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Abstract: Juniperus sabina L. (J. sabina) has been an important plant in traditional medicine since
ancient times. Its needles are rich in podophyllotoxin, a precursor compound to anti-tumor drugs.
However, no systematic research has been done on J. sabina as a source of podophyllotoxins or their
biological action. Hence, extracts of podophyllotoxin and deoxypodophyllotoxin were the main
optimization targets using the Box–Behnken design (BBD) and response surface methodology (RSM).
The total phenol content and antioxidant activity of J. sabina needle extract were also optimized. Under
the optimal process conditions (ratio of material to liquid (RLM) 1:40, 90% methanol, and ultrasonic
time 7 min), the podophyllotoxin extraction rate was 7.51 mg/g DW, the highest level reported for
Juniperus spp. distributed in China. To evaluate its biological potential, the neuroprotective acetyl-
and butyrylcholinease (AChE and BChE) inhibitory abilities were tested. The needle extract exhibited
significant anti-butyrylcholinesterase activity (520.15 mg GALE/g extract), which correlated well
with the high levels of podophyllotoxin and deoxypodophyllotoxin. This study shows the potential
medicinal value of J. sabina needles.

Keywords: homogenization-assisted ultrasonic extraction; Juniperus sabina L.; podophyllotoxins;
anticholinesterase activity

1. Introduction

Podophyllotoxin is a natural lignan-like compound with significant antitumor proper-
ties. The anticancer drugs etoposide and teniposide were synthesized with it as precursor
compounds and have emerged as first-line chemotherapeutic agents for the treatment
of many cancers: lung, breast, ovarian, testicular, gastric, bladder, pancreatic, brain, and
blood [1–3]. According to recent studies, etoposide was found to be targeted in the treat-
ment of cytokine storms in patients with COVID-19 [4]. Owing to its significant clinical role,
the extraction and biological study of podophyllotoxin and its analogues are important
topics in current study.

The Juniperus genus is an alternative plant source of podophyllotoxin and its ana-
logues [5]. In 1953, podophyllotoxin and deoxypodophyllotoxin were identified in the
Juniperus genus [6]; today, they are found in many species: Juniperus chinensis [7,8], Juniperus
conferta [7], Juniperus davurica [9], Juniperus depressa [7]; Juniperus horizontalis [8]; Juniperus
lucayana [6]; Juniperus scopulorum [7,10], Juniperus virginiana L. [11–13], Juniperus x media [14],
Juniperus bermudiana L. [5], Juniperus horizontalis [15], Juniperus communis L. [16], Juniperus
sabina L. [17,18], and Juniperus phoenicea [19].

The needles of J. sabina, used in traditional Chinese medicine, are rich in podophyllo-
toxins of which 22 have been isolated (Table 1) [20]. In addition, the needles have significant
beneficial physiological properties: antiviral, antirheumatic, antitussive, antitumor, antiox-
idant, hypolipidemic, neurotoxic, and immunosuppressive [21–25]. At present, there is
an intent to develop industrial crops to provide drug precursors, and J. sabina, as a shrub
representative of the Juniperus genus, should be considered for its suitability for cultiva-
tion and industrial application [26]. The rich bioactive ingredients and the advantages of
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resource application clearly show the potential for its needles in industries that produce
pharmaceuticals and chemical functional products. Therefore, extracting high-efficiency
biologically active compounds was a key step.

Table 1. Podophyllotoxin (1) and its analogues (2–22) isolated from J. sabina.

NO. Compound Name Structure

1 Podophyllotoxin
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Consequently, this study used response surface methodology (RSM) to optimize the
conditions for homogenization-assisted ultrasonic extraction of podophyllotoxin, deoxy-
podophyllotoxin and phenols for their antioxidant properties, which were further evaluated
by an in vitro anticholinesterase assay. This study provides the possibility of using J. sabina
as a potential source of podophyllotoxin and lays a foundation for the development of high
value-added compounds from its needles.

