dominant form and Parkin, PINK1, DJ-1, and ATP13A2, which have been linked
with an autosomal recessive mode of inheritance in familial PD. Variants in certain other
genes such as UCHL1, GAK, MAPT, GBA, NAT2, INOS2A, GAK, HLA-DRA, and APOE are
associated with increased risk of PD, where additional factors, along with mutations, might
play a role in disease causation [20].

Biomarkers are essential for the early diagnosis, prognosis, and assessment of treat-
ment for both ALS and PD, but biomarker discovery has been challenging for these diseases.

The increased use of unbiased tools including proteomics, however, is advancing
biomarker discovery. Proteomics enables biomarker discovery using traditional mass
spectrometry-based platforms as well as newer platforms such as multiplexed immunoas-
says and aptamer techniques by identifying disease-associated protein alterations. Here, we
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provide a detailed review of several key proteomics studies showing promising techniques
and describe the technological advancements for ALS and PD biomarker discovery.

2. Overview of Proteomics Technological Advancement for Biomarker Discovery

Proteomics tools enable the deep protein profiling of tissue, plasma, serum, and CSF
for biomarker discovery [21]. Using proteomics, several studies have attempted to iden-
tify pathological disease mechanisms by identifying differentially expressed proteins and
proteoforms (proteins and their modifications) as potential biomarkers in disease models,
biofluids from patients, as well as post-mortem brain tissue. Discovery proteomics technol-
ogy using mass spectrometry, immunoassays, and aptamers can identify several thousands
of differentially expressed proteins and their altered forms with disease. However, only a
fraction of them have translated to clinical utility due to the lack of standardized validated
assays and the lack of access to instrumentation. Several studies that assessed specific brain
regions for biomarker discovery fail to recognize the systemic mechanisms in neurode-
generative disease progression. Many neurodegenerative disease mechanisms converge
and present differently. However, some have similar affected underlying pathways which
makes the identification of disease-specific biomarkers a challenge. The gap needs to be
bridged between the increasing number of publications studying biomarkers for ALS and
PD (Figure 1A,B) and relatively few biomarkers in the clinic.
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biomarker discovery.

Some of the technological advances in mass-spectrometry-based proteomics for biomarker
discovery are described in Figure 1C and Table 1.
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Table 1. Summary of methods used in proteomics.

Method Advantages Disadvantages

Sample Preparation Methods

Filter-aided sample preparation (FASP) Unbiased filter-based approach which
removes detergents

Molecular weight cutoffs and can be
challenging for aggregated proteins

Single-pot solid-phase-enhanced sample
preparation (SP3)

Bead-based approach with low sample loss
Unbiased robust recovery and can be
automated using magnetic beads

Beads have a limited capacity and should
not be overloaded to cause inconsistencies

In-StageTip (iST) Peptide can be fractionated on the tip to
gain depth

Tips must be compatible with
solubilization reagents used

SarkoSpin Can isolate insoluble pathological protein
aggregated

Utilize detergents that require sample
clean up prior to mass spectrometry

Depletion Gain depth Low throughput, induce variability

Immunoenrichment Gain depth Low throughput, induce variability

Offline fractionation Gain depth Low throughput

Mass Spectrometry Quantitation Strategies

Isobaric TMT tags Relative quantitation in MS2/MS3
dimension with multiplexing to save time

Require (SPS) MS3 for accurate
quantitation to overcome challenges with
ratio compression

Label-free DIA
Relative quantitation by area under the
peak, enabling the acquisition of
complete data in large cohorts

Requires expertise in MS method design for
window strategy and data interpretation

MRM/PRM-targeted quantitation
Absolute quantitation with standard
curves and the ability to monitor disease
progression with time

Limited in the number of targets that can
be analyzed

Advances in Instrumentation and Technology

BOXCAR data-independent acquisition Improves data completeness Requires good method design

Real-time search RTS-SPS-MS3 Improves quantitation Special feature in an instrument

High-field asymmetric ion mobility
spectrometry FAIMS Improves sensitivity and selectivity In front end and not true ion mobility to

separate isomers

Modified LC- Evosep Improves throughput and robustness Has defined methods and is
not customizable

Automation Improves reproducibility Tedious to implement changes in workflows

Trapped ion mobility TIMS PTM and isoform identification Needs expertise to achieve good separation

Parallel acquisition serial
fragmentation PASEF Improves scan speed and sensitivity Needs optimization based on gradient

Multiplexed immunoassay O-link Improves dynamic range based on
antibody specificity

Limited in the panel of targets based on
the availability of antibodies

Aptamer-based assay Improves dynamic range based on
aptamer specificity

Limited in the panel of targets based on
the availability of aptamers

Improved instrumentation, including faster scan speeds, parallel accumulation serial
fragmentation (PASEF) [22,23], and trapped ion mobility [24,25], enables the identification
of disease-associated proteins and their modifications from patient samples using small
sample volumes. While these technological advances drive the limits of quantitation and
enable sensitive analysis to gain the greatest depth in proteome being measured, the need
to analyze thousands of samples robustly still remains a challenge in biomarker discovery.

Improvements in data acquisition strategies include using label-free data-independent
acquisition (DIA), making the relative quantitation of proteins possible from many samples.
In the DIA approach, complete data are acquired using a label-free strategy matched to a
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large spectral library built from representative samples of the cohort. While previously DIA
required building and using a spectral library for the accurate identification of the acquired
MS2 spectra [26], recent advances in direct DIA and machine learning algorithms allow
library-free accurate identification [27] and quantification [28]. Today, >10,000 proteins from
tissue [29] or >1000 proteins from plasma can be identified by DIA [30]. To overcome the
dynamic range challenge and gain depth in the number of proteins identified from complex
matrices such as plasma/serum, using sample preparation strategies including depletion,
immuno-enrichment, and data acquisition strategies (such as the BoxCar-segmented MS1
approach and BoxCarmax) can achieve maximized depth in the proteome [31–33].

An alternative relative quantitative strategy uses isobaric TMT tags. Complete deep
data profiles for proteins are acquired in the MS2 dimension and enhanced quantitation
using synchronous precursor selection (SPS) in the MS3 dimension overcomes inherent
challenges with TMT such as ratio compression. Currently, the use of real-time search
SPS MS3 gives the accurate quantitation and in-depth profiling of pooled fractionated
samples without any sacrifice in the number of proteins identified, overcoming previous
limitations in TMT-based approaches. Using automated sample preparation, ion mobility
with high-field asymmetric waveform ion mobility spectrometry (FAIMS), and real-time
search SPS MS3, deep protein profiles from challenging matrices such as plasma can be
obtained [34,35].

Further, absolute quantitation strategies using targeted proteomics approaches to
monitor selected peptides or proteins by parallel reaction monitoring (PRM) or multiple
reaction monitoring (MRM) across large study cohorts identified biomarkers are validated
for clinical use [36]. An advancement in this field includes the improved sensitivity in
targeted analysis platforms.

Traditional nano-LC approaches allow a small number of samples to be analyzed per
day, making rapid and robust analysis of large cohorts for biomarker discovery challenging.
An advancement in throughput involves the use of novel LC platforms such as Evosep
which can analyze up to 300 samples per day in a rapid and ultra-robust analysis compared
to traditional nano-LC approaches [37]. Using this platform makes clinical proteomic
analysis for biomarker discovery possible on a large scale.

Other non-mass-spectrometry-based proteomics techniques for biomarker discovery
include O-link and aptamer-based technology. O-link technology uses a multiplexed im-
munoassay and has the advantage of overcoming the dynamic range challenge via the
enrichment of proteins with antibodies, but is limited in the panel of proteins that can be
detected because it relies on the availability of specific antibodies [38]. Aptamer technol-
ogy involves small nucleic acids binding to proteins and subsequent detection by means
of complementary nucleic acids and fluorescence [39,40]. While these approaches have
high throughput, they rely on the availability of well-characterized reagents, unlike mass
spectrometry which is an unbiased proteomic approach. Combining these complementary
approaches of mass-spectrometry-based proteomics, immunoassays, and aptamers can
help to gain depth in the proteins identified [41].

3. Proteomics for Biomarker Discovery in ALS
3.1. Differential Expression of Proteins and Interactome from Post-Mortem Human Tissue as
Biomarkers in ALS

Post-mortem tissue proteomics is a key method used for identifying disease biomark-
ers in bulk tissues, tissue sections on a slide, and single cells. Several workflows have been
suggested for bulk tissue analysis such as suspension trapping filter-aided sample prepara-
tion (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and in-StageTip
(iST) [42] for disease biomarker analysis. On a FFPE/frozen slide, proteins associated with
pathological regions in the tissue can be identified by liquid chromatography–tandem mass
spectrometry (LC-MS/MS) or matrix-assisted laser desorption–ionization (MALDI) ap-
proaches [43–46]. Using a combination of imaging and high-resolution mass spectrometry,
the characterization of proteins at a single cell resolution and the intracellular sub-proteome
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has been possible [47,48]. This has been utilized to study the sub-proteome of endosomal
vesicle trafficking [49]. Since these endo-lysosomal networks are known to be dysregulated
in neurodegenerative diseases, the signatures of potential biomarkers can be detected [50].
These approaches enable biomarker discovery from tissue.

Studies that provide insight into potential tissue markers in ALS are summarized in
Table 2. In ALS, proteomic profiling via LC-MS/MS in post-mortem spinal cord tissue
compared sporadic ALS and controls, revealed ATP5D, and calmodulin was downregulated
in sporadic ALS [51]. Here, 2D-gel electrophoresis combined with LC-MS/MS was used in
identification of biomarkers. While 2D gel electrophoresis enables the isoelectric separation
of proteins, the method is relatively low throughput and requires expertise to isolate spots
consistently. By assessing ALS mutation carriers (C9orf72, SOD1, and TARDBP), sporadic
ALS and controls identified several proteins that were upregulated, including UCHL1,
MAP2, CAPG, GPNMB, HIST1H4A, HIST1H2B, NEFL, NEFH, NEFM, CHIT1, and CHI3L1
in both spinal cord and CSF in ALS [52]. The upregulation of four of these proteins (UCHL1,
MAP2, CAPG, and GPNMB) in both CSF and spinal cord was confirmed in an independent
cohort by MRM [52]. CSF from symptomatic and asymptomatic ALS mutation carriers was
assessed, and NEFL, NEFM, NEFH, CHIT1, and CHI3L1 were upregulated in symptomatic
individuals [52]. The strength of this analysis lies in the use of both post-mortem spinal
cord and CSF in discovery proteomics. The CSF proteomics method was modified to
enhance depth. Further, candidate markers were validated by absolute quantitation using a
targeted proteomic approach in an independent cohort. Using both discovery and targeted
proteomics approaches to validate markers in an independent cohort, this study provides
a comprehensive and validated approach in identifying biomarkers. Proteomics is also
valuable in assessing the interactome. A proximity-based ligation BioID assay of di-peptide
repeats in ALS patients with C9ORF72 mutations identified chaperone proteins to be
associated with poly-GA, while ribosomal and nucleolar proteins were associated with
poly-GR and poly-GP di-peptide repeats in ALS patients [53,54]. Toxic repeats can be
identified using BioID to analyze proteins which provide insight into disease mechanisms.
A disadvantage of the method is the need to express a vector and identify interacting
proteins. This approach is possible in model systems and primary cells, but not in patient
samples. In these references, primary proteins interacting with poly-GA, poly-GR, and
poly-GP repeats were identified in cortical neurons and cells, and these were validated in
patient samples by mass spectrometry. This is a balanced approach in addressing disease
mechanisms in model systems and confirms the findings in patient samples.

