
Citation: Shah, A.A.; Alturise, F.;

Alkhalifah, T.; Khan, Y.D. Deep

Learning Approaches for Detection

of Breast Adenocarcinoma Causing

Carcinogenic Mutations. Int. J. Mol.

Sci. 2022, 23, 11539. https://doi.org/

10.3390/ijms231911539

Academic Editor: M. Natália

D.S. Cordeiro

Received: 22 August 2022

Accepted: 23 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Deep Learning Approaches for Detection of Breast
Adenocarcinoma Causing Carcinogenic Mutations
Asghar Ali Shah 1 , Fahad Alturise 2 , Tamim Alkhalifah 2,* and Yaser Daanial Khan 1

1 Department of Computer Science, University of Management and Technology, Lahore 54770, Pakistan
2 Department of Computer, College of Science and Arts in Ar Rass, Qassim University,

Ar Rass 58892, Qassim, Saudi Arabia
* Correspondence: tkhliefh@qu.edu.sa

Abstract: Genes are composed of DNA and each gene has a specific sequence. Recombination or
replication within the gene base ends in a permanent change in the nucleotide collection in a DNA
called mutation and some mutations can lead to cancer. Breast adenocarcinoma starts in secretary cells.
Breast adenocarcinoma is the most common of all cancers that occur in women. According to a survey
within the United States of America, there are more than 282,000 breast adenocarcinoma patients
registered each 12 months, and most of them are women. Recognition of cancer in its early stages saves
many lives. A proposed framework is developed for the early detection of breast adenocarcinoma
using an ensemble learning technique with multiple deep learning algorithms, specifically: Long
Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Bi-directional LSTM. There are
99 types of driver genes involved in breast adenocarcinoma. This study uses a dataset of 4127 samples
including men and women taken from more than 12 cohorts of cancer detection institutes. The dataset
encompasses a total of 6170 mutations that occur in 99 genes. On these gene sequences, different
algorithms are applied for feature extraction. Three types of testing techniques including independent
set testing, self-consistency testing, and a 10-fold cross-validation test is applied to validate and test
the learning approaches. Subsequently, multiple deep learning approaches such as LSTM, GRU,
and bi-directional LSTM algorithms are applied. Several evaluation metrics are enumerated for
the validation of results including accuracy, sensitivity, specificity, Mathew’s correlation coefficient,
area under the curve, training loss, precision, recall, F1 score, and Cohen’s kappa while the values
obtained are 99.57, 99.50, 99.63, 0.99, 1.0, 0.2027, 99.57, 99.57, 99.57, and 99.14 respectively.

Keywords: breast adenocarcinoma; long short-term memory (LSTM) network; gated recurrent units
(GRU); bi-directional LSTM; mutation detection

1. Introduction

Adenocarcinoma is a cancer that begins in secretory cells. The most common types of
adenocarcinomas include prostate, lung, breast, pancreatic, colorectal, and stomach cancer.
Among all, breast cancer is the second most severe cancer present in the human body.
Breast cancer is the uncontrolled growth and abnormality of cells within the breast gland.
Breast cancer occurs mostly in women. An expected 0.3 million women are recognized
with breast cancers each year inside the United States of America. In 2021, an estimated
44,130 deaths (43,600 women and 530 men) occurred because of breast cancers in the United
States [1,2]. There are numerous reasons for breast cancers in women. Some of them are
aging, family breast cancer history, having a child after the age of 35, beginning menopause
after the age of 55, high bone density, and so forth [1].

A biopsy is the principal technique used to diagnose breast adenocarcinoma. It is a
technique in which a small tissue cell is examined with a microscope [3]. The artificial
intelligence approach has workable results in the discipline of medical sciences. There are
various AI methods used in the medical science area for the detection of several illnesses
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inside the human body. In this study, the author proposed an ensemble learning strategy
that can be employed to become aware of breast cancer at its early stages. There are
sequences of DNA in human genes. Any change in the sequence is known as mutation,
which in most cases leads to cancer. The procedure of mutation is illustrated in Figure 1 [4].
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Genes coordinate with each other by having specific sequences within a cell [5].
Mutation is caused by a change in the base sequence of a DNA. The main cause of this
change can also be via insertion, deletion, or replication of gene bases, which causes DNA
damage. Different factors influence DNA damage. These factors consist of metabolic
influences or environmental factors such as radiation that led to tens of instances of damage
per cell, every day [6]. The damage in the DNA molecule alters or eliminates the cell’s
capability to transcribe the gene. DNA repair is the procedure in which a cell identifies and
corrects the damage that happens in DNA [7]. This technique is constantly energetic as it
responds to damage in the DNA structure. When the regular repair process fails, or cellular
apoptosis does not occur, then DNA damage may additionally now not be repairable. This
irreparable injury leads to malignant tumors, or cancer [8,9].