2. Results and Discussion
2.1. Optimization of the Extraction Conditions

To obtain the best active extracts, the most influential variables were jointly optimized
using the Box–Behnken design (BBD) and RSM. In the BBD, 17 experimental runs with five
replicates (central point) were conducted. Based on the results (Table 2) for each dependent
variable (Yn) after analyzing each of the 17 experimental runs, regression models were
developed to determine the approximate and predicted functional relationships of the
responses. Table 3 summarizes the significant regression coefficients (at 90% confidence
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interval) from the analysis of variance (ANOVA), coefficient of determination (R2), and the
model. The prediction equations that demonstrated Yn using significant terms are

YTPC = 535.74 + 22.42X1 + 81.53X2 − 32.09X2
2 (1)

YPPT = 7.76 + 0.21X1 − 0.27X1X3 + 0.30X2X3 + 0.34X2
1 − 0.20X2

2 (2)

YDPT = 2.24 + 0.11X1 + 0.09X2 + 0.16X2X3 + 0.13X2
1 − 0.20X2

2 (3)

YE.yield = 313.32 + 37.58X2 − 5.61X3 + 9.98X2X3 − 25.86X2
2 (4)

YABTS = 14106.40 + 1003.81X1 + 926.46X2 − 1028.40X3−
2213.13X2

2 − 1179.76X2
3

(5)

YFRAP = 10572.0 + 926.46X2 − 1617.19X2
2 (6)

YDPPH = 399.38 + 975.24X2 + 749.35X2
2 . (7)

Table 2. Box–Behnken experimental design (expressed as independent variables) and experimental
results obtained for dependent variables.

EC RLM Methanol (%) TU (min) TPC PPT DPT E. Yield ABTS FRAP DPPH

Independent Variables Dependent Variables

x1 x2 x3 y1 y2 y3 y4 y5 y6 y7

1 1:40 (1) 60 (−1) 10 (0) 483.27 ± 40.96 7.61± 0.32 2.20± 0.07 253.85 ± 9.25 12,462.3 ± 602.4 7880.3 ± 158.6 194.0 ± 69.0
2 1:40 (1) 100 (1) 10 (0) 611.27 ± 91.04 7.61± 0.33 2.46± 0.11 322.30 ± 3.60 14,606.7 ± 107.4 10,584.9± 284.5 2129.5 ± 88.4
3 1:30 (0) 80 (0) 10 (0) 546.53 ± 44.48 7.82± 0.09 2.33± 0.09 316.60 ± 3.90 15,454.3 ± 612.0 10,139.1 ± 85.5 645.7 ± 145.3
4 1:30 (0) 80 (0) 10 (0) 537.60 ± 44.30 7.91± 0.14 2.20± 0.06 314.60 ± 7.00 15,922.9 ± 285.2 10,855.9± 383.9 444.8 ± 6.0
5 1:20 (−1) 100 (1) 10 (0) 546.76 ± 88.62 7.57± 0.28 2.03± 0.07 318.50 ± 2.60 12,281.6 ± 721.9 9880.6 ± 262.1 2086.3 ± 271.3
6 1:40 (1) 80 (0) 5 (−1) 582.62 ± 36.37 8.89± 0.46 2.49± 0.13 307.50 ± 3.90 14,940.4 ± 926.5 11,009.4± 713.0 324.4 ± 158.9
7 1:30 (0) 100 (1) 5 (−1) 587.09 ± 68.29 7.49± 0.57 2.01± 0.16 329.15 ± 2.75 13,477.8± 1040.0 11,155.0± 316.3 2360.2 ± 62.4
8 1:30 (0) 80 (0) 10 (0) 515.27 ± 46.66 7.41± 0.65 2.02± 0.21 314.55 ± 0.85 13,291.0 ± 910.0 9623.9 ± 664.1 311.0 ± 105.8
9 1:20 (−1) 80 (0) 15 (1) 515.27 ± 35.77 8.03± 0.22 2.23± 0.05 305.05 ± 1.05 10,652.7 ± 305.0 9873.9 ± 384.6 280.8 ± 111.4