Table 2. Proteomic studies in ALS focused on biomarker discovery.

Disease Marker Quantitation Tissue Summary Reference

Tissue-based proteomic markers in ALS

ALS TDP43
PRM

absolute
quantitation

Prefrontal/motor
cortex and spinal

cord

An increase in C: N-terminal
TDP43 peptide ratio > 1.5, new

truncation site-specific trend
observed in ALS-TDP

[51,55]

ALS
(sporadic) Calmodulin Label-free Spinal cord Downregulated in ALS [51]

ALS
(sporadic) ATP5D Label-free Spinal cord Downregulated in ALS [51]

ALS UCHL1 Label-free and MRM Spinal cord Upregulated in ALS and
correlated with CSF [52]

ALS MAP2 Label-free and MRM Spinal cord Upregulated in ALS and
correlated with CSF [52]

ALS GPNMB Label-free and MRM Spinal cord Upregulated in ALS and
correlated with CSF [52]
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Table 2. Cont.

Disease Marker Quantitation Tissue Summary Reference

Plasma/Serum proteomics biomarkers in ALS

ALS Gelsolin LFQ and MRM Plasma Differentially expressed in ALS [56–58]

ALS Clusterin MRM Plasma Downregulated in ALS [57,58]

ALS CD5L MRM Plasma Differentially expressed in ALS [57,58]

ALS Ficolin 3 MRM Plasma Upregulated in ALS [57,58]

CSF proteomic biomarkers in ALS

ALS α-1-
antichymotrypsin LFQ CSF

In CSF, 118 proteins were
significantly altered in ALS

compared to controls
[56]

ALS Amyloid beta
A4 protein LFQ CSF

In CSF, 118 proteins were
significantly altered in ALS

compared to controls
[56]

ALS Gelsolin LFQ CSF
In CSF, 118 proteins were

significantly altered in ALS
compared to controls

[56]

ALS
Chitinase-3-like

protein 1
(CHI3L1)

LFQ CSF Upregulated [59]

ALS
Chitinase-3-like

protein 2
(CHI3L2)

LFQ, TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[59,60]

ALS Chitotriosidase-1
(CHIT-1) LFQ, TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[59,60]

ALS

Ubiquitin
carboxyl-terminal
hydrolase isozyme

L1 (UCHL1)

LFQ, TMT, MRM CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[52,59,60]

ALS MAP2 MRM CSF Upregulated [52]

ALS CAPG MRM CSF Upregulated [52]

ALS GPNMB MRM CSF Upregulated [52]

ALS CRYAB TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[60]

ALS PFN1 TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[60]

ALS TFRC TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[60]

ALS TREM2 TMT CSF

Upregulated in C9orf72
variant-associated symptomatic
ALS compared to asymptomatic
controls with C9orf72 variants

[60]
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Table 2. Cont.

Disease Marker Quantitation Tissue Summary Reference

CSF proteomic biomarkers in ALS

ALS TXNDC17 TMT CSF

Upregulated in mutated C9orf72
variant-associated symptomatic
ALS compared to asymptomatic
controls with C9orf72 variants

[60]

ALS NEFM TMT CSF

Upregulated in mutated C9orf72
symptomatic ALS compared to

asymptomatic controls with
C9orf72 mutations

[60]

Exosomal biomarkers in ALS

ALS Gelsolin LFQ CSF exosomes Upregulated in C9orf mutated
ALS cases [61]

ALS Clusterin LFQ CSF exosomes Upregulated [61]

ALS UBA1 LFQ CSF exosomes Upregulated in C9orf mutated
ALS cases [61]

ALS NIR LFQ CSF exosomes Upregulated in sporadic ALS [62]

ALS TDP43 LFQ Plasma exosomes Levels correlated with
longitudinal progression [63]

3.2. Post-Translational Modifications in TDP43 from Tissue Proteomics Studies in ALS

Post-translational modifications (PTMs) include changes in the amino acid side chains
in proteins due to the covalent addition of functional groups or proteolytic cleavage [64].
PTMs are readily detected by mass spectrometry due to characteristic mass shifts caused
by the biochemical modification of proteins [65]. Abnormal PTMs can disrupt normal
biological processes and serve as biomarkers for disease diagnosis and progression [66,67].

A pathological hallmark of ALS is the presence of cytoplasmic inclusions of TAR
DNA-binding protein 43 (TDP43) and mislocalization of the protein from the nucleus to the
cytoplasm [68]. Major modifications in TDP43 associated with protein aggregates include
truncations, ubiquitination, and hyperphosphorlation in the C-terminal and N-terminal
domains [69,70] (Figure 2).
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Figure 2. Schematic representation of post-translational modifications (PTMs) in TDP43 in ALS. The
red font indicates putative disease-specific modifications [70] and the black font indicates all known
modifications from proteomics databases (ProteomicsDB and PhosPhosite) and literature.

PTMs in pathological TDP43 were differentiated from endogenous TDP43 using a
method called SarkoSpin (a technique for the isolation of pathological TDP43 aggregates),
and characterized by mass spectrometry from ALS brains [71]. Using SarkoSpin on ALS
and FTD brains, normal proteins including physiological TDP43 were exclusively found
in the supernatants, while protein aggregates such as pathological TDP43 that underwent
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polyubiquitation and hyperphosphorylation were detected in the pellets. SarkoSpin is an
excellent method used to separate insoluble disease-specific aggregates from the soluble
form and could potentially be applied to other aggregated proteins common in neurodegen-
rative diseases. Here, after separating the pathological TDP43 aggregates, LC-MS/MS with
spectral counting was used for the relative quantitation of proteins in different groups. A
label-free approach allows intact PTMs to be evaluated, in turn idenitfying and quantifying
the relative abundance of proteins in different disease groups. Phosphorylated TDP43
leads to an increase in cytoplasmic and mitochondrial mislocalization and aggregation in
neurons. The ubiquitination of TDP43 has been associated with TDP43 aggregation [72].
These modifications that are unique to disease pathology could serve as biomarkers for
ALS. Most of the modifications and cleavages occurred in the glycine-rich C-terminal and
N-terminal domains of TDP43 [70]. In ALS, a measured ratio of C:N terminal TDP43
fragments >1.5 could differentiate ALS from control subjects in a study using post-mortem
brain and spinal cord tissue [55].

3.3. Plasma and Serum as Sources for Proteomic Biomarkers in ALS

There are several strategies for plasma protein profiling in disease biomarker identi-
fication. The first technique presented here uses mass-spectrometry-based proteomics in
plasma. To successfully identify disease biomarkers from plasma, it is important to find
ways to measure the low-abundance disease-relevant proteins, while overcoming the large
dynamic range of proteins in plasma. This is challenging, since most instruments can mea-
sure a range of up to 5 orders of magnitude, with bias towards the most abundant proteins,
while proteins in plasma span 10 orders in magnitude, with disease-specific proteins being
lower in abundance. The depletion of the most abundant proteins [73,74], the enrichment of
proteins of interest with antibodies [75], and deep offline fractionation are commonly used
methods [75] to identify low-abundance disease-relevant proteins. While these methods in-
crease depth, they result in lower throughput [76]. These strategies have identified clusterin
and ficolin-3 as differentially expressed proteins in ALS plasma [57,58]. Here, SWATH was
applied for the identification of proteins, and levels were confirmed by Western blotting.
SWATH has the advantage of being label-free, and can preserve modifications in proteins
for later query if needed and provide relative quantitation. The disadvantage of SWATH is
the requirement of careful design in windows to gain the maximum number of proteins
identified, thus involving the need for complex software to interpret the spectra. The ad-
vantages of being unbiased and label-free, as well as providing complete data with minimal
missing values, outweigh these disadvantages. The deep plasma profiling of matched
plasma and CSF samples showed that the upregulation of gelsolin and several proteins
such as chitinase-3-like 1 and alpha-1 antichymotrypsin was validated in ALS plasma and
CSF [56]. Here, matched plasma and CSF samples were analyzed by discovery proteomics.
The advantage of using matched samples enables the identification of neurological and
systemic changes in proteins due to the disease. Label-free quantitation provided a relative
abundance of differentially expressed proteins. Using machine learning algorithms, two
candidate proteins were validated for absolute levels by a targeted proteomics approach.
This strategy uses both discovery and targeted proteomics with machine learning to select
candidate markers which provides a well-defined strategy for biomarker discovery.

Another strategy to gain depth without necessarily compromising throughput involves
using the TMT calibrator method, where spiking the disease peptides from peripheral
blood mononuclear cells (PBMCs) or brain tissue in multiplex channels of TMT boosts the
associated plasma proteome being measured in the other channels. ALS studies have used
this technique to study the rate of disease progression [57,58] and phenotypic variability
in sporadic ALS patients [77,78], and have identified proteins in biological processes of
senescence, RNA processing, cell stress, and metabolism; moreover, major histocompatibil-
ity complex-II-linked immune reactivity and apoptosis were enriched in fast-progressing
ALS. While using a booster channel from tissue or PBMC is advantageous in boosting
low-abundance peptide signals seen in biofluids that are otherwise masked, the validation
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of positive identification is required. Quantitation using isobaric tags enables multiplexing
and depth gains. However, this method suffers from ratio compression which leads to
inaccurate quantitation. The development of novel strategies such as real-time search MS3
overcomes some of the previous limitations in TMT-based quantitation. The known plasma
biomarkers in ALS from discovery proteomics approaches are summarized in Table 2.

3.4. Cerebrospinal Fluid (CSF) Proteomic Biomarker Identification

CSF analysis is widely used in biomarker studies of neurodegenerative disease, since
CSF is believed to reflect brain processes within the blood–brain barrier. Important con-
siderations in CSF proteomics include the proper collection and storage of samples to
minimize blood contamination and maximize protein stability [79]. In CSF, as with plasma,
depletion [80], immuno-enrichment, and fractionation have been applied in several studies
to acquire deep CSF profiles in ALS.