In this study, deep learning approaches such as LSTM, GRU, and bi-directional LSTM
are employed to form a classification mechanism that provides excellent results. The pro-
posed learning approach demonstrated good performance as discussed in the result section.

The second-major cause of death in women is breast adenocarcinoma. Bioinformatics
plays a crucial role in the field of medical sciences. Computational technologies, deep
learning, and machine learning algorithms make the detection and prevention of diseases
much easier than earlier. In this section, some of these techniques that are used for the
detection of breast adenocarcinoma are explained.

The most-used machine learning algorithms developed for breast cancer detection
are SVM (Support Vector Machine), LR (Logical Regression), RF (Random Forest), MLP
(Multilayer Perceptron), and KNN (K-Nearest Neighbor). In [10], breast cancer data are
classified using k-Nearest Neighbors, Naïve Bayes, and Support Vector Machine trained
and investigated on the WEKA tool. The dataset is taken from the UCI website. For the
study, the Radial basic kernel proves the best accuracy of 96.85% for data classification.

Data mining techniques are used to predict and resolve breast cancer survivability [11].
Simple Logistic Regression, Decision Tree, and RBF network are used in this research and
the results are validated using a 10-fold cross-validation test. For feature extraction, simple
Logistic Regression outperformed all others. The dataset used in this study is taken from
a database of the University Medical Centre, Institute of Oncology. Weka is used to train
the models. Simple logistics obtained the highest accuracy of 74.47%. In [12] artificial
neural networks, decision trees, and logistic regression are used. The accuracy obtained
by logistic regression was 89.2%, ANN has an accuracy of 91.2% and the best accuracy
was obtained by a decision tree with 93.6%. In [13], the fast correlation-based filter (FCBF)
method is used for the prediction and classification of breast cancer. Five machine learning
algorithms are applied, including RF, SVM, KNN, Naive Bayes, and MLP. The highest
accuracy obtained by SVM is 97.9%. Many other researchers worked on breast cancer
identification, as discussed in [14].
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2. Results

Subsequent paragraphs show the results obtained using different ensemble learning
techniques along with various tests.

2.1. Self-Consistency Testing

The self-consistency test is the first testing technique used for testing deep learning
algorithms for the identification of breast adenocarcinoma. In the self-consistency test
complete dataset is used for training and testing purpose. This test ensures that the
algorithm will give its best results when it uses all its data for training purposes. The test
computes the results of the proposed algorithm without experimentally measuring the
stability values [15,16]. The proposed study measured accurate prediction of change in
gene sequences in breast adenocarcinoma from the dataset utilizing the protocols based
on self-consistency.

Results of proposed ensemble learning model with self-consistency test are discussed
in Table 1. The independent set test results are discussed in Table 2 and 10-fold cross
validation results are discussed in Table 3.

Table 1. Results of Proposed Ensemble Learning Model with Self Consistency Test.

Evaluation Matrices Values Evaluation Matrices Values

Accuracy (%) 97.65 Precision (%) 97.65

Sensitivity (%) 97.81 Recall (%) 97.65

Specificity (%) 97.50 F1 Score (%) 97.65

MCC 0.95 Cohens Kappa (%) 95.31

AUC 1.00 Training Accuracy (%) 78.29

Training Loss 0.3649 Testing Accuracy (%) 78.51

Table 2. Results of Proposed Ensemble Learning Model with Independent set Test.

Evaluation Matrices Values Evaluation Matrices Values

Accuracy (%) 99.57 Precision (%) 99.57

Sensitivity (%) 99.50 Recall (%) 99.57

Specificity (%) 99.63 F1 Score (%) 99.57

MCC 0.99 Cohens Kappa (%) 99.14

AUC 1.00 Training Accuracy (%) 99.79

Training Loss 0.2027 Testing Accuracy (%) 99.82

Table 3. Results of proposed ensemble learning model with 10-fold cross validation test.

Evaluation Matrices Values Evaluation Matrices Values

Accuracy (%) 98.26 MCC 0.9852

Sensitivity (%) 98.02 AUC 0.99

Specificity (%) 98.50

The graph in Figure 2 shows the Training history of the proposed model in self-
Consistency test.

The accuracy and loss curve of proposed ensemble learning approach for individual
deep learning algorithm such as LSTM, GRU, and bi-directional LSTM in self-consistency
test is shown in Figure 3.
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Figure 3. Loss and Accuracy curve of proposed ensemble learning model with Self consistency test.