10 1:30 (0) 60 (−1) 5 (−1) 412.95 ± 29.03 7.51± 0.10 2.12± 0.09 266.60 ± 1.10 9903.6 ± 376.8 7823.2 ± 112.6 138.0 ± 56.1
11 1:20 (−1) 80 (0) 5 (−1) 538.72 ± 45.32 7.70± 0.31 2.37± 0.09 307.65 ± 6.45 14,467.8 ± 488.1 11,343.7± 754.0 192.1 ± 121.2
12 1:20 (−1) 60 (−1) 10 (0) 422.25 ± 25.22 7.28± 0.19 2.01± 0.06 251.30 ± 0.80 11,013.7 ± 365.2 7368.7 ± 86.5 122.7 ± 18.1
13 1:30 (0) 100 (1) 15 (1) 596.02 ± 99.99 7.64± 0.57 2.28± 0.26 324.55 ± 3.25 9949.0 ± 134.1 11,657.2± 221.5 1689.3 ± 41.1
14 1:30 (0) 80 (0) 10 (0) 543.18 ± 50.87 8.08± 0.26 2.40± 0.15 308.80 ± 2.20 13,122.1 ± 234.7 11,144.7 ± 86.5 301.9 ± 143.8
15 1:30 (0) 60 (−1) 15 (1) 388.39 ± 24.49 6.48± 0.12 1.75± 0.11 222.10 ± 1.30 9523.8 ± 183.6 6930.0 ± 135.6 8.7 ± 1.2
16 1:30 (0) 80 (0) 10 (0) 536.11 ± 55.07 7.57± 0.51 2.24± 0.22 319.50 ± 2.90 12,741.9 ± 353.5 11,096.4± 513.9 293.5 ± 212.9
17 1:40 (1) 80 (0) 15 (1) 543.18 ± 43.06 8.16± 0.03 2.38± 0.00 314.30 ± 3.90 14,436.9 ± 557.3 11,702.4± 347.5 339.1 ± 8.7

EC: Experimental conditions; E. Yield (mg/g DW); TPC (mg GAE/g DW); PPT (mg/g DW); DPT (mg/g DW);
ABTS (µmol trolox/100 g DW); FRAP (µmol trolox/100 g DW); DPPH (µmol trolox/100 g DW); DW: dry weight
of material.

Table 3. Regression coefficients and statistical parameters measuring the correlation and significance
of the models.

TPC PPT DPT E. Yield ABTS FRAP DPPH

y2 y3 y4 y1 y5 y6 y7

β0 535.74 7.76 2.24 313.32 14,106.40 10,572.00 399.38
β1 22.42 b 0.21 c 0.11 b 1.93 1003.81 b 338.76 38.14
β2 81.53 a 0.18 0.09 c 37.58 a 926.46 c 1659.44 a 975.24 a

β3 −9.81 −0.16 −0.04 −5.61 c −1028.40 b −145.98 −87.10
β12 −3.63 −0.07 0.06 0.31 219.13 48.18 −7.03
β13 −4.00 −0.27 c 0.01 2.35 827.90 540.70 −18.50
β23 8.37 0.30 c 0.16 b 9.98 b −787.25 348.85 −135.40
β11 16.74 0.34 b 0.13 c −2.83 697.77 −26.19 −15.60
β22 −32.09 b −0.58 a −0.20 b −25.86 a −2213.13 a −1617.19 a 749.35 a

β33 −7.53 0.10 − − −1179.76 c 436.54 −99.68
R2 0.9612 0.8642 0.8319 0.9627 0.8687 0.9283 0.9812

a Significant coefficients at 99% confidence interval (CI). b Significant coefficients at 95% CI. c Significant coefficients
at 90% CI.
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Analysis of the R2 values (0.9283–0.9812) showed high model accuracy for the extrac-
tion yield (E. yield), total phenol content (TPC), ferric reducing antioxidant power (FRAP),
and DPPH, thus indicating a strong correlation between predicted and experimental values
(Table 3). While the podophyllotoxin and deoxypodophyllotoxin content, and the ABTS
models showed a low R2 value, they were all greater than 0.83 and indicated that the data
deviation could be explained by each empirical model. Domínguez et al. [27] also applied
the RSM to identify the optimum extraction conditions for the highly bioactive compounds
of Sambucus nigra L.