Using these approaches, differentially expressed proteins in CSF from ALS patients
have been identified as potential biomarkers (Table 2). Using isobaric tags for relative
quantitation, nine proteins were upregulated in CSF in C9orf72 variant-associated ALS
compared to controls. These include chitinase-3-like protein 2 (CHI3L2), alpha-crystallin
B chain (CRYAB), profilin-1 (PFN1), transferrin receptor protein 1 (TFRC), triggering
receptor expressed on myeloid cells 2 (TREM2), thioredoxin domain-containing protein
17 (TXNDC17), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), CHIT1, and
NEFM [60]. Here, isobaric tags were used for the relative quantitation of differentially
expressed proteins and eight candidate proteins were validated using a targeted proteomics
approach for absolute levels. Multiplexing can be used to assess large study samples,
but requires a good study design to bridge the different TMT batches. Following up
the discovery proteomics with validation in an independent cohort can confidently and
effectively identify biomarkers. Other studies have also demonstrated the upregulation of
chitotriosidase, chitinase-3 like protein 1, chitotriosidase-3 like protein 2, chitotriosidase-1
(CHIT1), alpha-1-antichymotrypsin, and amyloid beta A4 protein [56,59,81] in ALS. In
these studies, a label-free strategy was applied for the discovery of biomarkers, and a
small number of candidates were validated in a separate cohort using targeted proteomics
or ELISA. Label-free quantitation allows post-translational modifications to be preserved
and is a great method to overcome study design biases that may occur in TMT-based
workflows. Validating proteins observed in discovery proteomics using a targeted or
orthogonal approach provides greater confidence in the identified biomarkers.

3.5. Exosomes Proteomics in Biomarker Identification

Exosomes are extracellular vesicles released from various types of cells, including
CNS cells, and are enriched in a variety of bioactive molecules such as RNAs, proteins, and
lipids [82]. Exosomes carrying cell-type-specific molecules reach the periphery by crossing
the blood–brain barrier (BBB), making them ideal for biomarker studies [82]. Measuring
biomarkers in neuron-derived exosomes in plasma could serve to monitor neuronal health
and neuroinflammation [83,84]. Indeed, profiling CSF exosomes from sporadic ALS patients
identified three downregulated proteins and eleven upregulated proteins [61]. A label-
free proteomics study in CSF exosomes demonstrated the upregulation of ubiquitin-like
modifying-activating protein 1 (UBA1) in C9orf72-ALS patients [61]. Exosomes have been
studied in neuroinflammation and disease progression biomarkers using proteomics in ALS.
Here, a label-free strategy was applied for differential proteomic analysis. This strategy
has the advantage of greater sensitivity in small samples, such as exosomes, and can
preserve modifications seen in proteins. Here, only relative quantitation with proteomics
was applied. If these results were validated in an independent cohort using a targeted or
orthogonal approach, greater confidence in the markers could be established.



Int. J. Mol. Sci. 2022, 23, 9299 10 of 21

4. Proteomics for Biomarker Discovery in PD
4.1. Differential Expression of Proteins from Post-Mortem Human Tissue as Biomarkers in PD

Several studies investigated differentially expressed proteins that change post-mortem
tissue with PD. In a proteomic study profiling the post-mortem substantia nigra of PD
patients, pathway analysis found alterations in proteins associated with mitochondrial
dysfunction, oxidative stress, or cytoskeleton impairment [85]. Here, the samples were
analyzed using isobaric tags and some markers were validated by immunohistochemistry
and Western blot. To gain depth, offline isoelectric focusing was used. While it is great
that the markers were validated using an orthogonal method, all the quantitation was
carried out using relative quantitative approaches. The implementation of an absolute
quantitation method might be helpful to gain accuracy in the quantified biomarkers. In
another proteomic study used to identify pathways that contribute to Lewy body (protein
inclusions containing aggregated proteins) pathology, pathways such as Arp2/3, synaptic
function, and hydrogen peroxide metabolism were found to be directly correlated with
Lewy body pathology, while poly(A) RNA binding protein pathways such as TDP43 and
FUS were inversely correlated with Lewy body pathology. In a comparison of Lewy body
pathology with and without neuronal loss, it was found that CD59 was upregulated and
RGS6 and GANAB were downregulated [86] (Table 3). Here, label-free quantitation was
performed to assess pathways that contribute to Lewy body pathology. Further, pathways
were identified using the quantitative proteomics results and rigorous statistics to define
pathways and proteins associated with Lewy body pathology.

Table 3. Proteomic studies in PD focused on biomarker discovery.

Disease Marker Quantitation Tissue Summary Reference

Tissue-based proteomic markers in PD

PD

Mitochondrial
dysfunction, oxidative

stress, cytoskeleton
impairment-related

proteins

TMT Substantia nigra
Significant changes in expression

levels of 204 nigral proteins in human
PD samples

[85]

PD RGS6 LFQ
Substantia nigra

(Lewy body
pathology)

Changes in proteins related to
(1) Arp2/3 complex-mediated actin

nucleation; (2) synaptic function;
(3) poly(A) RNA binding; (4) basement

membrane and endothelium; and
(5) hydrogen peroxide metabolic processes

[86]

PD GANAB LFQ
Substantia nigra

(Lewy body
pathology)

Changes in proteins related to
(1) Arp2/3 complex-mediated actin

nucleation; (2) synaptic function;
(3) poly(A) RNA binding; (4) basement

membrane and endothelium; and
(5) hydrogen peroxide metabolic processes

[86]

PD CD59 LFQ
Substantia nigra

(Lewy body
pathology)

Changes in proteins related to
(1) Arp2/3 complex-mediated actin

nucleation; (2) synaptic function;
(3) poly(A) RNA binding; (4) basement

membrane and endothelium; and
(5) hydrogen peroxide metabolic processes

[86]

Plasma/serum proteomic biomarkers in PD

PD Apolipoprotein A1 iTRAQ Plasma/serum Downregulated in PD [87,88]

PD Apolipoprotein A-IV LFQ Plasma/serum Downregulated in PD [87,88]

PD Apolipoprotein B LFQ Plasma Downregulated in PD [89]



Int. J. Mol. Sci. 2022, 23, 9299 11 of 21

Table 3. Cont.

Disease Marker Quantitation Tissue Summary Reference

Plasma/serum proteomic biomarkers in PD

PD Apolipoprotein CI LFQ Plasma Downregulated in PD [89]

PD Apolipoprotein CIII LFQ Plasma Downregulated in PD [89]

PD Apolipoprotein C4 LFQ Plasma Downregulated in PD [89]

PD Apolipoprotein C4 LFQ Plasma Downregulated in PD [89]

PD Apolipoprotein M LFQ Plasma Downregulated in PD [89]

PD Inter-alpha-trypsin
inhibitor heavy LFQ Plasma/serum Downregulated in PD [87]

PD Complement C4A LFQ Plasma/serum Downregulated in PD [87]

PD Complement C4B iTRAQ Plasma/serum Downregulated in PD [87,88]

PD Complement C3 LFQ Plasma/serum Downregulated in PD [87]

PD Haptoglobin LFQ Plasma Downregulated in PD [89]

PD Clusterin LFQ Plasma/serum Upregulated in PD [87]

PD Transthyretin LFQ Plasma/serum Upregulated in PD [87]

PD Zinc α-2 glycoprotein LFQ Plasma/serum Upregulated in PD [87]

PD Vitamin D binding
protein LFQ Plasma/serum Upregulated in PD [87]

PD Afamin LFQ Plasma/serum Upregulated in PD [87]

CSF proteomic biomarkers in PD

PD α-synuclein peptide
(81–96) MRM CSF α-Synuclein peptide altered in PD [90]

PD α-synuclein pS129 MRM CSF α-Synuclein pS129 correlates with
disease severity [91]

PD Granins DIA CSF Granins are downregulated in PD [92]

Exosomal biomarkers in PD

PD α-synuclein LFQ
Serum neu-

ronal(L1CAM+)
exosomes

Upregulated in prodromal and clinical
PD compared to controls and other

neurodegenerative diseases
[93]

PD Clusterin LFQ

Serum neuronal
(L1CAM+)

exosomes, plasma
exosomes

Upregulated in FTD but not PD, served
as a combined marker with α-synuclein

and is downregulated in PD in
plasma exosomes

[93,94]

PD α-synuclein SRM
Plasma neuronal

(L1CAM+)
exosomes

α-synuclein is upregulated in PD [95,96]

PD Complement C1r LFQ Plasma exosomes Downregulated in PD [94]

PD Apolipoprotein A1 LFQ Plasma exosomes Downregulated in PD [94]

4.2. Post-Translational Modifications in Key Proteins from Tissue Proteomics Studies in PD

Aggregated forms of α-synuclein found in Lewy bodies are a primary hallmark of PD.
α-Synuclein has been associated with many PTMs, including acetylation, phosphorylation,
nitration, O-GlcNAcylation, SUMOylation, and truncations. These modifications are linked
to the aggregation and toxicity of α-synuclein [97] (Figure 3).
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Mass-spectrometry-based proteomic studies in human brains with synucleopathies
reveal that the phosphorylation of α-synuclein at Serine 129 (Ser129-p) is the predominant
modification method of α-synuclein in Lewy bodies, followed by ubiquitination and
truncations at the C-terminus [98,101,110]. Here, by using a combination of detergents to
extract the insoluble aggregates, Ser129-p was identified with MALDI. MALDI undergoes
a relatively gentle ionization method, enabling the preservation of the phopho-group,
and is more robust to the presence of detergents in the samples. The disadvantage of
MALDI is that it can only identify few of the most abundant peptides or proteins. A
study characterizing the interplay between tyrosine phosphorylation and nitration in the
C-terminus found that phosphorylation at the proximal tyrosine 125 (pY125) altered metal
binding and induced pathogenic aggregation [107]. Protein tyrosine nitration (PTN) at Y39
is also believed to be critical in oligomer formation [98–110].

PD, the process by which oligomeric proteins are seeded and spread, involves intricate
interactions with the cell membrane and extra-cellular matrix (ECM), and these processes
can be characterized in tissue proteomic studies. Glycosylation is the predominant post-
translational modification in matrisome molecules (proteins constituting the cell membrane
and ECM). Proteomics methods to study the glycosylation of matrisome molecules have
been summarized by Raghunathan et al. [111]. A study in human prefrontal cortex identi-
fied that ECM molecules exhibit the highest degree of upregulation in PD. These molecules
include proteoglycans associated with perineuronal nets and various collagen types [112].
They contribute to the blood–brain barrier and have important neuronal signaling implica-
tions. In addition, collagen type I has a differential hydroxyl proline state in PD compared
to controls [113].

4.3. Plasma and Serum as Sources for Proteomic Biomarkers in PD

In PD, plasma levels of α-synuclein pS129 in α-synuclein are associated with motor
symptom severity and disease progression [90,91]. Here, targeted proteomics is used to
gain the absolute quantitation of pS129 in α-synuclein in plasma. One advantage is that
it selectively monitors target peptides, overcoming other dynamic range challenges and
providing absolute quantitation. However, it can be used on a limited number of targets.

A metabolomic and proteomic study in plasma using mass spectrometry revealed that
all apolipoprotein isoforms were downregulated in PD [89]. Assessing both metabolomic
and proteomic analysis in plasma provides valuable information about the disease. Label-
free proteomics analysis was used, and all quantitation was carried out with relative abun-
dance. The validation of these markers in an independent cohort could strengthen these
findings. In a systematic blood-based biomarker review in PD, seven proteins (apolipopro-
tein A1, apolipoprotein-A IV, inter-alpha-trypsin inhibitor heavy, complement C4A, com-
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plement C4B, complement C3, and haptoglobulin) were consistently downregulated in PD
compared to the control [87]. Five proteins (clusterin, transthyretin, zinc α-2-glycoprotein,
vitamin D binding protein, and afamin) were consistently upregulated in plasma and serum
in PD compared to controls [87].

