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Abstract: Gestational diabetes mellitus (GDM), one of the most common endocrine pathologies
during pregnancy, is defined as any degree of glucose intolerance with onset or first discovery in
the perinatal period. Physiological changes that occur in pregnant women can lead to inflammation,
which promotes insulin resistance. In the general context of worldwide increasing obesity in young
females of reproductive age, GDM follows the same ascending trend. Changes in the intestinal
microbiome play a decisive role in obesity and the development of insulin resistance and chronic
inflammation, especially in patients with type 2 diabetes mellitus (T2D). To date, various studies
have also associated intestinal dysbiosis with metabolic changes in women with GDM. Although
host metabolism in women with GDM has not been fully elucidated, it is of particular importance
to analyze the available data and to discuss the actual knowledge regarding microbiome changes
with potential impact on the health of pregnant women and newborns. We analyzed peer-reviewed
journal articles available in online databases in order to summarize the most recent findings regarding
how variations in diet and metabolic status of GDM patients can contribute to alteration of the gut
microbiome, in the same way that changes of the gut microbiota can lead to GDM. The most frequently
observed alteration in the microbiome of patients with GDM was either an increase of the Firmicutes
phylum, respectively, or a decrease of the Bacteroidetes and Actinobacteria phyla. Gut dysbiosis was
still present postpartum and can impact the development of the newborn, as shown in several studies.
In the evolution of GDM, probiotic supplementation and regular physical activity have the strongest
evidence of proper blood glucose control, favoring fetal development and a healthy outcome for the
postpartum period. The current review aims to summarize and discuss the most recent findings
regarding the correlation between GDM and dysbiosis, and current and future methods for prevention
and treatment (lifestyle changes, pre- and probiotics administration). To conclude, by highlighting
the role of the gut microbiota, one can change perspectives about the development and progression of
GDM and open up new avenues for the development of innovative therapeutic targets in this disease.

Keywords: gut microbiome; microbiota; gestational diabetes; dysbiosis; Firmicutes/Bacteroidetes ratio;
prebiotics; probiotics

1. Introduction

Gestational diabetes mellitus (GDM) represents a subcategory of diabetes mellitus,
being defined as any degree of glucose intolerance, with debut/first discovery during
pregnancy [1–3]. GDM is one of the most frequent endocrine pathologies in pregnant
women [4], affecting about 5–15% of pregnancies worldwide, although an important role
regarding its prevalence is played by ethnicity [3,5,6]. GDM can be determined by a
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multitude of risk factors, a significant role being played by dietary intake and body mass
index (BMI). These have to be modulated by lifestyle interventions to assure a normal
microbiota during pregnancy, in order to improve the health of both the mother with GDM,
as well as the child. The most important risk factors, identified by the majority of studies,
are summarized in Table 1.

Table 1. The most important modifiable and non-modifiable risk factors that can contribute to the
development of GDM. One or more risk factors can be present in the same pregnant woman.

Risk Factors for GDM 2

Modifiable Non-Modifiable

Obesity [7–9] Family history of GDM [8]
Change in weight between pregnancies [3] Family history of T2D [8,10]

Significant weight gain in pregnancy [3] Advanced age of the mother [11]
Stress [3] Previous delivery of a baby >4000 g [8]

Antidepressant and psychotropic drugs [3] High parity, hydramnios [3]
Smoking [3] History of polycystic ovary syndrome [8]

Inadequate sleep patterns [12] Ethnicity (African, Asian, American, Pacific Islands) [8,13]
Western diet [9] Previous or pregnancy developed hypertension [12]

Sedentary lifestyle [8]