Figure 3 illustrates that the accuracy of the proposed ensemble learning approach
for individual deep learning algorithm such as LSTM, GRU, and bi-directional LSTM is
increasing gradually. At the same time the loss curve value is decreasing gradually for
training and testing dataset at 2.0 epoch.

The ROC curve of proposed ensemble learning approach is illustrated in the Figure 4.
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The AUC Value is 1.0, which is considered as excellent results according to AUC
accuracy classification.
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2.2. Independent Set Testing

The second testing technique used for the proposed ensemble learning approach is
independent set testing. The values are extracted from the misperception matrix used for
determining the precision of the model. The independent set test of the proposed model is
the basic performance measuring method. From the dataset, 80% of the values are used
for training the algorithm and 20% values are used for testing purposes. The results of
independent set testing after applying deep learning algorithms are discussed in Table 2.

The ROC curve of proposed ensemble learning approach for individual deep learning
algorithms is illustrated in the Figure 5.
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2.3. 10-Fold Cross-Validation Test

In the 10-Fold cross-validation (FCV) technique the data is equally subsamples into
10 groups. Then the training set is divided into 10 partitions and treat each of them in the
validation set, training the model and then average generalization performance across the
10-folds to make choices about hyper-parameters and architecture [12].

Figure 6 shows the working process of the 10-fold cross-validation technique.
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Table 2 represents the result of proposed ensemble learning approach for individual
deep learning algorithms with 10-fold cross-validation technique.

The ROC curve of proposed ensemble learning approach for individual deep learning
algorithm such as LSTM, GRU, and bi-directional LSTM when independent set testing is
applied on them is illustrated in the Figure 7.
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2.4. Results Comparison

The results of ensemble learning approach are compared with its own individual
algorithms such as LSTM, GRU, and Bi-directional LSTM in Table 4. Multiple metrics are
used for comparison. The independent set test is used for comparison. It is clear from
Table 4 that the proposed ensemble learning model improves identification accuracy of the
individual deep learning techniques such as LSTM, GRU, and bi-directional LSTM.

Table 4. Comparison of ensemble learning with individual deep learning techniques.

Evaluation Matrices Ensemble Learning Approach LSTM GRU Bi-Directional LSTM

Accuracy (%) 99.57 99.02 97.12 96.51

Sensitivity (%) 99.50 98.89 96.94 96.32

Specificity (%) 99.63 99.14 97.31 96.69

MCC 0.99 0.98 0.94 93.02

AUC 1.00 1.00 1.00 1.00

Training Loss 0.2027 0.0235 0.1199 0.2122

Precision (%) 99.57 99.02 97.12 96.51

Recall (%) 99.57 99.02 97.12 96.51

F1 Score (%) 99.57 99.02 97.12 96.51

Cohens Kappa (%) 99.14 98.04 94.25 93.02

Training Accuracy (%) 99.79 99.30 95.60 97.70

Testing Accuracy (%) 99.82 99.44 97.43 96.94

Ensemble learning produce better results as compared to simple deep learning algo-
rithms in Table 4. The obtained accuracy through the accuracy is 99.57.

3. Analysis and Discussion

Breast adenocarcinoma is the second main cause of death in women worldwide. There
are several biological and computational research for the identification and detection of
breast adenocarcinoma. In the past studies most of the researchers used some small datasets
taken from a small number of hospitals or organizations and applied biological or machine
learning algorithms on them for detection with less accuracy and few evaluation matrices.

The proposed ensemble learning approach for individual deep learning including
LSTM, GRU, and bi-directional LSTM used the latest generalized big dataset taken from
12 different cohorts for the identification of breast adenocarcinoma. The dataset con-
tains 99 driver genes that cause bread adenocarcinoma where 4127 samples consist of
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6170 mutations. In this research the latest dataset for normal and mutated genes sequence
of breast adenocarcinoma is used. A similar study is also presented for other types of
mutations [17,18] and some testing techniques are also presented in [19,20].

Three different testing techniques including self-consistency test, independent set test,
and 10-fold cross validation test are applied on the dataset and the results obtained are 97.6,
99.5 and 98.2 respectively. Therefore, it can be concluded from the results obtained using
above mentioned testing techniques that the proposed models are most suitable to achieve
high accuracy for cancer prediction. The self-consistency test used the complete dataset
for both training and testing phases. Table 1 shows the results obtained using ensemble
learning approach with the self-consistency test. The independent set test used 80% of
the dataset for training and the remaining 20% for testing. Table 2 shows the results of
ensemble learning using independent set test. In the 10-fold cross validation test, 10 equal
folds from the whole dataset were created. The proposed ensemble learning model was
trained on 9 folds and tested on one-fold, and the same process was repeated. The whole
data are used for testing and training. However, shuffled data are provided each time for
better learning and, lastly, the average is calculated.