2.1.1. Total Phenol Content (TPC)

Phenolic compounds are secondary metabolites synthesized by plants under oxidative
stress and one of the important adaptive mechanisms under various conditions of adver-
sity [28,29]. TPC was quantified by the Folin–Ciocalteu reagent in the current study. As
shown in Table 2, TPC under different experimental conditions (ECs) ranged from 388.39 to
611.27 mg GAE/g DW. The three best extractions were EC 2 (611.27 mg GAE/g DW),
EC 7 (587.09 mg GAE/g DW) and EC 13 (596.02 mg GAE/g DW). Using our extraction
parameters, very high concentrations of TPC were detected, higher than those obtained in
other studies. Orhan et al. (2011) showed poor TPC values (68.43 and 122.67 mg GAE/g)
for the aqueous and ethanolic extracts of J. sabina needles [30]. While analyzing 11 regions
of Juniperus drupacea, the TPC of needles ranged from 2.69 to 53.82 mg GAE/g [31]. The
TPC in J. drupacea berries was even higher (225.23 mg GAE/g) because phenolic acids
accounted for more than 60% of total phenols [32].

According to the multinomial Equation (1), the primary terms of the robust linear
model (RLM) (X1) and methanol % (X2) had a positive effect on TPC retention. In particular,
the variable methanol % exhibited a highly significant (p < 0.0001) influence on TPC yield.
This fact suggests that most of the bioactive compounds in J. sabina needle extracts had low
polarity. The response surface model of TPC in a function of the RLM (X1) and methanol
% (X2) implied that both factors affected their recovery (Figure 1). It also indicated that
intermediate values of RLM and high values of methanol % resulted in maximum recoveries
(>546 mg GAE/g).
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2.1.2. Podophyllotoxin and Deoxypodophyllotoxin

The total amount of podophyllotoxin and deoxypodophyllotoxin was quantified
by high-performance liquid chromatography (HPLC). Podophyllotoxin recovered from
J. sabina needle extract ranged from 6.48 to 8.89 mg/g DW. The three most abundant runs
were EC 6 (8.89 mg/g DW), EC 14 (8.08 mg/g DW) and EC 9 (8.03 mg/g DW) (Table 2). The
three best extracts were all obtained by 80% methanol extraction. In addition, the ultrasonic
time (X3) and RLM (X1) were mutually complementary (Figure 2, Equation (2)), and an
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appropriate increase in the ultrasonic time (X3) reduced the use of extraction solvent and
thus the production cost. The podophyllotoxin content from the J. sabina needles was more
than four times that reported by Renouard et al. [5]. Och et al. [7] analyzed 11 species
(61 varieties) of Juniperus spp., including J. sabina, and found that podophyllotoxins ranged
from 0.02 to 4.87 mg/g DW. Therefore, the extraction method in this study yielded the
highest levels of podophyllotoxin reported so far from J. sabina.
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Deoxypodophyllotoxin can be considered an alternative to podophyllotoxin, so opti-
mization of extractions is equally important. The amount obtained from J. sabina needles
under different experimental extraction conditions ranged from 1.75 to 2.49 mg/g DW.
Three optimal extracts were obtained at 80–100% methanol, 5–10 min ultrasonic time, and
a RLM of 1:30–1:40 (Supplementary Material Figure S1), i.e., EC 14 (2.40 mg/g DW), EC 2
(2.46 mg/g DW) and EC 6 (2.49 mg/g DW) (Table 2). From Equation (3), both the primary
and secondary terms of RLM (X1) correlated positively with deoxypodophyllotoxin yield.
In addition, methanol % (X2) and ultrasonic time (X3) might have had a synergistic effect
on the yield. The above results showed that the main influencing yield factor was RLM
(X1), with methanol % (X2) and ultrasonic time (X3) playing a secondary role.

2.1.3. Extraction Yield (E. Yield)

The E. yield obtained under different experimental conditions (EC) ranged from
222.10 to 329.15 mg/g DW, in which the three ECs with the highest yield were EC 2
(322.30 mg/g DW), EC 13 (324.55 mg/g DW) and EC 7 (329.15 mg/g DW), as shown in
Table 2. These three best ECs were consistent with those for TPC, indicating that the TPC
value contributed the most to the extract. However, there was no significant correlation
between the value of the E. yield and that of the podophyllotoxins. Overall, response
surfaces can provide an efficient way to achieve the desired optimization goals for extracts
with different properties [27].

The response surface model of E. yield as a function of methanol % (X2) and ultrasonic
time (X3) showed that methanol % (X2) significantly affected their recovery (Supplementary
Material Figure S2). The E. yield increased by 48% when methanol % (X2) was high
compared to low. In addition, Equation (4) confirmed these considerations, where the linear
term of methanol % (X2) and the product term of methanol % and RLM (X2×3) both had a
positive effect on the recovery of E. yield (Table 2).