Insulin resistance during pregnancy is caused by the action of placental hormones,
i.e., human placental lactogen and placental growth hormone [14]. In a normal pregnancy,
there is an increase in metabolic demand and insulin resistance, and therefore, the number
of maternal β-cells increase by hypertrophy and neogenesis, accompanied by insulin
production and secretion [15]. In women with high insulin resistance, the pancreatic β-cells
fail to adapt accordingly to the intensifying metabolic needs, and glucose intolerance and
hyperglycemic status appear [16]. The evolution of glycemic status in normal pregnancy
and in a GDM pregnancy is illustrated in Figure 1.
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Figure 1. Glycemic status in normal pregnancy versus GDM. (A) In a normal pregnancy, the eug-
lycemic status from the pre-gestational period will be preserved by the compensatory mechanisms
(increasing blood glucose, hyperplasia and hypertrophy of β-cells, decreasing insulin sensitivity)
which will return to normal after birth. (B) In a GDM pregnancy, these mechanisms fail to adapt,
resulting in hyperglycemic status. After pregnancy, glycemic status can either return to normal or it
can be a risk of T2D and of GDM in future pregnancy [17]. Created with BioRender.com (accessed on
8 October 2022).
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In the last few years, studies have shown the importance of metabolic status changes
in GDM and its effects on altering the gut microbiome, but also the fact that disturbances of
gut microbiota can be a contribution in developing GDM [18,19]. During normal pregnancy,
physiological changes in hormonal, metabolic, and immunological homeostasis can lead to
an intense inflammatory process, while insulin resistance is increasing, in association with
proliferation and alteration of bacterial load in the gut [18]. This can exert influence on
intestinal permeability and energy balance, inducing some of the pathogenesis of GDM [20].
The exact correlation between these processes remains unknown [21]. Additionally, GDM
can have predictive values for obesity among children and also for the development of
inflammatory diseases in offspring [22]. As the gut microbiome is influenced by our diet
or immune system, it has been shown that fecal samples differ in microbiota composition
between healthy women and those with GDM, and also within the groups of women with
GDM, from the first trimester to the third one [23].

Unfortunately, there are just a few studies that have analyzed the changes in the
microbiome of the patients with GDM and the comparisons are difficult to make due
to distinctive variations of cohorts. However, most of the results have shown either an
increase of Firmicutes and a decrease of Bacteroides and Actinobacteria or no difference in the
microbiota of the patients with GDM compared to healthy patients [8,24–26]. An important
fact is that those changes can remain postpartum or can influence the fetus, so one of the
primary objectives of the lifestyle interventions has to be the adjustment of microbiota
during the perinatal period, as studies have reported that this improves the health of GDM
women and of their offspring [8,20,27].

In this review, we set out to analyze the effects of changes in the intestinal microbiome
in triggering GDM, the impact of dysbiotic changes on the immune system, to which it is
directly related and which is also incriminated in the occurrence of GDM. Moreover, we
evaluated the value of diet and lifestyle changes, as well as the effect of the administration
of pre- and probiotics in the regulation of dysbiosis and the evolution of GDM. A better
understanding of the interrelations between microbiota, immune system, and GDM will
allow in the future to create different strategies for a therapeutic approach in preventing
GDM installment and evolution.

2. Gut Microbiota Evolution during Normal Pregnancy

Microbiota evolves along with us from birth throughout life. Recent studies refuted
the fact that microbiota develops after delivery and confirmed the existence of the micro-
bial communities in amniotic fluid, the womb, placenta, and meconium [28,29]. During
pregnancy, physiological changes that aim to maintain the health of the mother and the
fetus, can modify the microbiota of the gut, oral cavity, and vagina of the mother [30]. First
of all, the gut microbiota presents significant modifications during the course of a normal
pregnancy, from increased α-diversity (within individuals) and decreased β-diversity (be-
tween individuals) in the first trimester, to a reversed α-β ratio in the third trimester. All of
these changes are substantially influenced by a lot of factors, such as diet, body mass index,
GDM, antibiotics, endocrine, and immune systems of the host [18,31].

Gut microbiota consists of five major bacterial phyla: Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria, and Verrucomicrobia [32]. The Firmicutes phylum is made up of Ru-
minococcus, Clostridium, Lactobacillus, and butyrate-producing bacteria, and the Bacteroidetes
phylum is represented by Bacteroides, Prevotella, and Xylanibacter [32,33]. Bacteroidetes and
Firmicutes represent the main components that can be correlated with obesity and type
2 diabetes (T2D).