4. Materials and Methods

This study proposed a novel ensemble learning approach for deep learning techniques
such as LSTM, GRU, and bi-directional LSTM for the detection of breast adenocarcinoma.

4.1. Data Acquisition Framework

The dataset is the most crucial part of this research. This dataset is used for training
the models, testing the outcome, and validating the results. Data acquisition is the process
of collecting reliable and accurate data for research. Data acquisition includes the process
of data collection to conduct the research and defining how the data are collected from a
valid source [21].

For the proposed study normal gene sequences are extracted from asia.ensambl.org [22]
and mutation information of each gene related to breast cancer is extracted from intogen.org
(accessed on 18 August 2022) [23]. These normal gene sequences and mutated information
are extracted through web scraping code. Web scraping is the process of extracting data
from different websites available on the World Wide Web [24]. There is more than 2500 type
of cancer genomes involved in mutation [25]. Three types of mutations occur in human
genes, namely driver mutation, passenger mutation, and not assist. Driver mutation is
the type of mutation in cells that cause cancer. Driver mutation causes abnormal growth
of the cells [26]. A mutation that alters the gene sequences but does not cause cancer is
known as passenger mutation [27] whereas, not assist gene mutation does not contain any
information about the mutation therefore it is not added to this study. The data collection
is explained step by step in Appendix A.

A tool named Generate Mutated Sequences (GMS) is created in python that is used
to incorporate the mutation information in normal gene sequences and create mutated
sequences. Figure 8 shows the data acquisition framework in detail.

From the gene information, mutated gene sequences and normal gene sequences are
categorized. For the proposed study 4127 samples are extracted from 99 types of driver
genes. The sample dataset is the combination of 12 cohorts of different cancer detection
websites which are then combined for this study [23].

The data sample was extracted from every possible combination of age, gender, cancer
detection, treatment, and normal person. A total of 6170 mutations is used for training the
models, testing the outcome, and validating the results. Driver genes involved in breast
adenocarcinoma that cause cancer are shown in Table 5.
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Figure 8. Data acquisition framework of Breast Adenocarcinoma.

Table 5. Symbols of genes involved in breast adenocarcinoma.

Gene Mutation Gene Mutation Gene Mutation

TP53 846 KMT2C 205 ERBB4 43
GATA3 63 CDI 176 MDM4 14
ESR1 129 PTEN 105 GATA1 15
AKT1 88 NCOR1 89 USP6 19

FOXA1 72 TBX3 54 EGFR 45
NF1 85 ERBB2 83 MEN1 28
RB1 60 CFFB 64 GNAS 29

SF3B1 56 KMT2D 99 KDM6A 30
FAT3 112 ERBB3 55 FAT4 78

PREX2 73 CTFC 47 KAT6B 37
LRP1B 114 RUNX1 37 JAK2 19
ATM 64 SPEN 74 ALK 33

FGFR2 37 BRCA1 49 BAP1 25
CASP8 28 FBXW7 29 CUX1 29
BRCA2 52 PTPRD 64 KLF4 8
MYH11 59 RGS7 32 FAT1 61
KRAS 15 NCOA1 21 DDX3X 23
MYH9 59 ABL2 31 NONO 9
EPHA3 31 NCOR2 44 MTOR 57
AFF3 37 ETV5 16 ASXL1 36
BRAF 22 ELN 26 MYOSA 19
ZXBD 18 NTRK1 26 POLD1 18
SALL4 17 SMAD2 17 PLAG1 15
EPAS1 25 RHPN2 18 NIN 44

SMAD4 17 MAX 9 NUMA1 33
HAS 10 ZFHX3 72 CLTC 31

The existence of bases in gene sequences related to breast cancer is explained with
the help of the frequency histogram in Figure 9. A total of 99 genes are involved in the
progression of breast cancer. Each gene is expressed in a series of bases consisting of
nucleotides. Therefore, the dataset contains many nucleotides as expressed with the help
of a technique present in Natural Language Processing (NLP) known as a word cloud.
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The benchmark dataset for the proposed study is denoted by B, which is defined as

B = B+U B− (1)

Here B+ considered as normal gene sequences while B− is considered as mutated
gene sequences that cause cancer and U is the union for both sequences. A balanced dataset
is used to provide accurate results [28,29].

4.2. Feature Extraction

Feature extraction is used to reduce redundant data. It gives useful features from
the available data. Redundancy and irrelevancy are removed after feature extraction. It
improves the accuracy and increases the performance of the learning model [30–41].