Aptamer-based approaches can overcome the dynamic range challenge associated
with protein measurements in plasma by specifically enriching proteins that bind aptamers.
Using aptamer technology, a multicohort study of plasma blood-based biomarkers was
analyzed in 96 PD patients and 45 neurological controls. Four proteins (bone sialopro-
tein, osteomodulin, aminoacylase-1, and growth hormone receptor) were differentially
expressed in ALS [114]. Aptamer-based technology overcomes the dynamic range chal-
lenge associated with plasma proteomics. Yet, it is limited by the panel of observable
proteins that are predetermined, as well as by the specificity of the aptamers. The use of
well-characterized reagents is necessary to rule out false positives with the aptamers.

4.4. Cerebrospinal Fluid (CSF) as a Source for Proteomic Biomarkers in PD

Targeted proteomic identification and quantification in CSF was used as a diagnostic
marker and marker of disease progression [90]. Using a targeted proteomics approach to
monitor α-synuclein peptide (81–96) revealed that monitoring this peptide level in CSF
can act as both a diagnostic marker and a marker of disease progression [90]. In a separate
study, it was found that the level of pS129 in α-synuclein correlated with disease severity
in PD [91]. Using a targeted proteomics approach enables absolute quantitation, and thus
longitudinal comparisons in different cohorts. A global proteomics study using label-free
quantitation in CSF identified multiple proteins downregulated in PD, including seven of
eight members of the granulin family [92] (Table 3).

4.5. Exosomes Proteomics in Biomarker Identification

In PD, exosomes have been investigated as a source of biomarkers (Table 2). Neuronal
exosomes isolated from serum were investigated for signatures in clinical PD, finding that
α-synuclein and clusterin levels together can serve as a marker for the differential diagnosis
of PD [93]. While total plasma levels of α-synuclein show no change, neuronal exosomal
α-synuclein correlate with disease progression in PD, indicating that an assessment of
neuronal exosomes from plasma may be a superior strategy for biomarker discovery in
other neurodegenerative diseases [115]. In addition, oligomeric α-synuclein resistant to
proteinase K and pSer129 in α-synuclein was identified in plasma exosomes from PD
patients by proteomics. The ratio of α-synuclein oligomer–total α-synuclein and the ratio
of p-α-synuclein oligomer–total p-α-synuclein in plasma exosomes served as a diagnostic
biomarker in PD compared to controls in a proteomic study [116]. In a PD study, α-
synuclein levels were identified in L1CAM+ exosomes and correlated with GCase activity
in PBMC [96]. Here, L1CAM+ exosomes were used as a marker of neuronal exosomes.
There is still uncertainty around the specificity of L1CAM as a marker of neuronal origin.
The measurement of oligomeric α-synuclein in plasma exosomes is novel and can be
insightful if validated as a biomarker. Total plasma exosomes from PD patients in stage II
and III were profiled by proteomics, and three proteins (clusterin, complement C1r, and
apolipoprotein A1) were found to be downregulated in PD compared to control [94]. Here,
by using a combination of 2D gel electrophoresis and MALDI-TOF, the relative quantitation
of proteins was analyzed. MALDI provides few identified proteins and a greater depth,
but lower throughput could be achieved using LC-MS/MS. Further, these biomarkers only
have relative quantitation. A follow-up study with targeted proteomic analysis for the
absolute quantitation of the three proteins can provide greater confidence in the biomarkers.
Exosomes have been studied in diagnosis and disease progression using proteomics in PD.
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5. Clinical Trials Using Proteomics for Biomarker Discovery in ALS and PD

The application of proteomics to patient stratification, biomarker measurements for
clinical end points, and integration with genomics for the identification of novel drug
targets has immense potential to advance precision medicine. Proteomic biomarkers have
been implemented as a noninvasive diagnostic tool in many studies [117] and used patient
stratification [117].

Developing a validated proteomic assay is critical prior to its utilization for decision
making in the clinic. Discovery proteomics can identify thousands of proteins. However,
to be able to validate these identified analytes, a small number is chosen, and a targeted
proteomics strategy by MRM is often applied for absolute quantitation. Sometimes, protein
signature classifiers identify groups of proteins, which can be used as biomarkers for patient
stratification [118]. The Clinical Proteomics Tumor Analysis Consortium (CPTAC) has
developed a fit-for-purpose best-practices guideline in targeted proteomic analysis for the
validation of proteomic clinical assays [119]. These guidelines can be used to standardize
targeted measurements for clinical use across diseases. The authors identified three tiers
of analysis and described the validation steps for each tier with respect to the analytical
goal of the assay. In Tier 1, the goal of the assay is to provide decision-making information
in drug development or for medical practitioners on a small number of analytes. Since
the intent is to use the assay for clinical purposes, a high degree of analytical validation
is warranted, including measurements of assay precision, accuracy, specificity, analytical
sensitivity (including limit of detection (LOD), limit of the blank (LOB), and lower limit
of quantification (LLOQ)), linearity, and parallelism. The use of stable isotope internal
standards for each analyte and/or protein heavy-labeled standards is recommended to
achieve accurate quantitation. The other two tiers are for non-clinical purposes. Tier 2 uses
stable isotopes to validate hundreds of analytes for research purposes. Tier 3, which is
semi-quantitative, is used for exploratory studies [119]. Some examples of clinical studies
that have used proteomics in ALS and PD are shown in Table 4.

Table 4. Examples of clinical trials using proteomics in ALS and PD.

Disease Clinical Trial Summary Reference

ALS NCT01948102

An observational study for the identification of prognostic and
diagnostic markers in skin and adipose samples using proteomics to
measure changes in abundance and/or post-translational
modifications of proteins in the trial

[6]

PD NCT00315250

An interventional study with the aim of developing imaging, clinical,
and biochemical biomarkers for PD uses proteomics in combination
with metabolomics and gene expression to categorize Parkinson’s
syndrome vs. non-Parkinson’s syndrome

[7]

PD NCT02263235

A study in Alzheimer’s, PD, and other neurological disorders without
cognitive decline uses targeted quantitative proteomics by MRM in
CSF, blood, urine, and saliva for diagnostic purposes after
administering stable isotope-labelled leucine for the diagnosis of
neurological disorders

[4]

PD NCT02524405

An investigational study in Alzheimer’s and PD (called the brain–eye
amyloid memory study (BEAM)), MRI, and amyloid PET were used for
primary and secondary outcomes, genetic analysis for ApoE4 status,
and proteomics and lipidomics analyses

[2]

PD NCT02387281

An observational study in PD studying freezing of gait (FOG)
proteomics on CSF is used in combination with analysis of
catecholamines along with MRI and other cognitive tests to assess
types of FOG and if there is a connection with cognitive differences and
gait patterns presented in PD

[3]
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6. Discussion

In ALS and PD, molecular biomarkers for diagnosis and prognosis are limited, and
many of the available ones seem to be useful for advanced stages of the diseases, when
therapeutic intervention is likely no longer effective. Both diseases have a critical need for
biomarkers, and proteomics may be able to address this need.

Current technological advancements in proteomics have made biomarker discovery
for ALS and PD more efficient. Short gradients with novel LC systems [120] provide
accurate and rapid quantitation without a loss of identifications with the new RTS-MS3
quantitation [121] or BoxCar DIA [31] to gain depth, range, and completeness, while
addressing some of the dynamic range challenges in biofluids makes mass spectrometry a
powerful and indispensable tool in biomarker discovery.

Mass spectrometry has advantages over immunoassays and aptamers because of its
unbiased nature and non-reliance on antibody/aptamer specificity. This is particularly
helpful in PTM analysis, in the identification of novel biomarkers, and in cases with point
mutations or proteins, for which antibodies/aptamers are not available. In ALS, several
PTMs have been defined in TDP43. These include hyperphosphorylation, polyubiquiti-
nation, and C-terminal truncations which are believed to play a role in aggregation and
disease pathology [70]. In PD, α-synuclein is one of the best-studied proteins with several
PTMs, including phosphorylation, nitration, ubiquitination, O-GlcNAcylation, and N- and
C-terminal truncations. The use of mass shifts to characterize these PTMs and quantify
their levels with mass spectrometry allows multiple PTMs to be analyzed in parallel in
an unbiased manner without the need to synthesize and characterize antibodies/reagents.
The characterization of disease-specific modifications in tissue and biofluids may serve as
diagnostic markers or novel drug targets.

After comparing proteomic biomarker studies in tissue, biofluids, and exosomes in
ALS, it was observed that proteins belonging to transcriptional pathways were altered
in both spinal cord tissue and the CSF proteome. UCHL1, MAP2, and GPNMB were
upregulated in spinal cord tissue and CSF in ALS [52]. Gelsolin was altered in ALS in
plasma, and CSF was upregulated in CSF exosomes in patients with C9orf72 mutations.
Clusterin was upregulated in CSF exosomes similar to CSF biofluids [56,61]. TDP43
modifications have been observed in human prefrontal, motor cortex brain tissue, and
spinal cord, as well as in plasma-derived exosomes [51,55,63]. In PD, the presence of
pS129 in α-synuclein is associated with the oligomeric form in brain tissues and has been
observed in plasma, CSF and serum-derived neuronal exosomes (L1CAM+) in independent
studies [90,101,103,116]. The total α-synuclein levels were upregulated in tissue and plasma-
derived neuronal exosomes, but were unchanged in plasma measurements. The enrichment
of exosomes helps to alleviate the dynamic range issue in proteomics of plasma/serum and
could explain some findings where total α-synuclein levels in plasma were not significantly
altered in PD, while neuronal-derived exosomes in plasma show upregulation in PD. Some
studies comparing CSF and plasma in ALS demonstrated that gelsolin increased in both
CSF and plasma. In PD, total and pS129 α-synuclein levels were measured in plasma and
CSF [91]. An alternative is to use neuronal-derived exosomes from plasma for biomarker
discovery. Further exploration and validation of neuronal specific markers in exosomes
is warranted.

While several of these biomarkers have been identified in certain patient populations
such as ALS with C9orf72 mutations, the specificity of these biomarkers needs to be investi-
gated to see if these markers will be useful in sporadic ALS or ALS with other mutations.
To assess if C9orf72 biomarkers will be useful in a larger population, biomarker discovery
and validation will need to be performed on non-C9orf72 patients. In a similar vein, the
use of matched samples from siblings with mutations who do not exhibit symptoms can
provide insight into prognostic markers.

When evaluating the value of biomarkers studies, animal models that are assessed
longitudinally as a measure of disease progression might be useful. Similarly, identifying
markers in patient cohorts could be validated in animal models or reprogrammed iPSC
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cells followed longitudinally. However, the caveat with using animal models particularly
in neurodegenerative diseases is the low translatability. Several models do not accurately
represent the disease pathology and systemic effects observed in patients.

The other approach used to identify biomarkers that predict the onset of neurodegen-
erative diseases in the pre-symptomatic phase involves profiling healthy samples from
people at risk of neurodegenerative diseases using mass spectrometry and by comparing
signatures that change with the onset of symptoms and if these markers correlate with
disease progression. The challenge lies in validating these early-onset biomarkers. Corre-
lating molecular signatures to imaging markers is another avenue to identify early-onset
markers. With growing technology and machine learning, biomarker signatures in the
pre-symptomatic phase could potentially predict disease onset in the future. Efforts in the
identification and validation of these markers in disease models with high translatability,
as well as the assessment of early-onset samples, will remain a challenge in biomarker
discovery for neurodegenerative diseases.