2.1.4. Antioxidant Activity In Vitro

Extracts of J. sabina needles showed significant in vitro antioxidant activity [30]. The
influence of extraction conditions on antioxidant capacity was determined using three
antioxidant assays: ABTS, FRAP and DPPH. As shown in Table 2, the highest antioxidant
activity was detected at EC 4, EC 17 and EC 7 for ABTS (15,922.9 µmol Trolox/100 g DW),
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FRAP (11,702.4 µmol Trolox/100 g DW) and DPPH (2360.2 µmol Trolox/100 g DW). The
above results showed that the extracts with high antioxidant activity were more likely to be
obtained when methanol % (X2) was around 80%. In addition, the antioxidant activity of
J. sabina needle extract was found to be significantly better than that of common sources of
antioxidants, such as Rubus rosaefolius or Sambucus nigra L. [27,33].

Considering the regression coefficients (Table 3), the quadratic terms of methanol
% (X2) all significantly affected antioxidant activity (p < 0.01), having a negative effect
on ABTS and FRAP capacity (Supplementary Material Figures S3 and S4). The variation
pattern of Supplementary Material Figure S5a,c showed that the FRAP values of the
extracts all started to decrease as the methanol % increased to about 80%. Piwowarska and
González-Alvarez [34] analyzed the antioxidant capacity of forestry biomass extracts on
the dependence of solvent concentration and obtained similar results. In addition, both
the liner and quadratic terms showed a positive effect on DPPH capacity (Equation (7)),
and the DPPH values of the extracts increased with methanol % (Supplementary Material
Figure S5a,c). Thoo et al. [35] reported that the DPPH in Morinda citrifolia extracts increased
with ethanol concentration.

In summary, the TPC and antioxidant capacity of J. sabina needles were significantly
affected by the methanol % as shown in the response surface plots of all dependent vari-
ables. There were complex influences between the active compounds and their bioactive
properties as well as the potential pharmacodynamic effects among different molecules in
the extracts [36,37]. Simultaneous optimization, therefore, could maximize the content of
podophyllotoxins, phenols and their antioxidant activity.

2.1.5. Process Optimization and Model Validation

The aim of the optimization was to determine the extraction conditions that would
provide the greatest amount of podophyllotoxin and deoxypodophyllotoxin. At the same
time, other targets (TPC, E. yield, and antioxidant activity) were set to be greater than
the range above the median. Figure 3 showed the contour plot as a function of RLM,
methanol % and ultrasonic time. The parameters selected as optimal showed desirability
values > 0.70, which was within an acceptable range. The optimal extraction conditions
were RLM 1:40, 93.7% methanol and ultrasonic time 7.575 min (Supplementary Material
Table S2). To test the reliability of the predicted results and to take into account the conve-
nience of practical operation, the optimal extraction conditions were modified to RLM 1:40,
90% methanol, and ultrasonic time to 7 min. The relative standard deviations (RSDs) of all
variables (Table 4) showed that the predicted values for all groups were very similar to the
experimental results, except for DPPH, which had an RSD value (22.52 > 10). The suitability
of the response surface methodology model for quantitative predictions was verified by
satisfactory agreement between the predicted and measured values. These findings also
justified the selection of the Box–Behnken design, which had been demonstrated to be
accurate and reliable for predicting the content of podophyllotoxins, TPC, E. yield, and
antioxidant capacities of the extracts.

Table 4. Predicted and experimental values under optimum conditions resulting from the simultane-
ous optimization of the eight responses.

PPT DPT TPC E. Yield ABTS FRAP DPPH

Predicted value 8.24 2.45 464.90 324.52 15,638.40 11,092.20 1506.86
Experimental value 7.51 2.35 540.1 309.31 17,242.14 10,963.49 2211.19

Std Dev 0.52 0.07 53.11 10.76 1134.01 91.01 2211.19
RSD (%) 6.88 3.15 9.84 3.48 6.58 0.83 22.52
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2.2. Anticholinesterase Activity

Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is one of
the important strategies for combatting Alzheimer’s disease (AD) [38]. Natural products
are an abundant source of novel bioactive compounds [39], and in this study, extracts
of J. sabina needles obtained under different conditions were analyzed for AChE and
BChE as potential natural enzyme inhibitors, with values expressed as galanthamine
equivalents. As shown in Table 5, the inhibitory activity values of the extracts against
AChE and BChE were 0.96–28.79 mg GALE/g and 37.67–520.15 mg GALE/g, respectively.
The results showed that the needle extracts had good anti-BChE activity. Orhan et al. [30]
analyzed the anticholinesterase activity of Juniperus leaf extracts and similarly found that
the BChE inhibitory activity was better than that of AChE. Ballard et al. [40] demonstrated
a significant inhibitory effect of J. sabina needle extracts on BChE, presumably related
to the presence of this enzyme as a major cholinesterase in the brains of patients with
advanced AD.

Table 5. Anticholinesterase activity of J. sabina needle extracts under different extraction conditions.

EC AChE
(mg GALE/g Extract)

BChE
(mg GALE/g Extract)

JS-1 9.64 ± 2.69 63.95 ± 10.37
JS-2 28.79 ± 4.14 282.99 ± 47.85
JS-3 2.61 ± 1.28 91.18 ± 14.77
JS-4 2.29 ± 1.17 86.36 ± 13.99
JS-5 2.06 ± 1.09 351.8 ± 60.4
JS-6 8.43 ± 2.53 284.77 ± 48.17
JS-7 9.26 ± 2.64 361.18 ± 160.67
JS-8 3.86 ± 1.64 434.77 ± 80.93
JS-9 1.99 ± 1.06 254.69 ± 100.49

JS-10 0.96 ± 0.63 173.4 ± 28.55
JS-11 8.28 ± 2.5 384.58 ± 66.48
JS-12 2.74 ± 1.32 125.96 ± 20.51
JS-13 17.01 ± 3.4 242.55 ± 40.62
JS-14 18.48 ± 3.5 520.15 ± 92.2
JS-15 5.02 ± 1.91 37.67 ± 6.21
JS-16 13.5 ± 3.11 109.39 ± 17.76
JS-17 7.07 ± 2.31 185.64 ± 30.65
JS-Y 16.78 ± 4.61 208.79 ± 41.66

EC: Experimental condition; JS-1~17: Extracts of J. sabina needles under different experimental conditions; JS-Y:
Extracts of J. sabina needles under ideal extraction condition. Test extract concentration: 500 µg/mL DW extract.
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A correlation analysis between extract content and anticholinesterase activity was
performed to further understand the pharmacodynamic properties of the extracts tested.
The results showed (Figure 4) that the anti-AChE activity of the needle extracts showed a
significant correlation (p < 0.05) with E. yield and TPC, while it showed a highly significant
correlation (p < 0.01) with deoxypodophyllotoxin. The values of E. yield and TPC both
showed a highly significant correlation (p < 0.01) with that of anti-BChE activity, and
podophyllotoxin content also suggested a significant correlation (p < 0.05). From a statistical
point of view, podophyllotoxins and the phenolics in the J. sabina needle extracts may
contribute to cholinesterase inhibition. Therefore, their enzyme inhibitory properties may
have a phytochemical interaction; that is, phenols and podophyllotoxins may have a
synergistic effect in inhibiting cholinesterase activity, but the specific mechanism needs
further analysis.
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3. Material and Methods
3.1. Chemicals

For extractions and solutions, ultrapure water was obtained by a Milli-Q system
Millipore (Bedford, MA, USA) and absolute ethanol was purchased from Sigma-Aldrich
(St. Louis, MO, USA). The 7% sodium carbonate (Na2CO3) solution was obtained by dis-
solving 7 g of powder in ultrapure water and making up to 100 mL.

The following reagents were supplied by specified suppliers: Gallic acid, Folin
reagent, ferric chloride (FeCl3), dimethyl sulfoxide (DMSO) and Na2CO3 were purchased
from Aladdin (Aladdin Biochemical Technology Co., Ltd., Shanghai, China). Acetyl-
cholinesterase (Electric eel), butyrylcholinesterase (Horse serum), acetylthiocholine iodide,
S-butyrylthiocholine iodide, 5,5’-dithio bis-(2-nitrobenzoic acid), and Tris (tri (hydrox-
ymethyl) aminomethane) were purchased from Macklin (Macklin Biochemical Co., Ltd.,
Shanghai, China). DPPH (1,1-diphenyl-2 picrylhydrazyl radical), ABTS (2,2-azinobis (3-
ethylbenzothiazoline-6-sulphonic acid) radical cation), TPTZ (2,4,6-tri(2-pyridyl)-s-triazine),
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), acetic acid, podophyllo-
toxin, and deoxypodophyllotoxin were purchased from Sigma-Aldrich (St. Louis, MO, USA).
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3.2. Plant Material