The main features of the raw dataset are extracted by feature extraction techniques.
Feature extraction is the process of passing data through multiple steps to extract the main
features used for model training. It is the most important step in training machine learning
algorithms. In feature extraction, the patterns of data are recognized that are further used in
the training and testing process performed on data [30,31]. For the proposed study statistical
moments are calculated such as Hahn moments, raw moments, and central moments. Other
feature extraction techniques are also used including PRIM, RPRIM, AAPIV, and RAAPIV.
These feature extraction techniques are applied to mutated gene sequences and normal
gene sequences for extracting the main features of data [32]. Figure 10 explains the feature
extraction techniques used for the breast cancer dataset.

4.2.1. Hahn Moment Calculation

Hahn moment is used to calculate statistical parameters [42]. Hahn moment is the
most important concept in pattern recognition. It calculates the mean and variance in
the dataset.

Hahn moments require two-dimensional data [43,44]. Therefore, the genomic se-
quences are converted into a two-dimensional matrix G′ of size N × N as in Equation (2).

G′ =


G11 G12··· G1n
G21 G22··· G2n
...

Gn1

...
Gn2···

...
Gnn

 (2)

Here G′ defines the gene sequence. The Hahn moments are computed using the value of G′.
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Here each element in is G′ are the residue of genomic sequences. Statistical moments
are calculated in third order. Hahn moments are orthogonal because it takes a square
matrix as an input. The Hahn polynomial for the proposed study dataset is calculated by
the following Equations (3) and (4).

hr,s
n (A, B) = (B + V − 1)n(B− 1)n ×∑n

z=0(−1)z (−n)z(−A)z(2B + r + s− n− 1)z
(B + s− 1)z(B− 1)z

1
z!

(3)

where r and s are all positive integers. r and s are the predefined constants. n is the order
of the moment, and B is the size of the data array.

Cxy = ∑G−1
j=0 ∑G−1

i=0 δxyha,b
x (j, B)ha,b

y (j, B), m, n = 0, 1, 2, . . . , B− 1 (4)

where x + y is the order of the moment, a, b are predefined constants, and δxy is an arbitrary
element of the square matrix G′.

For any integer A ∈ [0, B− 1] (B is the provided positive integer). These are the
adjustable parameters and use to control the shape of polynomials. The Pochhammer
symbol is (a)k = a · (a + 1) · · · (a + k− 1) = r(a+k)

r(a) . Equations (3) and (4) is used to
efficiently calculate the normalized Hahn moment of any order. The Hahn moments based
unique features are presented by H00, H01, H10, H11, H02, H20, H12, H21, H03 and H30.

4.2.2. Raw Moment Calculation

Raw moment is used for statistics imputation. Imputation is the procedure of replacing
the missing data values in a dataset with the most suitable substitute values to keep
the facts [45]. The raw moment for the of 2D data with order a + b is expressed by
Equation (5) [46].

Rab = ∑n
e=1 ∑n

f=1 ea f bδe f (5)

Raw moments are calculated up to order 3. It describes significant information within
the sequence such as R00, R01, R10, R02, R20, R03, and R30.

4.2.3. Central Moment Calculation

Central moment of feature extraction is used to extract useful features using mean and
variance. It is the moment in probability distribution about a randomly selected variable
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with respect to its random variable mean [42]. The general formula for the central moment
calculation for the breast adenocarcinoma dataset is represented by Equation (6).

Vrs = ∑n
e=1 ∑n

f=1(e− x)r ( f − y)s δe f (6)

Centroids (r, s) are required to compute the central moments that are visualized as
center of data. The unique features from central moments, up to 3rd order, are labeled as
V00, V01, V10, V11, V02, V20, V12, V21, V03 and V30.

4.2.4. Position Relative Incidence Matrix (PRIM)

PRIM is used for determining the positioning of each gene in the gene sequence of Breast
cancer. PRIM formed matrix with the dimension of 30 ∗ 30 is shown in Equation (7) [47].

RPRIM =



R1→1 R1→2···
R2→1 R2→2···

R1→q···
R2→q···

R1→M
R2→M

...
...

Rp→1 Rp→2···

...
Rp→q···

...
Rp→M

...
...

RM→1 RM→2···

...
RM→q···

...
RM→M


(7)

Feature scaling lets in every data pattern to participate in detection of ovarian can-
cer [30]. The indication score of qth position nucleotide is determined by the Rp→q with
respect to the occurrence of the pth nucleotide.

4.2.5. Reverse Position Relative Incidence Matrix (RPRIM)

Reverse Position Relative incidence matrix (RPRIM) also work same as PRIM does
but in the reverse sequence. Equation (8) elaborate the calculation of RPRIM for breast
cancer dataset.

RRPRIM =



R1→1 R1→2···
R2→1 R2→2···

R1→q···
R2→q···

R1→M
R2→M

...
...