Proteomics has immense clinical potential for biomarker discovery, but there is only a
limited number of validated proteomic biomarkers. This is due to the complexity and lack
of standardized validation protocols for assays. In the cancer field, the use of validated
targeted proteomic assays has been described by the CPTAC consortium. Applying these
guidelines to biomarker validation in neurodegenerative diseases may be helpful in bridg-
ing the gap between discovery proteomics and the translation of biomarkers to the clinic.
There are a few clinical trials that incorporate proteomics in their outcome measures in
ALS and PD. Multi-omics studies integrating genomics, proteomics, transcriptomics, and
metabolomics to identify markers for patient stratification may be able to address current
challenges with biomarkers in diseases such as ALS and PD.

Author Contributions: R.R. conceptualized the study. R.R., K.T. and L.C.W. wrote the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank David Litwack and Benjamin Shykind for their valuable
feedback on the manuscript.

Conflicts of Interest: All authors are employees of Prevail Therapeutics, a wholly owned subsidiary
of Eli Lilly and Company.

References
1. Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol. 2016, 138, 225–238.

[CrossRef]
2. Edgar, S.; Ellis, M.; Abdul-Aziz, N.A.; Goh, K.J.; Shahrizaila, N.; Kennerson, M.L.; Ahmad-Annuar, A. Mutation analysis of SOD1,

C9orf72, TARDBP and FUS genes in ethnically-diverse Malaysian patients with amyotrophic lateral sclerosis (ALS). Neurobiol.
Aging 2021, 108, 200–206. [CrossRef]

3. Smith, B.N.; Newhouse, S.; Shatunov, A.; Vance, C.; Topp, S.; Johnson, L.; Miller, J.; Lee, Y.; Troakes, C.; Scott, K.M.; et al. The
C9ORF72 expansion mutation is a common cause of ALS+/-FTD in Europe and has a single founder. Eur. J. Hum. Genet. 2013,
21, 102–108. [CrossRef]

4. Andersen, P.M. Mutation in C9orf72 changes the boundaries of ALS and FTD. Lancet Neurol. 2012, 11, 205–207. [CrossRef]
5. Yao, L.; He, X.; Cui, B.; Zhao, F.; Zhou, C. NEK1 mutations and the risk of amyotrophic lateral sclerosis (ALS): A meta-analysis.

Neurol. Sci. 2021, 42, 1277–1285. [CrossRef]
6. Naruse, H.; Ishiura, H.; Mitsui, J.; Takahashi, Y.; Matsukawa, T.; Yoshimura, J.; Doi, K.; Morishita, S.; Goto, J.; Toda, T.; et al.

Loss-of-function variants in NEK1 are associated with an increased risk of sporadic ALS in the Japanese population. J. Hum.
Genet. 2021, 66, 237–241. [CrossRef]

7. Riley, J.F.; Fioramonti, P.J.; Rusnock, A.K.; Hehnly, H.; Castaneda, C.A. ALS-linked mutations impair UBQLN2 stress-induced
biomolecular condensate assembly in cells. J. Neurochem. 2021, 159, 145–155. [CrossRef]

8. Lin, B.C.; Phung, T.H.; Higgins, N.R.; Greenslade, J.E.; Prado, M.A.; Finley, D.; Karbowski, M.; Polster, B.M.; Monteiro, M.J.
ALS/FTD mutations in UBQLN2 are linked to mitochondrial dysfunction through loss-of-function in mitochondrial protein
import. Hum. Mol. Genet. 2021, 30, 1230–1246. [CrossRef]

http://doi.org/10.1016/B978-0-12-802973-2.00013-6
http://doi.org/10.1016/j.neurobiolaging.2021.07.008
http://doi.org/10.1038/ejhg.2012.98
http://doi.org/10.1016/S1474-4422(12)70020-0
http://doi.org/10.1007/s10072-020-05037-6
http://doi.org/10.1038/s10038-020-00830-9
http://doi.org/10.1111/jnc.15453
http://doi.org/10.1093/hmg/ddab116


Int. J. Mol. Sci. 2022, 23, 9299 17 of 21

9. Baron, D.M.; Fenton, A.R.; Saez-Atienzar, S.; Giampetruzzi, A.; Sreeram, A.; Shankaracharya; Keagle, P.J.; Doocy, V.R.; Smith, N.J.;
Danielson, E.W.; et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 2022,
39, 110598. [CrossRef]

10. Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; et al.
Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 2018, 97, 1268–1283.e6. [CrossRef]

11. Basu, S.; Rajendra, K.C.; Alagar, S.; Bahadur, R.P. Impaired nuclear transport induced by juvenile ALS causing P525L mutation in
NLS domain of FUS: A molecular mechanistic study. Biochim. Biophys. Acta Proteins Proteom. 2022, 1870, 140766. [CrossRef]

12. Robertson, J.; Bilbao, J.; Zinman, L.; Hazrati, L.N.; Tokuhiro, S.; Sato, C.; Moreno, D.; Strome, R.; Mackenzie, I.R.; Rogaeva, E. A
novel double mutation in FUS gene causing sporadic ALS. Neurobiol. Aging 2011, 32, 553.e27–553.e30. [CrossRef]

13. Chio, A.; Mazzini, L.; D’Alfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; et al.
The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology 2018, 91, e635–e642. [CrossRef]

14. Kim, G.; Gautier, O.; Tassoni-Tsuchida, E.; Ma, X.R.; Gitler, A.D. ALS Genetics: Gains, Losses, and Implications for Future
Therapies. Neuron 2020, 108, 822–842. [CrossRef]

15. Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016,
15, 1257–1272. [CrossRef]

16. Li, W.; Fu, Y.; Halliday, G.M.; Sue, C.M. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic
Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9, 612476. [CrossRef]

17. Zhou, Y.; Luo, X.; Li, F.; Tian, X.; Zhu, L.; Yang, Y.; Ren, Y.; Pang, H. Association of Parkinson’s disease with six single nucleotide
polymorphisms located in four PARK genes in the northern Han Chinese population. J. Clin. Neurosci. 2012, 19, 1011–1015.
[CrossRef]

18. Chung, S.J.; Armasu, S.M.; Biernacka, J.M.; Lesnick, T.G.; Rider, D.N.; Lincoln, S.J.; Ortolaza, A.I.; Farrer, M.J.; Cunningham, J.M.;
Rocca, W.A.; et al. Common variants in PARK loci and related genes and Parkinson’s disease. Mov. Disord. 2011, 26, 280–288.
[CrossRef]

19. Klein, C.; Schneider, S.A.; Lang, A.E. Hereditary parkinsonism: Parkinson disease look-alikes—An algorithm for clinicians to
“PARK” genes and beyond. Mov. Disord. 2009, 24, 2042–2058. [CrossRef]

20. Domingo, A.; Klein, C. Genetics of Parkinson disease. Handb. Clin. Neurol. 2018, 147, 211–227. [CrossRef]
21. Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017,

13, 942. [CrossRef]
22. Brzhozovskiy, A.; Kononikhin, A.; Bugrova, A.E.; Kovalev, G.I.; Schmit, P.O.; Kruppa, G.; Nikolaev, E.N.; Borchers, C.H. The

Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute
Quantitation of Proteins in Human Plasma. Anal. Chem. 2022, 94, 2016–2022. [CrossRef]

23. Lesur, A.; Dittmar, G. The clinical potential of prm-PASEF mass spectrometry. Expert Rev. Proteom. 2021, 18, 75–82. [CrossRef]
24. Meier, F.; Beck, S.; Grassl, N.; Lubeck, M.; Park, M.A.; Raether, O.; Mann, M. Parallel Accumulation-Serial Fragmentation (PASEF):

Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J. Proteome Res. 2015,
14, 5378–5387. [CrossRef]

25. Garabedian, A.; Benigni, P.; Ramirez, C.E.; Baker, E.S.; Liu, T.; Smith, R.D.; Fernandez-Lima, F. Towards Discovery and Targeted
Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS. J. Am. Soc. Mass Spectrom. 2018, 29, 817–826. [CrossRef]

26. Tsou, C.C.; Avtonomov, D.; Larsen, B.; Tucholska, M.; Choi, H.; Gingras, A.C.; Nesvizhskii, A.I. DIA-Umpire: Comprehensive
computational framework for data-independent acquisition proteomics. Nat. Methods 2015, 12, 258–264. [CrossRef]

27. Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable
deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [CrossRef]

28. Sinitcyn, P.; Hamzeiy, H.; Salinas Soto, F.; Itzhak, D.; McCarthy, F.; Wichmann, C.; Steger, M.; Ohmayer, U.; Distler, U.; Kaspar-
Schoenefeld, S.; et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol.
2021, 39, 1563–1573. [CrossRef]

29. Muntel, J.; Gandhi, T.; Verbeke, L.; Bernhardt, O.M.; Treiber, T.; Bruderer, R.; Reiter, L. Surpassing 10000 identified and quantified
proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol. Omics 2019, 15, 348–360.
[CrossRef]

30. Zhou, Y.; Tan, Z.; Xue, P.; Wang, Y.; Li, X.; Guan, F. High-throughput, in-depth and estimated absolute quantification of plasma
proteome using data-independent acquisition/mass spectrometry (“HIAP-DIA”). Proteomics 2021, 21, e2000264. [CrossRef]

31. Mehta, D.; Scandola, S.; Uhrig, R.G. BoxCar and Library-Free Data-Independent Acquisition Substantially Improve the Depth,
Range, and Completeness of Label-Free Quantitative Proteomics. Anal. Chem. 2022, 94, 793–802. [CrossRef]

32. Meier, F.; Geyer, P.E.; Virreira Winter, S.; Cox, J.; Mann, M. BoxCar acquisition method enables single-shot proteomics at a depth
of 10,000 proteins in 100 minutes. Nat. Methods 2018, 15, 440–448. [CrossRef]

33. Salovska, B.; Li, W.; Di, Y.; Liu, Y. BoxCarmax: A High-Selectivity Data-Independent Acquisition Mass Spectrometry Method for
the Analysis of Protein Turnover and Complex Samples. Anal. Chem. 2021, 93, 3103–3111. [CrossRef]