During pregnancy, in all the body’s microbial communities, there are specific changes.
One can detect an increase in oral concentrations of Porphyromonas gingivalis, Aggregatibacter
actinomycetemcomitans, and Candida. At subgingival plaque sites, populations of Porphy-
romonas gingivalis and Aggregatibacter actinomycetemcomitans were found to be higher in the
beginning and middle period of the pregnancy than in non-pregnant women [34,35]. Other
studies suggest that, in the second and third trimester, there are elevated concentrations of
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subgingival Aggregatibacter actinomycetemcomitans and periodontal Candida [34–37]. It was
underlined that progesterone and estrogen contribute to the microbiota changes, but the
exact mechanisms remain unclear, except for the known fact that estrogens can accentuate
Candida infections [34–37].

In the placenta, aerobic and anaerobic bacteria are found in higher quantities. In
the gastrointestinal tract, Actinobacteria and Proteobacteria multiply, while Faecalibacterium
levels decrease. In the last trimester, there are significant populations of Streptococcus,
Lactobacillus, and Enterococcus. Immediately postpartum, Streptococcus populations are
still substantial, while the density of Faecalibacterium, butyrate-producing bacteria also
possessing anti-inflammatory roles, is decreasing [18,38]. Regarding the vaginal microbiota,
Lactobacillus species develop throughout the pregnancy with regression after birth [18,35].

Throughout the first trimester, studies have shown that the gut microbiota of a preg-
nant woman consists mostly of Firmicutes, principally Clostridiales, over Bacteroidetes, and
mucin-degrading microorganisms like Akkermansia (Verrucomicrobia phylum) and Bifidobac-
terium (Actinobacteria phylum) [39,40]. The presence of an increased amount of mucin-
degrading microorganisms in the first trimester, that seems to remain elevated during
the time of gestation, is extremely important because it increases the energy extraction
(even in the absence of satisfactory nutritional substrate). Any alteration of mucin, which is
necessary for the preservation of the mucosal barrier of the gut, may breach its integrity [41].
Clostridiales, butyrate-producing bacteria, was found in low concentrations in obese pa-
tients, T2D patients, and GDM in the second trimester [24,42–45]. The Enterobacteriaceae
family was correlated with HbA1C levels in previous studies, being more abundant in
the second trimester in GDM women and in type 2 diabetic patients compared to control
groups [24,46,47].

During the course of the pregnancy, in the third trimester, proinflammatory microor-
ganisms from Proteobacteria and Actinobacteria phyla are increased and anti-inflammatory
microorganisms from Faecalibacterium genus (Firmicutes phylum, Clostridiales order) are
decreased. As a consequence, all of these proinflammatory microorganisms can cause
inflammation-related dysbiosis and changes similar to metabolic syndrome. Furthermore,
obesity, hyperglycemia, and insulin resistance can appear, in association with the possibil-
ity of developing inflammatory bowel diseases and also respiratory diseases [48–50]. A
very interesting fact is that, even if all of these microbiota changes can influence mater-
nal health during pregnancy, they are mandatory for a normal fetal growth, as increased
maternal energy storage is essential for lactation and gluconeogenesis during the neona-
tal period [18,51]. The most important changes of the microbiota during pregnancy are
summarized in Figure 2.

Maternal microbiota during pregnancy can modulate the gut microbiota of the new-
born, a few studies showing increased Lactobacillus, Clostridiales, Bacteroidales, and Acti-
nomycetales in the vagina, microorganisms acquired during vaginal birth, protecting the
newborn from atopic diseases and even from some pathogens [52,53].

Due to the physiological changes pregnant women go through, they are likely to gain
weight, with BMI being another important factor that can influence the gut microbiota. The
Bacteroidetes phylum is usually decreased (50% reduction), while the Firmicutes phylum is
increasing (compensatory 50% increase), as suggested by a study performed on microbiota
of genetically obese ob/ob mice, lean ob/+ and wild-type siblings and their ob/+ mothers [54].