Rp→1 Rp→2···

...
Rp→q···

...
Rp→M

...
...

RM→1 RM→2···

...
RM→q···

...
RM→M


(8)

4.2.6. Accumulative Absolute Position Incidence Vector (AAPIV)

The frequency matrix gives the information about the incidence of genes in the gene
sequence. AAPIV gives the information related to the different compositions of nucleotides
in the gene sequences. The relative positioning of the nucleotides in cancerous gene
sequences is observed out by using AAPIV [46]. The relative gene sequences of breast
adenocarcinoma are illustrated with the help of Equation (9).

K = {λ1, λ2, . . . λn} (9)

where λn is from gene sequence having ‘n′ total nucleotides, which can be calculated
using Equation (10).

For any ith component,
λi = ∑n

k=1 βk (10)

where βk is the position of the ith nucleotides.
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4.2.7. Reverse Accumulative Absolute Position Incidence Vector (RAAPIV)

RAAPIV work the same as AAPIV works but in the reverse order. The equation for
RAAPIV is as follows.

λ = {n1, n2, . . . nm} (11)

4.2.8. Frequency Vector Calculation

A dataset contains thousands of data records with different attributes for each record.
A frequency matrix is used to represent the sequence of genes that combine to form a gene
sequence. The distribution of each gene in the gene sequence of breast adenocarcinoma is
utilized to form a frequency distribution vector. It is represented by Equation (12).

α = {ε1, ε2, . . . εn} (12)

Here is the frequency of the genes in the breast adenocarcinoma gene sequence. The
frequency vector is calculated by the Equation (13).

FV = { f1 , f2, f3 . . . fN } (13)

Here f1 to fN indicates the frequency of each gene in the gene sequence.

4.3. Algorithm for Predictive Modeling

For the proposed study, a deep neural network with multiple layers is used for the
detection of breast adenocarcinoma. Deep learning has a huge impact on the recognition,
detection, prediction, and diagnosis of different types of cancer, forecasting, detection
systems, and many other complex problems. A deep neural network model consists of
multiple layers including an input layer, an output layer, pooling layer, dense layer, and
dropout layer with fully connected layers at the top. Each of the layers takes the input from
the previous layer and processes those input features. The learning features inside these
layers are the algorithms that learn from the layers and train themselves using different
learning procedures [48].

This study uses three different types of deep learning RNN algorithms including Long
short-term memory (LSTM), Gated recurrent units (GRU), and bi-directional LSTM. These
algorithms use three evaluation methods that are a self-consistency test, independent set
test, and a 10-fold cross validation test for the identification of breast adenocarcinoma.

4.3.1. Long Short-Term Memory Network (LSTM)

LSTM is the first deep learning algorithm used in this process. LSTM is used to resolve
the vanishing gradient problem in the neural network. Vanishing gradient is a problem in
which the lost function approximately approaches zero and makes the neural network hard
for training [49,50]. LSTM is used to address short-term and vanishing gradient problems
in RNN [51]. It increases the memory of the RNN model. LSTM is a gated process all the
information in LSTM is read, stored, and written with the help of these gates. These gates
are of three types known as input gate, forget gate, and output gate [52]. The gate in LSTM
is responsible for learning the regulation of some information from one gate to another
gate. Therefore, different activation functions are utilized in every gate [53,54]. Figure 11
explains the structure of a simple gated cell used in the LSTM technique for the detection
of breast cancer.

In Figure 11 xt is the input at specific time and yt is the output at specific time t. ft
represents forget gate, Ot and it represent output gate and input gate, respectively. Every
cell of LSTM has three inputs xt, At−1, Bt−1 and has two outputs as bt and ht. Equations
(14)–(19) explain LSTM.

it = σ
(

ytUi + At−1 Wi
)

(14)

ft = σ
(

ytU f + At−1 W f
)

(15)
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ot = σ (xtUo + At Wo) (16)

Bt
′ = tanh (xtUc + At−1 Wc) (17)

Bt = σ
(

ft∗ Bt−1 + it ∗ Bt
′ ) (18)

yt = tanh (Bt) ∗ Ot (19)

In the equations xt is the input, At−1 is the previous data cell output, Bt−1 is the
previous cell memory, Bt is the current cell memory. Here W and U are the weights for the
forget, input, and output gate, respectively.
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The data enter directly into the embedding layer form the input layer. The embedding
layer is the first hidden layer of LSTM. It consists of input dimension, output dimension,
and input length. The output of the embedding layer is denoted by the Equation (20) [55].