34. Gaun, A.; Lewis Hardell, K.N.; Olsson, N.; O’Brien, J.J.; Gollapudi, S.; Smith, M.; McAlister, G.; Huguet, R.; Keyser, R.;
Buffenstein, R.; et al. Automated 16-Plex Plasma Proteomics with Real-Time Search and Ion Mobility Mass Spectrometry Enables
Large-Scale Profiling in Naked Mole-Rats and Mice. J. Proteome Res. 2021, 20, 1280–1295. [CrossRef]

http://doi.org/10.1016/j.celrep.2022.110598
http://doi.org/10.1016/j.neuron.2018.02.027
http://doi.org/10.1016/j.bbapap.2022.140766
http://doi.org/10.1016/j.neurobiolaging.2010.05.015
http://doi.org/10.1212/WNL.0000000000005996
http://doi.org/10.1016/j.neuron.2020.08.022
http://doi.org/10.1016/S1474-4422(16)30230-7
http://doi.org/10.3389/fcell.2021.612476
http://doi.org/10.1016/j.jocn.2011.09.028
http://doi.org/10.1002/mds.23376
http://doi.org/10.1002/mds.22675
http://doi.org/10.1016/B978-0-444-63233-3.00014-2
http://doi.org/10.15252/msb.20156297
http://doi.org/10.1021/acs.analchem.1c03782
http://doi.org/10.1080/14789450.2021.1908895
http://doi.org/10.1021/acs.jproteome.5b00932
http://doi.org/10.1007/s13361-017-1787-8
http://doi.org/10.1038/nmeth.3255
http://doi.org/10.1038/s41592-019-0638-x
http://doi.org/10.1038/s41587-021-00968-7
http://doi.org/10.1039/c9mo00082h
http://doi.org/10.1002/pmic.202000264
http://doi.org/10.1021/acs.analchem.1c03338
http://doi.org/10.1038/s41592-018-0003-5
http://doi.org/10.1021/acs.analchem.0c04293
http://doi.org/10.1021/acs.jproteome.0c00681


Int. J. Mol. Sci. 2022, 23, 9299 18 of 21

35. Hebert, A.S.; Prasad, S.; Belford, M.W.; Bailey, D.J.; McAlister, G.C.; Abbatiello, S.E.; Huguet, R.; Wouters, E.R.; Dunyach, J.J.;
Brademan, D.R.; et al. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal. Chem.
2018, 90, 9529–9537. [CrossRef]

36. He, B.; Huang, Z.; Huang, C.; Nice, E.C. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine.
Proteom. Clin. Appl. 2022, e2100097. [CrossRef]

37. Bache, N.; Geyer, P.E.; Bekker-Jensen, D.B.; Hoerning, O.; Falkenby, L.; Treit, P.V.; Doll, S.; Paron, I.; Muller, J.B.; Meier, F.; et al.
A Novel LC System Embeds Analytes in Pre-formed Gradients for Rapid, Ultra-robust Proteomics. Mol. Cell Proteom. 2018,
17, 2284–2296. [CrossRef]

38. Kumar, D.; Hassan, M.I. Ultra-sensitive techniques for detecting neurological biomarkers: Prospects for early diagnosis. Biochem
Biophys. Res. Commun. 2021, 584, 15–18. [CrossRef]

39. Cole, K.H.; Luptak, A. High-throughput methods in aptamer discovery and analysis. Methods Enzymol. 2019, 621, 329–346.
[CrossRef]

40. Chen, L.C.; Tzeng, S.C.; Peck, K. Aptamer microarray as a novel bioassay for protein-protein interaction discovery and analysis.
Biosens. Bioelectron. 2013, 42, 248–255. [CrossRef]

41. Huang, J.; Chen, X.; Fu, X.; Li, Z.; Huang, Y.; Liang, C. Advances in Aptamer-Based Biomarker Discovery. Front. Cell Dev. Biol.
2021, 9, 659760. [CrossRef]

42. Sielaff, M.; Kuharev, J.; Bohn, T.; Hahlbrock, J.; Bopp, T.; Tenzer, S.; Distler, U. Evaluation of FASP, SP3, and iST Protocols for
Proteomic Sample Preparation in the Low Microgram Range. J. Proteome Res. 2017, 16, 4060–4072. [CrossRef]

43. Raghunathan, R.; Sethi, M.K.; Zaia, J. On-slide tissue digestion for mass spectrometry based glycomic and proteomic profiling.
MethodsX 2019, 6, 2329–2347. [CrossRef]

44. Scicchitano, M.S.; Dalmas, D.A.; Boyce, R.W.; Thomas, H.C.; Frazier, K.S. Protein extraction of formalin-fixed, paraffin-embedded
tissue enables robust proteomic profiles by mass spectrometry. J. Histochem. Cytochem. 2009, 57, 849–860. [CrossRef]

45. Mitsa, G.; Guo, Q.; Goncalves, C.; Preston, S.E.J.; Lacasse, V.; Aguilar-Mahecha, A.; Benlimame, N.; Basik, M.; Spatz, A.;
Batist, G.; et al. A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized
Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int. J. Mol. Sci. 2022, 23, 4443. [CrossRef]

46. Reimel, B.A.; Pan, S.; May, D.H.; Shaffer, S.A.; Goodlett, D.R.; McIntosh, M.W.; Yerian, L.M.; Bronner, M.P.; Chen, R.; Brentnall, T.A.
Proteomics on Fixed Tissue Specimens-A Review. Curr. Proteom. 2009, 6, 63–69. [CrossRef]

47. Lundberg, E.; Borner, G.H.H. Spatial proteomics: A powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 2019,
20, 285–302. [CrossRef]

48. Mao, Y.; Wang, X.; Huang, P.; Tian, R. Spatial proteomics for understanding the tissue microenvironment. Analyst 2021,
146, 3777–3798. [CrossRef]

49. Shin, J.J.H.; Crook, O.M.; Borgeaud, A.C.; Cattin-Ortola, J.; Peak-Chew, S.Y.; Breckels, L.M.; Gillingham, A.K.; Chadwick, J.;
Lilley, K.S.; Munro, S. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat. Commun.
2020, 11, 5987. [CrossRef]

50. Navarro-Romero, A.; Montpeyo, M.; Martinez-Vicente, M. The Emerging Role of the Lysosome in Parkinson’s Disease. Cells 2020,
9, 2399. [CrossRef]

51. Engelen-Lee, J.; Blokhuis, A.M.; Spliet, W.G.M.; Pasterkamp, R.J.; Aronica, E.; Demmers, J.A.A.; Broekhuizen, R.; Nardo, G.;
Bovenschen, N.; Van Den Berg, L.H. Proteomic profiling of the spinal cord in ALS: Decreased ATP5D levels suggest synaptic
dysfunction in ALS pathogenesis. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 210–220. [CrossRef]

52. Oeckl, P.; Weydt, P.; Thal, D.R.; Weishaupt, J.H.; Ludolph, A.C.; Otto, M. Proteomics in cerebrospinal fluid and spinal cord
suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic
lateral sclerosis. Acta Neuropathol. 2020, 139, 119–134. [CrossRef]

53. Liu, F.; Morderer, D.; Wren, M.C.; Vettleson-Trutza, S.A.; Wang, Y.; Rabichow, B.E.; Salemi, M.R.; Phinney, B.S.; Oskarsson, B.;
Dickson, D.W.; et al. Proximity proteomics of C9orf72 dipeptide repeat proteins identifies molecular chaperones as modifiers of
poly-GA aggregation. Acta Neuropathol. Commun. 2022, 10, 22. [CrossRef]

54. Hartmann, H.; Hornburg, D.; Czuppa, M.; Bader, J.; Michaelsen, M.; Farny, D.; Arzberger, T.; Mann, M.; Meissner, F.; Edbauer, D.
Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Sci. Alliance 2018,
1, e201800070. [CrossRef]

55. Feneberg, E.; Charles, P.D.; Finelli, M.J.; Scott, C.; Kessler, B.M.; Fischer, R.; Ansorge, O.; Gray, E.; Talbot, K.; Turner, M.R. Detection
and quantification of novel C-terminal TDP-43 fragments in ALS-TDP. Brain Pathol. 2021, 31, e12923.

56. Bereman, M.S.; Beri, J.; Enders, J.R.; Nash, T. Machine Learning Reveals Protein Signatures in CSF and Plasma Fluids of Clinical
Value for ALS. Sci. Rep. 2018, 8, 16334. [CrossRef]

57. Xu, Z.; Lee, A.; Nouwens, A.; Henderson, R.D.; McCombe, P.A. Mass spectrometry analysis of plasma from amyotrophic lateral
sclerosis and control subjects. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 362–376. [CrossRef]

58. Mohanty, L.; Henderson, R.D.; McCombe, P.A.; Lee, A. Levels of clusterin, CD5L, ficolin-3, and gelsolin in ALS patients and
controls. Amyotroph. Lateral Scler. Frontotemporal. Degener. 2020, 21, 631–634. [CrossRef]

59. Thompson, A.G.; Gray, E.; Thezenas, M.L.; Charles, P.D.; Evetts, S.; Hu, M.T.; Talbot, K.; Fischer, R.; Kessler, B.M.; Turner, M.R.
Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann. Neurol. 2018, 83, 258–268. [CrossRef]

http://doi.org/10.1021/acs.analchem.8b02233
http://doi.org/10.1002/prca.202100097
http://doi.org/10.1074/mcp.TIR118.000853
http://doi.org/10.1016/j.bbrc.2021.10.073
http://doi.org/10.1016/bs.mie.2019.02.009
http://doi.org/10.1016/j.bios.2012.10.082
http://doi.org/10.3389/fcell.2021.659760
http://doi.org/10.1021/acs.jproteome.7b00433
http://doi.org/10.1016/j.mex.2019.09.029
http://doi.org/10.1369/jhc.2009.953497
http://doi.org/10.3390/ijms23084443
http://doi.org/10.2174/157016409787847420
http://doi.org/10.1038/s41580-018-0094-y
http://doi.org/10.1039/d1an00472g
http://doi.org/10.1038/s41467-020-19840-4
http://doi.org/10.3390/cells9112399
http://doi.org/10.1080/21678421.2016.1245757
http://doi.org/10.1007/s00401-019-02093-x
http://doi.org/10.1186/s40478-022-01322-x
http://doi.org/10.26508/lsa.201800070
http://doi.org/10.1038/s41598-018-34642-x
http://doi.org/10.1080/21678421.2018.1433689
http://doi.org/10.1080/21678421.2020.1779303
http://doi.org/10.1002/ana.25143


Int. J. Mol. Sci. 2022, 23, 9299 19 of 21

60. Barschke, P.; Oeckl, P.; Steinacker, P.; Al Shweiki, M.R.; Weishaupt, J.H.; Landwehrmeyer, G.B.; Anderl-Straub, S.; Weydt, P.;
Diehl-Schmid, J.; Danek, A.; et al. Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia
with C9orf72 hexanucleotide repeat expansion. J. Neurol. Neurosurg. Psychiatry 2020, 91, 503–511. [CrossRef]

61. Thompson, A.G.; Gray, E.; Mager, I.; Thezenas, M.L.; Charles, P.D.; Talbot, K.; Fischer, R.; Kessler, B.M.; Wood, M.; Turner, M.R.
CSF extracellular vesicle proteomics demonstrates altered protein homeostasis in amyotrophic lateral sclerosis. Clin. Proteom.
2020, 17, 31. [CrossRef]

62. Hayashi, N.; Doi, H.; Kurata, Y.; Kagawa, H.; Atobe, Y.; Funakoshi, K.; Tada, M.; Katsumoto, A.; Tanaka, K.; Kunii, M.; et al.
Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients.
Neurosci. Res. 2020, 160, 43–49. [CrossRef]

63. Chen, P.C.; Wu, D.; Hu, C.J.; Chen, H.Y.; Hsieh, Y.C.; Huang, C.C. Exosomal TAR DNA-binding protein-43 and neurofilaments in
plasma of amyotrophic lateral sclerosis patients: A longitudinal follow-up study. J. Neurol. Sci. 2020, 418, 117070. [CrossRef]

64. Ramazi, S.; Zahiri, J. Posttranslational modifications in proteins: Resources, tools and prediction methods. Database 2021,
2021, baab012. [CrossRef]

65. Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [CrossRef]
66. Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021, 9, 38.