We have to emphasize the importance of maternal factors that modulate the microbiota
during a normal pregnancy. For example, one of the most important factors and the one
we can easily modify for a healthy outcome is the dietary intake. Studies have shown that
a diet based on meat can increase the Firmicutes phylum, while vegetarian diets reduce
Proteobacteria, Bacteroidetes, and Actinobacteria phyla [55,56].

Diets high in fat also decrease the Actinobacteria phylum (responsible for inhibiting
some pathogens and producing essential vitamins), while the ones based on fibers can
lower the ratio of Firmicutes to Bacteroidetes, protecting from excess adiposity and gaining
weight [57–59].
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Dietary influences in gut microbiota composition are summarized in Table 2.
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Table 2. Dietary influence in gut microbiota composition.

Higher Fiber Diet High Fat Diet High Protein Diet High Carbohydrate Diet

Bacteroidetes ↑ [60] Bacteroidetes ↓ [61] Bacteroidetes ↑ [62,63] Bacteroidetes ↑ [64]
Firmicutes ↑ [65] Firmicutes ↑/↓ [61,66] Firmicutes ↑ [63] Firmicutes ↑ [64]

Actinobacteria ↑ [65] Actinobacteria ↓ [67] Proteobacteria ↑ [63] Actinobacteria ↑ [68]
Proteobacteria ↓ [67] Proteobacteria ↓ [67] Deferribacteres ↑ [63]

Unfortunately, from all of these complementary factors that can modulate the gut
microbiota during normal pregnancy, dietary intake and BMI are only two from a multitude.
It is difficult to understand all the interrelated mechanisms and their effects on increas-
ing/decreasing the abundance of the microorganisms from the first to the third trimester.
All the known risk factors have positive/negative consequences over the maternal gut
microbiota, and further research is needed in order to obtain a better result in maintaining
the health of both the mother and the child.

3. Dysbiotic Changes in Pregnant Women Developing Gestational Diabetes

Animal studies revealed that mice with obesity induced by nutrition displayed more
abundant Firmicutes populations when compared to mice with normal weight [69]. A high
Firmicutes/Bacteroidetes ratio was also found in mice fed with high-fat food compared to
lean mice [61].

When comparing T2D patients to non-diabetic patients, lower quantities of Firmicutes
phylum and Clostridia class were found, along with higher proportions of Bacteroidetes
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and Proteobacteria. As a conclusion, Firmicutes to Bacteroidetes ratios were significantly and
positively correlated with reduced glucose tolerance [70].

GDM women have a low abundance of intestinal microbiota, which is associated
with a proinflammatory status and insulin resistance [71]. When compared to normo-
glycemic pregnant women, GDM patients had elevated concentrations of Faecalibacterium
and Anaerotruncus and lower concentrations of Clostridium and Veillonella [72]. Bacteriodes
and Isobaculum were found to be in low concentrations in patients with GDM in the last
trimester and the postpartum period [72].

Crusell et al. concluded that there were higher concentrations of Actinobacteria phylum
and Collinsella, Rothia, and Desulfovibrio genera in GDM patients diagnosed in the third
trimester. Furthermore, alterations of the gut microbiota were still present even after
8 months after birth. The abnormal composition of gut microbiota of women with GDM
seemed to be similar to non-pregnant patients with T2D [72].

GDM can also have an impact on the intestinal homeostasis of the newborn. GDM,
along with high values of BMI can modify gut microbial structure, variety, and short chain
fatty acids (SCFA) concentrations in neonates. Compared to a healthy population, lower
levels of Lactobacillus, Flavonifractor, Erysipelotrichaceae, and unspecified families from the
Gammaproteobacteria were found in infants with GDM mothers. This condition was also
linked to the presence of high concentrations of microorganisms responsible for early
immune cell function suppression, i.e., Phascolarctobacterium [22].

GDM was linked to the microbiota of newborns from GDM mothers. Low levels
of Lactobacillaceae can have a negative impact on early immunological development, as
this taxon was indicated to be involved in the innate immune system evolution at young
ages [22]. Newborns from mothers with GDM possessed a significant association with high
Lachnospiraceae concentrations, which are known to be in elevated amounts in patients with
GDM [21,72,73] and T2D.