Eout = Vi∗ Xi (20)

In the equation Eout is the output of the embedding layer, Vi is the parameter between
the input layer and embedding layer while Xi is the one hot vector if it is filed. One hot
vector is used to differentiate data from each other. Data from the embedding layer are
entered into the LSTM layer where they pass from the LSTM gates. The embedding is used
to convert the input into a fixed length. The input length is converted to 64. An LSTM
layer of 128 neurons is added. The dropout layer prevents the model from overfitting
and the dense layer connects all the input from the layer and passes to the output layer.
Two dropout layers are used in this model to overcome model overfitting. One dense layer
is used as a hidden layer with 10 neurons. Stochastic Gradient Descent (SGD) is used as
an optimizer in LSTM layer. Sigmoid is used as an activation function. Sparse Categorical
Cross Entropy (SCCE) is used to minimize the loss in training the proposed model.

4.3.2. Gated Recurrent Unit (GRU)

The second deep learning method used for the proposed study is Gated Recurrent
Unit (GRU) method. GRU uses fewer gates than LSTM and works in the same way. The
results obtained from GRU are better than LSTM due to the smaller number of gates
and parameters. GRU use only two gates reset gate and the update gate in the cell [52].
The reset gate of GRU decides how much past information is neglected and update gate
decides how much past information is to be used. GRU takes less computational time
than LSTM [56]. Figure 12 explains the GRU cell structure used in the identification of
breast adenocarcinoma.

The following Equations (21)–(24) explains GRU.

rt = σ (xtUr + Bt−1 Wr) (21)

zt = σ (xtUz + Bt−1 Wz) (22)

ht
′ = tanh (rt ∗ Bt−1 U + xtW) (23)
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yt = ( 1− zt) ∗ Bt
′ + zt∗ Bt−1 ) (24)

In the Equations (21) and (22) rt represents reset gate and zt is the update gate.
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The proposed model has one embedding layer to convert the input into a vector of
fixed word length of 64. The second layer is GRU with 256 neurons and a simple RNN Layer
with 128 neurons. Two dropout layers are added with 30 percent to prevent overfitting. One
dense layer is added at the end with 10 neurons. Stochastic Gradient Descent (SGD) is used
as an optimizer in GRU layer. Sigmoid is used as an activation function. Sparse Categorical
Cross Entropy (SCCE) is used to minimize the loss in training the proposed model.

4.3.3. Bi-Directional LSTM

Lastly, the deep learning technique used in the proposed study is bi-directional
LSTM [57]. A bi-directional LSTM uses two LSTM cells, one in the forward direction
and one in the backward direction, connected with a single output.

The proposed Model has one embedding layer to convert the input into fixed vectors
of fixed word length of 64. Two bi-directional layers with 128 and 64 neurons in both
directions are added. Three dropout layers are added with 30 percent to prevent from
overfitting. One dense layer is used with 64 neuron and one dense layer is added at the
end with 10 neurons. Stochastic Gradient Descent (SGD) is used as an optimizer in GRU
layer. Sigmoid is used as an activation function. Sparse Categorical Cross Entropy (SCCE)
is used to minimize the loss in training the proposed model.

Unlike LSTM and GRU, Bi-directional LSTM did not need any past knowledge for the
prediction it learns by itself through moving in forward and backward direction that’s why
the result of Bi-directional LSTM is better than LSTM and GRU [58].

4.3.4. Ensemble Learning Models

Ensemble learning model uses a divide-and-conquer approach. It is used to improve
the accuracy of an individual base learners and then compile the whole model. Multiple
base learners are combined to achieve the best results [59]. Each base learner learns
different features from data chunks obtained using bootstrap technique, generates some
results, and combines them. Then again, the data chunks feed to the model. In this way
the patterns hidden in the datasets are learned by the model. Ensemble learning is an
adaptable approach and shows better accuracy as compared to simple machine learning
algorithms. This is due to the bootstrap technique, which allows feature replacement and
row replacement techniques, and the model learns using all the possible data combinations.
This also results in overcoming the overfitting issues. The popular ensemble learning model
types are bagging [60], boosting [61] and stacking [62]. The aim of all these models is to
obtain good accuracy.

This study improves the performance of individual deep learning models such as
LSTM, GRU, and Bi-directional LSTM with the help of an ensemble learning approach. The
processed dataset is divided into three groups such as training set, validation set, and test
set. The validation set is denoted by V whereas, the test set is denoted by T. The training
set is given as input to each individual deep learning model which are LSTM, GRU, and
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bi-directional LSTM. The grid search optimization technique is also applied to get search
ranges and the optimum values for proposed ensemble learning model parameters. Trained
learning models are generated for each individual deep learning model by the name trained
model1, trained model2, and trained model3 for LSTM, GRU, and Bi-directional LSTM
respectively as shown in Figure 13.
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All the trained models are tested on both validation and testing sets. Lastly, final
improved results are obtained by an ensemble learning model as shown in results section.

gp, i = ∑N
n=1 ωn fn,i (25)

Weights are assigned to the individual deep learning model to construct the ensemble
learning prediction in the equation. Here ωn (n = 1, 2, . . . , N) is the weight assigned to
each individual deep learning model, fn, i represents the prediction of each individual deep
learning model whereas, n is for the ith observation.