The J. sabina needles used in this experiment were collected in October 2020 from
Expo Park of Northwest Agriculture and Forestry University (Yangling District, Shaanxi
Province, China, 34◦18′3” N 108◦2′56” E). Healthy growing needles were selected, freeze-
dried, crushed, passed through a 40-mesh sieve, sealed and packed for storage in a dry
place for later use.

3.3. HPLC Analysis

Podophyllotoxin and deoxypodophyllotoxin content were determined according to
Renouard et al. [5] with minor modifications. Liquid phase analysis was performed by
HPLC (Agilent 1260, Agilent Technologies Inc., Santa Clara, CA, USA) with a C18 (5 µm,
4.6 × 250 mm; Agilent Technologies Inc., Santa Clara, CA, USA) column. The mobile
phases were methanol (B) and 0.2% formic acid-water solution (D) with the following
gradients: 0–10 min, 10–30% B; 10–20 min, 30–55% B; 20–35 min, 55–80% B; 35–40 min,
80–84% B; 40–45 min, 84–100% B; 45–50 min, 100% B; 50–52 min, 100–10% B; 52–56 min,
10% B. The flow rate was 0.8 mL/min; the column temperature was 35 °C; and the injection
volume was 20 µL. Podophyllotoxin and deoxypodophyllotoxin standards were purchased
from Yuanye (Yuanye Bio-Technology Co., Ltd., Shanghai, China). The standard solutions
were prepared in methanol with an initial concentration of 1 mg/mL and the standard
curve was drawn after gradient dilution (podophyllotoxin: y = 9736x + 9.1552, R2 = 0.9946;
deoxypodophyllotoxin: y = 22,774x + 5.4356, R2 = 0.9995). The peak area (y) was used to
calculate the content of the target compounds.

3.4. Extraction of J. sabina

The extract of J. sabina needles was obtained by homogenization-assisted ultrasonic
extraction. Needle powder (2 g) was weighted into a 100 mL Erlenmeyer flask and 40–80 mL
of extraction solvent was added (for relevant extraction conditions, see Supplementary
Material Table S1). This mixture was then sonicated at 100 kHz for 5–15 min in an ultrasonic
bath (Branson, Mod. 8510E-DTH, Danbury, CT, USA). The mixture was extracted for 1.5 h
at 55 ◦C under stirring in a water bath (HSJ-4, Jiangsu Science Analysis Instrument Co., Ltd.,
Changzhou, China). The extract mixture was centrifuged at 10,000× g for 10 min and the
supernatant was drawn off, concentrated under reduced pressure and then evaporated to a
constant weight.

E. Yield(mg/g DW) = mass of extraction (mg)/dry weight of material (g)

E. Yield is the extraction yield of J. sabina; DW refers to the dry weight of material;
mass of extraction refers to the mass of the extract dried to constant weight.

3.5. Experimental Design

The effects of the feed-to-liquid ratio (X1; g/mL), methanol concentration (MeOH; X2;
%), ultrasonic time (TU; X3; min) on the extraction yield (E. yield), antioxidant activities,
and total phenol, podophyllotoxin and deoxypodophyllotoxin content were investigated
(Supplementary Material Table S1). Response surface experiments were designed and opti-
mized using the (BBD) approach with three replicates at the center point. The experimental
data were fitted to the following second-order polynomial model equation.