Aiming to explore microbial biomarkers for GDM, Ma Shujuan and colleagues con-
ducted a case-control study based on an early pregnancy follow-up cohort. Considerable
differences were noted regarding concentrations of several microorganisms. In the GDM
group, Eisenbergiella, Tyzzerella 4, and Lachnospiraceae NK4A136 were more abundant, while
Parabacteroides, Megasphaera, and Eubacterium eligens group prevailed in the control group.
Fasting blood glucose concentrations were positively associated with higher concentrations
of Eisenbergiella and Tyzzerella 4, while three genera from the control group displayed the
contradictory phenomenon (Parabacteroides, Parasutterella, Ruminococcaceae UCG 002) [73].
The conclusion of the study by Ma and colleagues was that dysbiosis in early pregnancy
was correlated with the occurrence of GDM and that microbiota-targeted biomarkers could
represent possible predictors of GDM [73].

Dissimilarities between GDM and normoglycemic pregnant women regarding intesti-
nal microorganisms were noted in many studies [21,24,72,74–77]. In GDM women, opposed
to normoglycemic controls, several differences were reported: abundant populations of
Klebsiella variicola, Ruminococcus, Prevotella, Desulfovibrio, Rothia, Fusobacterium, Blautia, Eu-
bacterium hallii group, and decreased populations of Bifidobacterium spp., Eubacterium spp.,
Bacteroides, Parabacteroides, Dialister, Akkermansia, Marvinbryantia, Anaerosporobacter, and
Faecalibacterium [24,72,76–78].

4. Immune-Mediated Reactions and Diabetes

The pathogenesis of both type 1 diabetes (T1D) and T2D, along with all other intermedi-
ate forms of diabetes, concerns the immune system. Both inflammation and autoimmunity
play roles in the development of these diseases. Changes in everyday lifestyle and diet pat-
terns are reflected in alterations of the gut microbiota. The microbiome displays an essential
role in the training and development of both the innate and adaptive immune system, while
the immune system influences the symbiosis between the host and its microorganisms [79].

It is believed that immune-mediated reactions, which are induced by changes in the
microbiota composition, can be facilitators for the development of diabetes, in patients with
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predisposition to the disease [33]. The potential causality between commensal microbiota
and host immunity was documented through germ-free animal models. The lack of
microbes was linked to serious gut abnormalities regarding the lymphoid tissue architecture
and thus its immune roles [80].

Chronic inflammation can lead to various metabolic disorders, including atherosclero-
sis, obesity, and even diabetes mellitus. The interactions between immune and parenchymal
cells in very active organs with metabolic roles play important parts in the development
of metabolic disorders [81]. Additionally, metabolites from the gut microbiome can pass
through the gut barrier and go into the systemic circulation, facilitating metabolic inflam-
mation [82].

Communications between the immune system and the gut microbiota can also be
involved in T1D [83]. Myeloid differentiation primary response 88 protein (MyD88) repre-
sents a connector for a multitude of innate immunity receptors responsible for the signaling
pathways triggered by effector molecules interleukin-1 (IL-1) and interleukin-18 (IL-18) [84].
In animal studies, diabetic mice, but not obese, without MyD88 signaling developed T1D,
while the existence of microbes can diminish the development of the disease. Further-
more, MyD88 regulates the differentiation of T cells and supports the homeostasis of the
microbiota by acting on IgA. MyD88 also controls the development of Th17 cells through di-
minishing the growth of segmented filamentous bacteria in mice [85]. Reduction or absence
of Akkermansia muciniphila populations can lead to systemic translocation of endotoxin-
activated CCR+ monocytes, which can trigger the innate pancreatic beta 1a-cells, leading to
high insulin resistance [86].