For each deep learning technique these testing techniques are applied in 10 epochs
(10 feed-forward and feed backward paths). In each iteration for testing the model calcu-
lates its AUC, precision, F1 score, recall, Cohen’s kappa, specificity, sensitivity, Mathew’s
correlation coefficient, loss, and accuracy. The following are the mathematical equations
used to calculate the algorithms’ results [63–66]. The Equations (26)–(29) explain the for-
mulae to calculate sensitivity, specificity, accuracy, and Mathews Correlation Coefficient
(MCC) respectively.

Sensitivity = TP/(TP + FN) (26)

Specificity = TN/(TN + FP) (27)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (28)

MCC =
(TP X TN)− (FP X FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(29)

In these equations:
TN = All the true negative values
TP = All the true positive values from the dataset
FN = False negative values
FP = False positive values
In the above equations, sensitivity refers to the ability to predict the count that truly

identify the breast adenocarcinoma. Specificity refers to the ability to predict the count that
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truly identify the absence of breast cancer. TP + FN are all subjects with given condition.
While TN + FP are the subjects without the given conditions. TP + FP is the total number
of subjects with positive results and TN + FN is the subjects with the negative results.

5. Conclusions and Future Work

Breast adenocarcinoma is the most common cancer in women. Therefore, a pro-
posed ensemble learning approach with individual deep learning techniques that includes
LSTM, GRU, and bi-directional LSTM is developed for the early detection of breast ade-
nocarcinoma. Normal gene sequences are obtained from asia.ensembl.org and mutation
information is obtained from IntOgen.org. Mutated sequences are generated by incorporat-
ing mutation information into normal gene sequences as depicted in Figure 8. A feature
extraction technique is used to obtain useful features from the normal and mutated gene
sequences. The feature extraction also converts the data to numeric format which is ready
for training and testing. Multiple feature extraction techniques used in this study can be
seen in Figure 10. The proposed ensemble learning approach obtained 99.57% accuracy.
Multiple testing techniques such as self-consistency test, independent set test, and 10-fold
cross validation tests are applied to check the performance of the model. The ensemble
learning approach has good performance in an independent set test as shown in Table 2. All
the results are compared in Table 4. Therefore, it can be concluded from the results that the
proposed ensemble learning approach performs with high accuracy for the identification
of breast adenocarcinoma. The results of Accuracy, AUC, Loss, Sensitivity, Specificity,
and Mathew’s correlation coefficient of the independent test, self-consistency test and
10-fold cross-validation test are shown in Tables 1–3. Lastly, the results authenticate that the
proposed ensemble learning model using deep learning classifiers can be utilized efficiently
for any cancer detection.

In future this technique can be used further for the detection of other types of cancer
as well. Furthermore, this technique can be beneficial to detect the incidence of other
life-threatening diseases using genes.
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Appendix A

Databases used in this study

This Appendix A is used to discuss and explain the databases used in this study.
Normal gene sequences are extracted from asia.ensambl.org [16] and mutation information
of each gene related to breast adenocarcinoma is extracted from intogen.org [17]. These
normal gene sequences and mutation information are extracted through web scraping code.
Web scraping is the process of extracting data from different websites available on the
World Wide Web [18].

Step by step process of extracting dataset

Go to “https://intogen.org/search” (accessed on 10 September 2022). Click on breast
adenocarcinoma in the circle under “IntOGen Samples”. Click on the table tab under

https://intogen.org/search
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“Mutational cancer driver genes”. All 99 genes are listed here. Click on first gene named
“TP53”. Click on table tab under “Observed mutations in tumors”. All mutation information
is present here for this single gene. You can see mutation information related to other genes
by clicking each gene. At the write top of this page is written “Gene details”. Under “Gene
details” there is written “Ensembl id”. This is the id of normal gene sequences related to the
selected gene. If you click on this link, you will go to http://asia.ensembl.org/ (accessed on
10 September 2022) where you will find normal gene sequences. Click on this link and then
click on the sequence on the left panel. Normal sequences will be shown in the main page
and a download link is also available to download this normal gene sequence. repeat this
process 99 times for each gene to download the whole dataset of Breast adenocarcinoma.
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