[CrossRef]
67. Didonna, A.; Benetti, F. Post-translational modifications in neurodegeneration. AIMS Biophys. 2016, 3, 27–49.
68. Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 2020, 15, 45.

[CrossRef]
69. Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.;

Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006,
314, 130–133. [CrossRef]

70. Kametani, F.; Obi, T.; Shishido, T.; Akatsu, H.; Murayama, S.; Saito, Y.; Yoshida, M.; Hasegawa, M. Mass spectrometric analysis of
accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci. Rep. 2016, 6, 23281. [CrossRef]

71. Laferrière, F.; Maniecka, Z.; Pérez-Berlanga, M.; Hruska-Plochan, M.; Gilhespy, L.; Hock, E.M.; Wagner, U.; Afroz, T.; Boersema, P.J.;
Barmettler, G.; et al. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate
assemblies and neurotoxic effects reflecting disease progression rates. Nat. Neurosci. 2019, 22, 65–77. [CrossRef]

72. Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular Mechanisms of TDP-43 Misfolding and Pathology in
Amyotrophic Lateral Sclerosis. Front. Mol. Neurosci. 2019, 12, 25. [CrossRef]

73. Cao, X.; Sandberg, A.; Araujo, J.E.; Cvetkovski, F.; Berglund, E.; Eriksson, L.E.; Pernemalm, M. Evaluation of Spin Columns for
Human Plasma Depletion to Facilitate MS-Based Proteomics Analysis of Plasma. J. Proteome Res. 2021, 20, 4610–4620. [CrossRef]

74. Lee, P.Y.; Osman, J.; Low, T.Y.; Jamal, R. Plasma/serum proteomics: Depletion strategies for reducing high-abundance proteins
for biomarker discovery. Bioanalysis 2019, 11, 1799–1812. [CrossRef]

75. El Rassi, Z.; Puangpila, C. Liquid-phase based separation systems for depletion, prefractionation, and enrichment of proteins in
biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2014–2016. Electrophoresis 2017,
38, 150–161. [CrossRef]

76. Keshishian, H.; Burgess, M.W.; Specht, H.; Wallace, L.; Clauser, K.R.; Gillette, M.A.; Carr, S.A. Quantitative, multiplexed workflow
for deep analysis of human blood plasma and biomarker discovery by mass spectrometry. Nat. Protoc. 2017, 12, 1683–1701.
[CrossRef]

77. Zubiri, I.; Lombardi, V.; Bremang, M.; Mitra, V.; Nardo, G.; Adiutori, R.; Lu, C.H.; Leoni, E.; Yip, P.; Yildiz, O.; et al. Tissue-
enhanced plasma proteomic analysis for disease stratification in amyotrophic lateral sclerosis. Mol. Neurodegener. 2018, 13, 60.
[CrossRef]

78. Leoni, E.; Bremang, M.; Mitra, V.; Zubiri, I.; Jung, S.; Lu, C.H.; Adiutori, R.; Lombardi, V.; Russell, C.; Koncarevic, S.; et al. Author
Correction: Combined Tissue-Fluid Proteomics to Unravel Phenotypic Variability in Amyotrophic Lateral Sclerosis. Sci. Rep.
2020, 10, 18603. [CrossRef]

79. Huang, J.; Khademi, M.; Lindhe, O.; Jonsson, G.; Piehl, F.; Olsson, T.; Kockum, I. Assessing the Preanalytical Variability of
Plasma and Cerebrospinal Fluid Processing and Its Effects on Inflammation-Related Protein Biomarkers. Mol. Cell Proteom. 2021,
20, 100157. [CrossRef]

80. Macron, C.; Nunez Galindo, A.; Cominetti, O.; Dayon, L. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with
Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput. Methods Mol. Biol. 2019, 2044, 129–154.
[CrossRef]

81. Varghese, A.M.; Sharma, A.; Mishra, P.; Vijayalakshmi, K.; Harsha, H.C.; Sathyaprabha, T.N.; Bharath, S.M.; Nalini, A.; Alladi, P.A.;
Raju, T.R. Chitotriosidase-a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin. Proteom. 2013, 10, 19. [CrossRef]

82. Pinnell, J.R.; Cui, M.; Tieu, K. Exosomes in Parkinson disease. J. Neurochem. 2021, 157, 413–428. [CrossRef]
83. Zhang, N.; Gu, D.; Meng, M.; Gordon, M.L. TDP-43 Is Elevated in Plasma Neuronal-Derived Exosomes of Patients With

Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 166. [CrossRef]
84. Goetzl, E.J.; Abner, E.L.; Jicha, G.A.; Kapogiannis, D.; Schwartz, J.B. Declining levels of functionally specialized synaptic proteins

in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J. 2018, 32, 888–893. [CrossRef]

http://doi.org/10.1136/jnnp-2019-322476
http://doi.org/10.1186/s12014-020-09294-7
http://doi.org/10.1016/j.neures.2019.10.010
http://doi.org/10.1016/j.jns.2020.117070
http://doi.org/10.1093/database/baab012
http://doi.org/10.1038/nature19949
http://doi.org/10.3390/proteomes9030038
http://doi.org/10.1186/s13024-020-00397-1
http://doi.org/10.1126/science.1134108
http://doi.org/10.1038/srep23281
http://doi.org/10.1038/s41593-018-0294-y
http://doi.org/10.3389/fnmol.2019.00025
http://doi.org/10.1021/acs.jproteome.1c00378
http://doi.org/10.4155/bio-2019-0145
http://doi.org/10.1002/elps.201600413
http://doi.org/10.1038/nprot.2017.054
http://doi.org/10.1186/s13024-018-0292-2
http://doi.org/10.1038/s41598-020-74974-1
http://doi.org/10.1016/j.mcpro.2021.100157
http://doi.org/10.1007/978-1-4939-9706-0_9
http://doi.org/10.1186/1559-0275-10-19
http://doi.org/10.1111/jnc.15288
http://doi.org/10.3389/fnagi.2020.00166
http://doi.org/10.1096/fj.201700731R


Int. J. Mol. Sci. 2022, 23, 9299 20 of 21

85. Licker, V.; Turck, N.; Kövari, E.; Burkhardt, K.; Côte, M.; Surini-Demiri, M.; Lobrinus, J.A.; Sanchez, J.C.; Burkhard, P.R. Proteomic
analysis of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics 2014,
14, 784–794. [CrossRef]

86. Petyuk, V.A.; Yu, L.; Olson, H.M.; Yu, F.; Clair, G.; Qian, W.J.; Shulman, J.M.; Bennett, D.A. Proteomic Profiling of the Substantia
Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. J. Proteome Res. 2021, 20, 2266–2282.
[CrossRef]

87. Chelliah, S.S.; Bhuvanendran, S.; Magalingam, K.B.; Kamarudin, M.N.A.; Radhakrishnan, A.K. Identification of blood-based
biomarkers for diagnosis and prognosis of Parkinson’s disease: A systematic review of proteomics studies. Ageing Res. Rev. 2022,
73, 101514. [CrossRef]

88. Zhang, X.; Yin, X.; Yu, H.; Liu, X.; Yang, F.; Yao, J.; Jin, H.; Yang, P. Quantitative proteomic analysis of serum proteins in
patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid
chromatography, and tandem mass spectrometry. Analyst 2012, 137, 490–495. [CrossRef]

89. Hu, L.; Dong, M.X.; Huang, Y.L.; Lu, C.Q.; Qian, Q.; Zhang, C.C.; Xu, X.M.; Liu, Y.; Chen, G.H.; Wei, Y.D. Integrated Metabolomics
and Proteomics Analysis Reveals Plasma Lipid Metabolic Disturbance in Patients With Parkinson’s Disease. Front. Mol. Neurosci.
2020, 13, 80. [CrossRef]

90. Yang, L.; Stewart, T.; Shi, M.; Pottiez, G.; Dator, R.; Wu, R.; Aro, P.; Schuster, R.J.; Ginghina, C.; Pan, C.; et al. An alpha-synuclein
MRM assay with diagnostic potential for Parkinson’s disease and monitoring disease progression. Proteom. Clin. Appl. 2017,
11, 1700045. [CrossRef]

91. Wang, Y.; Shi, M.; Chung, K.A.; Zabetian, C.P.; Leverenz, J.B.; Berg, D.; Srulijes, K.; Trojanowski, J.Q.; Lee, V.M.;
Siderowf, A.D.; et al. Phosphorylated alpha-synuclein in Parkinson’s disease. Sci. Transl. Med. 2012, 4, 121ra120. [CrossRef]

92. Rotunno, M.S.; Lane, M.; Zhang, W.; Wolf, P.; Oliva, P.; Viel, C.; Wills, A.M.; Alcalay, R.N.; Scherzer, C.R.; Shihabuddin, L.S.; et al.
Cerebrospinal fluid proteomics implicates the granin family in Parkinson’s disease. Sci. Rep. 2020, 10, 2479. [CrossRef]

93. Jiang, C.; Hopfner, F.; Katsikoudi, A.; Hein, R.; Catli, C.; Evetts, S.; Huang, Y.; Wang, H.; Ryder, J.W.; Kuhlenbaeumer, G.; et al.
Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg.
Psychiatry 2020, 91, 720–729. [CrossRef]

94. Kitamura, Y.; Kojima, M.; Kurosawa, T.; Sasaki, R.; Ichihara, S.; Hiraku, Y.; Tomimoto, H.; Murata, M.; Oikawa, S. Proteomic
Profiling of Exosomal Proteins for Blood-based Biomarkers in Parkinson’s Disease. Neuroscience 2018, 392, 121–128. [CrossRef]

95. Shi, M.; Liu, C.; Cook, T.J.; Bullock, K.M.; Zhao, Y.; Ginghina, C.; Li, Y.; Aro, P.; Dator, R.; He, C.; et al. Plasma exosomal
alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014, 128, 639–650. [CrossRef]

96. Zou, J.; Guo, Y.; Wei, L.; Yu, F.; Yu, B.; Xu, A. Long Noncoding RNA POU3F3 and alpha-Synuclein in Plasma L1CAM Exo-
somes Combined with beta-Glucocerebrosidase Activity: Potential Predictors of Parkinson’s Disease. Neurotherapeutics 2020,
17, 1104–1119. [CrossRef]

97. Zhang, J.; Li, X.; Li, J.-D. The Roles of Post-translational Modifications on α-Synuclein in the Pathogenesis of Parkinson’s Diseases.
Front. Neurosci. 2019, 13, 381. [CrossRef]