Yj = β0 + ∑3
i=1 βiXi + ∑ ∑3

i<j=1 βijXiβiXij + ∑3
i=j βiiXii (8)

Yj is the dependent (response) variable; Xi, Xij and Xii were the independent variables;
and β0, βi, βij and βii were the regression coefficients. The adequacy of the model was
determined by assessing the misfit, coefficient of determination (R2) and the F-test values
from the ANOVA.
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3.6. Determine Optimal Conditions and Validate the Model

Multi-response surface optimization was used to maximize the selected response
variables simultaneously. Selection criteria were based on maximizing podophyllotoxin
and deoxypodophyllotoxin content, taking into account the optimization of TPC, E. yield
and antioxidant activity obtained by DPPH, FRAP and ABTS. Optimal extraction conditions
were estimated using the response expectancy analysis function of Design-Expert software.
Model validation was performed by conducting experiments under optimal extraction
conditions, and the values predicted by each model were compared with the experimental
data. The similarity between the experimental and predicted data was calculated using
relative standard deviation (RSD):

RSD % =
Standard deviation between predicted and experimented values

Mean valves between predicted and experimental valves
× 100 (9)

At RSD % < 10, the resulting data were considered similar, and the results were
analyzed and optimized for all response conditions.

3.7. Determination of Total Phenol Content (TPC)

In this experiment, the TPC of J. sabina needle extract was determined by the Folin-
Ciocalteu colorimetric method [41,42]. After pipetting 200 µL of extract (2 mg/mL) into a
test tube, 2 mL of Folin–Ciocalteu reagent was added. The mixture was shaken well and left
to react for 6 min before adding 2 mL of 7% Na2CO3 solution (mass to volume ratio) and
reading the absorbance at 760 nm on an ultraviolet spectrophotometer (UV-1800, Shimadzu
Manufacturing Co., Kyoto, Japan). Three parallel sets were made for all the experiments.

3.8. Evaluation of In Vitro Biological Activity

Extracts of J. sabina needles were prepared in a methanol solution to 32 mg/mL mother
liquor, stored at 4 ◦C to be ready to use. The related activity assay was completed within
three days.

3.8.1. Antioxidant Activity In Vitro

The antioxidant activity was assessed using several different in vitro assays (ABTS,
FRAP, and DPPH) according to the procedures described by Peng et al. [43]. The results
were expressed as Trolox equivalents (µmol Trolox/100 g DW).

3.8.2. Cholinesterase Inhibitory Activity

The cholinesterase inhibitory activity assay was determined using the modified spec-
trophotometric method of Ellman et al. [44]. A 96-well plate was prepared by adding
140 µL of phosphate buffer, 20 µL of AChE or BChE and 20 µL of J. sabina needle extract
(500 µg/mL), mixed well and incubated for 15 min at 25 ◦C. After 30 min, the absorbance
values of the solutions were measured at 412 nm using an enzyme marker. DMSO was
used as a negative control; galanthamine was used as a positive control; and the blank
group had 20 µL of phosphate buffer added. The first concentration of galanthamine was
640 µg/mL and used for standard curve drawing after gradient dilution. Three parallel
experiments were done for each group and average values were taken. The cholinesterase
inhibition rate was then calculated according to the following equation.

Inhibition rate (%) = (Blank group − Experimental group)/Blank group × 100%

Experimental group: absorbance value of compound to be measured; blank group:
phosphate buffer instead of absorbance value of compound to be measured.

3.9. Data Analysis

The assays described were performed in triplicate for all experiments, and the results
were expressed as mean ± standard deviation (SD). All response surface methodology
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(RSM) data were statistically analyzed to determine the significant parameters and the
interaction between each variable. Specifically, response surface analysis was performed
using Design-Expert11 (Stat-Ease, Inc., Minneapolis, MN, USA). Data variance significance
processing and analysis were performed using Statistics V8.0 (Statsoft Inc., Tulsa, OK., USA)
and SPSS 13.0 (SPSS Inc., Chicago, IL., USA). In all cases, p < 0.05 indicated significance.

4. Conclusions

This study determined the optimal process conditions (RLM 1:40, 90% methanol and
ultrasonication time 7 min) for obtaining J. sabina needle extract with the highest content
of podophyllotoxin (7.51 mg/g DW), high TPC, and satisfactory antioxidant activity. The
biological activity indices were added to the RSM models for optimization, bringing
them more in line with the complexity of natural drug applications and offering more
economical and effective optimization conditions. In addition, the results of the excellent
anticholinesterase activity of the extracts was interesting, and the significant positive
effects of podophyllotoxin and deoxypodophyllotoxin on it were also observed. The study
suggests that J. sabina could be an economical source of raw material for podophyllotoxins,
antioxidants and Alzheimer’s inhibition.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms231810205/s1.
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