Gut microbiome and the immunological response of the host are strongly intertwined.
Gut dysbiosis can contribute to immune disorders, such as inflammatory bowel disease
and lupus erythematosus [87–90]. It was noted that a loss of butyrate-producing bacteria
was associated with gut inflammation, with elevated levels of IL 17 and low levels of
IL 10 [91]. Butyrate, in early pregnancy, can increase the chances of embryo survival
in animal studies [89,92]. High local concentrations of IL-15 are cited to be associated
with unfavorable pregnancy outcomes [11,89]. Elevated expression of IL-15 in the gut
epithelium can change the microbiota, lowering butyrate-producing bacteria and therefore
butyrate levels [89,93]. In vitro research shows that progesterone can lower the bacterial
load, but increases the growth of Faecalibacterium, Bacteroides, and Bifidobacterium [89,94].
Estrogen was associated with increased mucosal expression of regulatory B-cells and
M2 macrophages, thus improving the local barrier, with increasing concentrations of
bacteria with immune modulatory roles. Additionally, both progesterone and estrogen can
enforce the barrier capacity of the epithelium, which can further influence the bacterial
composition [89,95].

Another mechanism that has been shown to increase the risk of autoimmune diabetes
is the alteration of pancreatic β-cells function by some bacterial toxins. According to Mayers
et al., who evaluated the connection between dietary microbial toxins and type 1 diabetes,
they concluded that Streptomyces toxins and bafilomycin A1 can affect islet homeostasis
by releasing autoantigens. In the case of a genetically predisposed person, this could lead
to type 1 diabetes [96].

As many studies have shown, physical exercises can regulate the gut microbiota in
T1D. Codella et al. presented the importance of training impact on the inflammatory status
and glycemic profiles, and showed that in non-obese diabetic mice, exercise of moderate
intensity can lower glucose effects in later stages of diabetes, pointing out that the impact
of training in immunomodulation can lead to improved treatments in the future, therefore
further studies are needed [97].

In cases of T2D, obesity, being characterized by a low-grade inflammation, represents
one of the most important factors that can induce activation of the immune system. Gram-
negative bacteria of the gut contain lipopolysaccharides (LPS) in their outer membrane that
can induce an important inflammatory response [98]. By overpassing the intestinal barrier,
LPS reach the systemic circulation and stimulate the receptor protein CD14, with the help
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of LPS-binding protein, forming a complex that can bind macrophages’ Toll-like receptor 4
and activates the production of inflammatory effectors, like activator protein 1 and nuclear
factor kB [99,100]. Moreover, Pomie et al. evaluated intestinal retinoic-acid-receptor-related
orphan nuclear receptor gamma (RORγt)-generated Th17 cells in T2D and showed that
modification of the balance between T helper 17/regulatory T cell can induce reduction of
RORγt+ and IL-17-producing CD4+ T-cells that determine insulin resistance [101].

Th1/Th2 lymphoid cell balance is also involved in the pathogenesis of diabetes me-
diated by gut microbiota. Some studies showed that Gram-negative and Gram-positive
bacteria can trigger Th1 synthesis, by stimulating inflammatory cytokines or interferon
gamma (IFN-γ) [102,103]. Furthermore, Th1 secretes IL-12 that binds some specific recep-
tors on pancreatic β-cells and induces apoptosis and complications of T2D [104]. Ali et al.
evaluated the importance of IL-12 in angiogenesis in T2D and concluded that a deficiency of
IL-12 has beneficial effects on angiogenesis, with reduction of inflammation and oxidative
stress [105].

Thus, in the presence of predisposing conditions like genetics for T1D and obesity for
T2D, gut microbiota plays an important role by modulating adaptive and innate immunity
leading to diabetes [33].

It was supposed that placental and visceral adipose tissues influence low-grade inflam-
mation, which involves abnormal infiltration, differentiation, and activation of maternal
innate and adaptive immune cells [106].

High blood glucose levels in GDM patients are linked to high placental inflam-
mation [107]. High glucose concentrations can stimulate inflammasome activation in
trophoblasts, leading to secretion of inflammatory cytokines (such as IL-1β, IL-6, IL-8,
GRO-α-growth regulated oncogene alpha, RANTES-regulated on activation, normal T cell
expressed and secreted, and G-CSF-granulocyte-colony stimulating factor), and antiangio-
genic factors, like sFlt-1 (soluble fms-like tyrosine kinase) and sEndoglin. Hyperglycemia
can also decrease trophoblast migration. The inflammatory effects were partially reduced
by metformin, according to Han and colleagues [106,108].