98. Anderson, J.P.; Walker, D.E.; Goldstein, J.M.; de Laat, R.; Banducci, K.; Caccavello, R.J.; Barbour, R.; Huang, J.; Kling, K.;
Lee, M.; et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic
Lewy body disease. J. Biol. Chem. 2006, 281, 29739–29752. [CrossRef]

99. Burai, R.; Ait-Bouziad, N.; Chiki, A.; Lashuel, H.A. Elucidating the Role of Site-Specific Nitration of alpha-Synuclein in the
Pathogenesis of Parkinson’s Disease via Protein Semisynthesis and Mutagenesis. J. Am. Chem. Soc. 2015, 137, 5041–5052.
[CrossRef]

100. Foulds, P.; Mann, D.M.; Allsop, D. Phosphorylated alpha-synuclein as a potential biomarker for Parkinson’s disease and related
disorders. Expert Rev. Mol. Diagn. 2012, 12, 115–117. [CrossRef]

101. Fujiwara, H.; Hasegawa, M.; Dohmae, N.; Kawashima, A.; Masliah, E.; Goldberg, M.S.; Shen, J.; Takio, K.; Iwatsubo, T.
alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 2002, 4, 160–164. [CrossRef]

102. Gorbatyuk, O.S.; Li, S.; Sullivan, L.F.; Chen, W.; Kondrikova, G.; Manfredsson, F.P.; Mandel, R.J.; Muzyczka, N. The phosphoryla-
tion state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc. Natl.
Acad. Sci. USA 2008, 105, 763–768. [CrossRef]

103. Hasegawa, M.; Fujiwara, H.; Nonaka, T.; Wakabayashi, K.; Takahashi, H.; Lee, V.M.; Trojanowski, J.Q.; Mann, D.; Iwatsubo, T.
Phosphorylated alpha-synuclein is ubiquitinated i.in alpha-synucleinopathy lesions. J. Biol. Chem. 2002, 277, 49071–49076.
[CrossRef]

104. Kellie, J.F.; Higgs, R.E.; Ryder, J.W.; Major, A.; Beach, T.G.; Adler, C.H.; Merchant, K.; Knierman, M.D. Quantitative measurement
of intact alpha-synuclein proteoforms from post-mortem control and Parkinson’s disease brain tissue by intact protein mass
spectrometry. Sci. Rep. 2014, 4, 5797. [CrossRef]

105. Kragh, C.L.; Lund, L.B.; Febbraro, F.; Hansen, H.D.; Gai, W.P.; El-Agnaf, O.; Richter-Landsberg, C.; Jensen, P.H. Alpha-synuclein
aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J. Biol. Chem. 2009, 284, 10211–10222.
[CrossRef]

106. Kuwahara, T.; Tonegawa, R.; Ito, G.; Mitani, S.; Iwatsubo, T. Phosphorylation of alpha-synuclein protein at Ser-129 reduces
neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J. Biol. Chem. 2012, 287, 7098–7109.
[CrossRef]

http://doi.org/10.1002/pmic.201300342
http://doi.org/10.1021/acs.jproteome.0c00747
http://doi.org/10.1016/j.arr.2021.101514
http://doi.org/10.1039/c1an15551b
http://doi.org/10.3389/fnmol.2020.00080
http://doi.org/10.1002/prca.201700045
http://doi.org/10.1126/scitranslmed.3002566
http://doi.org/10.1038/s41598-020-59414-4
http://doi.org/10.1136/jnnp-2019-322588
http://doi.org/10.1016/j.neuroscience.2018.09.017
http://doi.org/10.1007/s00401-014-1314-y
http://doi.org/10.1007/s13311-020-00842-5
http://doi.org/10.3389/fnins.2019.00381
http://doi.org/10.1074/jbc.M600933200
http://doi.org/10.1021/ja5131726
http://doi.org/10.1586/erm.12.5
http://doi.org/10.1038/ncb748
http://doi.org/10.1073/pnas.0711053105
http://doi.org/10.1074/jbc.M208046200
http://doi.org/10.1038/srep05797
http://doi.org/10.1074/jbc.M809671200
http://doi.org/10.1074/jbc.M111.237131


Int. J. Mol. Sci. 2022, 23, 9299 21 of 21

107. Lu, Y.; Prudent, M.; Fauvet, B.; Lashuel, H.A.; Girault, H.H. Phosphorylation of alpha-Synuclein at Y125 and S129 alters its metal
binding properties: Implications for understanding the role of alpha-Synuclein in the pathogenesis of Parkinson’s Disease and
related disorders. ACS Chem. Neurosci. 2011, 2, 667–675. [CrossRef]

108. Na, C.H.; Sathe, G.; Rosenthal, L.S.; Moghekar, A.R.; Dawson, V.L.; Dawson, T.M.; Pandey, A. Development of a novel method for
the quantification of tyrosine 39 phosphorylated alpha- and beta-synuclein in human cerebrospinal fluid. Clin. Proteom. 2020,
17, 13. [CrossRef]

109. Ohrfelt, A.; Zetterberg, H.; Andersson, K.; Persson, R.; Secic, D.; Brinkmalm, G.; Wallin, A.; Mulugeta, E.; Francis, P.T.;
Vanmechelen, E.; et al. Identification of novel alpha-synuclein isoforms in human brain tissue by using an online nanoLC-ESI-
FTICR-MS method. Neurochem. Res. 2011, 36, 2029–2042. [CrossRef]

110. Walker, D.G.; Lue, L.F.; Adler, C.H.; Shill, H.A.; Caviness, J.N.; Sabbagh, M.N.; Akiyama, H.; Serrano, G.E.; Sue, L.I.;
Beach, T.G.; et al. Changes in properties of serine 129 phosphorylated alpha-synuclein with progression of Lewy-type histopathol-
ogy in human brains. Exp. Neurol. 2013, 240, 190–204. [CrossRef]

111. Raghunathan, R.; Sethi, M.K.; Klein, J.A.; Zaia, J. Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules. Mol. Cell
Proteom. 2019, 18, 2138–2148. [CrossRef]

112. Raghunathan, R.; Hogan, J.D.; Labadorf, A.; Myers, R.H.; Zaia, J. A glycomics and proteomics study of aging and Parkinson’s
disease in human brain. Sci. Rep. 2020, 10, 12804. [CrossRef]

113. Downs, M.; Sethi, M.K.; Raghunathan, R.; Layne, M.D.; Zaia, J. Matrisome changes in Parkinson’s disease. Anal. Bioanal. Chem.
2022, 414, 3005–3015. [CrossRef]

114. Posavi, M.; Diaz-Ortiz, M.; Liu, B.; Swanson, C.R.; Skrinak, R.T.; Hernandez-Con, P.; Amado, D.A.; Fullard, M.; Rick, J.;
Siderowf, A.; et al. Characterization of Parkinson’s disease using blood-based biomarkers: A multicohort proteomic analysis.
PLoS Med. 2019, 16, e1002931. [CrossRef]

115. Cerri, S.; Ghezzi, C.; Sampieri, M.; Siani, F.; Avenali, M.; Dornini, G.; Zangaglia, R.; Minafra, B.; Blandini, F. The Exosomal/Total
alpha-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease
Severity in PD Patients. Front. Cell Neurosci. 2018, 12, 125. [CrossRef]

116. Zheng, H.; Xie, Z.; Zhang, X.; Mao, J.; Wang, M.; Wei, S.; Fu, Y.; Zheng, H.; He, Y.; Chen, H.; et al. Investigation of alpha-Synuclein
Species in Plasma Exosomes and the Oligomeric and Phosphorylated alpha-Synuclein as Potential Peripheral Biomarker of
Parkinson’s Disease. Neuroscience 2021, 469, 79–90. [CrossRef]

117. He, T. Implementation of Proteomics in Clinical Trials. Proteom. Clin. Appl. 2019, 13, e1800198. [CrossRef]
118. Gomez Ravetti, M.; Moscato, P. Identification of a 5-protein biomarker molecular signature for predicting Alzheimer’s disease.

PLoS ONE 2008, 3, e3111. [CrossRef]
119. Carr, S.A.; Abbatiello, S.E.; Ackermann, B.L.; Borchers, C.; Domon, B.; Deutsch, E.W.; Grant, R.P.; Hoofnagle, A.N.; Huttenhain, R.;

Koomen, J.M.; et al. Targeted peptide measurements in biology and medicine: Best practices for mass spectrometry-based assay
development using a fit-for-purpose approach. Mol. Cell Proteom. 2014, 13, 907–917. [CrossRef]

120. Krieger, J.R.; Wybenga-Groot, L.E.; Tong, J.; Bache, N.; Tsao, M.S.; Moran, M.F. Evosep One Enables Robust Deep Proteome
Coverage Using Tandem Mass Tags while Significantly Reducing Instrument Time. J. Proteome Res. 2019, 18, 2346–2353. [CrossRef]

121. Fu, Q.; Liu, Z.; Bhawal, R.; Anderson, E.T.; Sherwood, R.W.; Yang, Y.; Thannhauser, T.; Schroyen, M.; Tang, X.; Zhang, H.; et al.
Comparison of MS(2), synchronous precursor selection MS(3), and real-time search MS(3) methodologies for lung proteomes of
hydrogen sulfide treated swine. Anal. Bioanal. Chem. 2021, 413, 419–429. [CrossRef]

http://doi.org/10.1021/cn200074d
http://doi.org/10.1186/s12014-020-09277-8
http://doi.org/10.1007/s11064-011-0527-x
http://doi.org/10.1016/j.expneurol.2012.11.020
http://doi.org/10.1074/mcp.R119.001543
http://doi.org/10.1038/s41598-020-69480-3
http://doi.org/10.1007/s00216-022-03929-4
http://doi.org/10.1371/journal.pmed.1002931
http://doi.org/10.3389/fncel.2018.00125
http://doi.org/10.1016/j.neuroscience.2021.06.033
http://doi.org/10.1002/prca.201800198
http://doi.org/10.1371/journal.pone.0003111
http://doi.org/10.1074/mcp.M113.036095
http://doi.org/10.1021/acs.jproteome.9b00082
http://doi.org/10.1007/s00216-020-03009-5

	Introduction 
	Overview of Proteomics Technological Advancement for Biomarker Discovery 
	Proteomics for Biomarker Discovery in ALS 
	Differential Expression of Proteins and Interactome from Post-Mortem Human Tissue as Biomarkers in ALS 
	Post-Translational Modifications in TDP43 from Tissue Proteomics Studies in ALS 
	Plasma and Serum as Sources for Proteomic Biomarkers in ALS 
	Cerebrospinal Fluid (CSF) Proteomic Biomarker Identification 
	Exosomes Proteomics in Biomarker Identification 

	Proteomics for Biomarker Discovery in PD 
	Differential Expression of Proteins from Post-Mortem Human Tissue as Biomarkers in PD 
	Post-Translational Modifications in Key Proteins from Tissue Proteomics Studies in PD 
	Plasma and Serum as Sources for Proteomic Biomarkers in PD 
	Cerebrospinal Fluid (CSF) as a Source for Proteomic Biomarkers in PD 
	Exosomes Proteomics in Biomarker Identification 

	Clinical Trials Using Proteomics for Biomarker Discovery in ALS and PD 
	Discussion 
	References