GDM is associated with high postprandial free fatty acids concentrations and insulin
resistance. The adipose tissue of the mother is also involved in the development of GDM. It
is involved in the production of free fatty acids. Their concentrations rise as the pregnancy
progresses, along with suppression of lipolysis and serious insulin resistance.

Concentrations of adipose tissue insulin receptor substrate (IRS)-1 protein, lipoprotein
lipase and fatty acid-binding protein-2 mRNA were lower, while p85alpha subunit of
phosphatidylinositol 3-kinase levels were double in the group of GDM patients compared
to obese pregnant women without GDM. Low IRS-1 may play a part in insulin suppression
of lipolysis as the pregnancy evolves [106,109].

In the pathophysiology of GDM are involved multiple immune cells: high NK cell
cytotoxicity, monocyte activation, accentuated Th1 and Th17 response, high cytotoxic T cell,
B cell and platelet count and activation, excessive infiltration and neutrophil overactivation,
high insulin resistance, macrophage infiltration and activation [106].

5. Probiotics and Dietary/Lifestyle Changes—The Value in the Evolution of
Gestational Diabetes. Prevention and Treatment
5.1. Prevention

Probiotics are known to efficiently control the structure and roles of the gut microbiome,
diminishing adverse metabolic outcomes produced by pathogen microorganisms [110–113].
Whether they are effective as an intervention in GDM still remains an intriguing subject for
debate [110].

Probiotics administered during pregnancy revealed better pregnancy and metabolic
results for the mother [110,114,115]. Their beneficial effects may be due to amplifying
insulin sensitivity, enzymatic deconjugation of bile acids, and transformation of cholesterol
into coprostanol at intestinal level [110,116–120].
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Taylor and colleagues aimed to review the effects of probiotic administration on
fasting plasma glucose, insulin resistance, and LDL-cholesterol levels in GDM patients.
However, after analyzing four high-quality randomized controlled trials, the results were
that probiotic supplementation was not efficient in lowering fasting plasma glucose and
LDL-cholesterol in GDM patients, but it decreased insulin resistance after a period of
6–8 weeks of probiotic supplementation [121]. Probiotic administration for a period of
4 weeks during pregnancy did not influence maternal fasting plasma glucose, according to
the work of Lindsay et al. [122].

The study conducted by Luoto Raakel and colleagues aimed to identify the safety and
efficacy of perinatal probiotic supplementation, for 24 months after birth, in a group of
256 women, who were randomized in their first trimester of pregnancy into a control or
dietary change group [123]. The intervention category was later double-blindly randomized
into placebo (diet/placebo) and probiotics supplements (diet/probiotics: Lactobacillus
rhamnosus GG and Bifidobacterium lactis BB-12). The incidence of GDM was lower in the
diet/probiotics group, also with safe outcomes of the pregnancy for both the mother and
the child [123–125].

The utility of probiotics, used as a preventive method for GDM, is controversial. The
efficacy of probiotic ingestion in the treatment of overweight and obese women with an oral
probiotic was not effective in preventing GDM. The SPRING (the Study of Probiotics IN
the prevention of Gestational diabetes) study is a multi-center, prospective, double-blind
randomized controlled trial conducted in Brisbane, Australia [126]. This trial included
women with BMI over 25.0 kg/m2, followed for a period of two years, and consisted
of administering placebo or probiotic capsules starting from the 16th week of gestation
until birth. Each probiotic capsule contained >1 × 109 colony forming units each of
Lactobacillus rhamnosus GG and Bifidobacterium lactis BB-12 per day. The primary outcome
was diagnosis of GDM at 28 weeks of gestation, assessed by a 75 g oral glucose tolerance
test [126]. Findings from the SPRING trial, involving 204 women in the placebo group
and 207 women in the probiotics group (administered from the first half of the second
trimester), concluded that the incidence of GDM was not reduced at the 28th gestation
week for the probiotics group [126,127].

Lindsay and colleagues evaluated the use of Lactobacillus salivarius UCC118 for a period
of 4 weeks, starting from the 24th week of gestation, in a placebo-controlled, double blind,
randomized trial, including 175 pregnant women with early pregnancy body mass index
(kg/m2) between 30 and 39.9; 138 women completed the study (63 in the probiotic group
and 75 in the placebo group), with no difference being found regarding maternal fasting
glucose level, metabolic profile or pregnancy outcomes [122].

A systematic review and meta-analysis conducted by Jarde et al., counting 27 previous
studies, found no evidence that administering probiotics or prebiotics during pregnancy
influences the risk of preterm birth or the occurrence of GDM [128].

5.2. Treatment

Regular physical activity during pregnancy is beneficial in both healthy and GDM
women. Pregnant women should be encouraged to initiate or continue exercise training
during pregnancy, according to The American College of Obstetricians and Gynecologists
(ACOG), providing additional benefits in the prevention of pregnancy-related complica-
tions [102]. The American Diabetes Association recommends exercise for a mean of 30 min
almost daily for women with GDM, in order to ameliorate glucose control [2,3].

Women with GDM who frequently exercised during pregnancy (2–7 days per week,
30–60 min per session) proved to have beneficial outcomes not only concerning fasting
blood glucose and postprandial blood glucose levels, but also fetal impact (lower birth
weight) [129–133]. Some reports noted postponed insulin treatment [3,124,134].

Routine exercise during pregnancy proved to have favorable outcomes in GDM pa-
tients, such as better adjustments in skeletal muscles, ameliorated oxidative capacity, higher
expression of proteins with roles in mitochondrial biogenesis, augmented lipid oxidation,
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and enhanced insulin sensitivity and glucose uptake. As a result, the inflammatory status
can be diminished and the vascular function can be improved. Exercise provided benefits
not only for the mother during pregnancy, but also for the postpartum period and fetal
development [3].

It was reported that multispecies probiotic supplementation for a period of eight weeks
in diabetic patients lowered inflammation, decreasing highly sensitive C-reactive protein
serum levels [110,135]. On the contrary, there are some proper randomized controlled trials
that point out the lack of influence of probiotics on fasting plasma glucose and fasting
serum insulin levels, alongside gestational weight in GDM patients [110,136–138].

The systematic review and meta-analysis of six randomized controlled trials, involving
830 patients with GDM, pointed out that probiotic supplementation significantly reduced
fasting serum insulin and insulin resistance, but there was no considerable impact on
fasting plasma glucose, gestational age, and gestational weight [110].

According to the work of Zheng et al., who evaluated ten randomized controlled trials,
probiotic supplements for women with GDM resulted in beneficial effects of glycemic
control. However, the adequate dose and bacterial composition of probiotics and the long-
term effects of probiotics used for pregnant women should be assessed further through
large-scale clinical trials [138].

6. Conclusions

Gestational diabetes, its incidence and demographics, are changing worldwide, in-
creasing attention on the subject. Up to date, there are conflicting data in the literature
concerning the potential actions one can make in order to prevent or predict GDM in high-
risk patients. The microbiota of women suffers a multitude of changes during pregnancy,
mostly in the Firmicutes/Bacteroidetes ratio. Dysbiosis in early pregnancy, intertwined
with host immunity, can influence later occurrence of GDM. Potential solutions for this prob-
lem can be lifestyle changes, such as regular physical exercise and diet changes, and even
administering probiotics. Some studies suggest that probiotics can increase insulin sensitiv-
ity and diminish the inflammatory response, while also providing a better metabolic status.
Unfortunately, there is no consensus regarding either the optimal dose and bacterial load of
probiotics, or the adequate amount of time for the treatment. Further studies are needed in
order to provide clear insights of GDM and its pathogenesis, alongside microbiota-targeted
biomarkers for early diagnosis of GDM and potential prevention methods.
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