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Abstract: In this study, an (A-R)TiO2 catalyst (ART) was prepared via the sol–gel method, and g-C3N4

(CN) was used as an amendment to prepare the g-C3N4/(A-R)TiO2 composite catalyst (ARTCN).
X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), Raman spectroscopy, N2 adsorption–desorption curves (BET), UV–Vis diffuse absorption
spectroscopy (UV–Vis DRS), and fluorescence spectroscopy (PL) were used to evaluate the structure,
morphology, specific surface area, optical properties, and photocarrier separation ability of the
catalysts. The results showed that when the modifier CN content was 0.5 g, the dispersion of the
ARTCN composite catalyst was better, with stronger light absorption performance, and the forbidden
band width was smaller. Moreover, the photogenerated electrons in the conduction band of ART
transferred to the valence band of CN and combined with the holes in the valence band of CN, forming
Z-type heterostructures that significantly improved the efficiency of the photogenerated electron-hole
migration and separation, thus increasing the reaction rate. Gaseous and liquid ammonia were used
as the target pollutants to investigate the activity of the prepared catalysts, and the results showed
that the air wetness and initial concentration of ammonia had a great influence on the degradation of
gaseous ammonia. When the initial concentration of ammonia was 50 mg/m3 and the flow rate of the
moist air was 0.9 mL/min, the degradation rate of gaseous ammonia by ARTCN-0.5 reached 88.86%,
and it had good repeatability. When the catalytic dose was 50 mg and the initial concentration of
NH4

+ was 100 mg/L, the degradation rate of liquid ammonia by ARTCN-0.5 was 71.60% after 3 h
of reaction, and small amounts of NO3

− and NO2
− were generated. The superoxide anion radical

(·O2
−) and hydroxyl radical (·OH) were the main active components in the photocatalytic reaction

process.

Keywords: photocatalysis; ammonia; degradation; mechanism

1. Introduction

Ammonia is a colorless alkaline gas that causes strong irritation, mainly from agricul-
tural fertilization, animal husbandry, and the use of antifreeze [1]. Estimates have shown
that China emits 10 to 15 million tons of ammonia into the air every year, almost double
the total of the United States and the European Union [2]. Large-scale ammonia emissions
will not only cause diseases in animals and humans, such as central muscle paralysis and
bronchitis, but also cause global climate change [3]. Ammonia reacts with oxides in the air,
producing particulate matter such as ammonium sulfate and ammonium nitrate, which
are the main factors that form haze [4]; thus, controlling ammonia emissions is beneficial
to controlling haze [5]. In addition, ammonia gas will return to the surface through atmo-
spheric dry and wet deposition, leading to the eutrophication of water and affecting the
stability of the ecosystem [6]. Traditional ammonia treatment processes have high costs
and poor stability, which may aggravate the secondary pollution of the environment [7].
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In 1972, Fujishima discovered that TiO2 could photolyze water under ultraviolet light,
and this photocatalytic reaction has been widely used in environmental governance, energy
development, biological applications, self-cleaning materials, antibacterial applications,
sensors, and other fields due to its thorough reaction and lack of secondary pollution [8].
For example, A. Enesca et al. [9] prepared doped tin oxide films with different dopant
concentrations through spray pyrolysis deposition and found that the photodegradation
efficiency of the SnO2 film could reach about 30% under the condition of zinc doping.
X. Hu et al. [10] introduced and discussed the current challenges and future develop-
ment prospects of CO2 photoreduction for hydrocarbon fuels. X. Liu et al. [11] prepared
CdS@ZIS-SV, and its hydrogen production rate reached 18.06 mmol/g/h, which was 16.9
and 19.6 times that of original CdS (1.16 mmol/g/h) and ZIS (0.92 mmol/g/h) mate-
rials, respectively. In ammonia gas degradation, P.A. Kolinko et al. [12] and H.M. Wu
et al. [13] pointed out that the N element had various valence states. Herein, its main
product was N2, and its by-products were N2O, NO2

−, and NO3
−. Among the many

photocatalytic materials, TiO2 has become photocatalyst with the most potential due to
its advantages such as good chemical stability, safety, non-toxicity, low cost, and strong
REDOX ability [14]. Most studies have indicated that the degradation performance of
anatase (A-TiO2) is better than rutile (R-TiO2), and reports on TiO2 have mainly used the
anatase phase [15]. Shen et al. [16] stated that when the A-TiO2 and R-TiO2 phases formed
a heterogeneous structure, an internal electric field could form, thus promoting the transfer
of charges on the interface and improving photocatalytic activity. Das et al. [17] prepared a
mixed anatase/rutile crystal structure that had a higher photocatalytic performance than
commercial P25 under visible light. Xiong et al. [18] showed that mixed crystalline anatase
and rutile TiO2 nanoparticles exhibited a high photocatalytic carbon dioxide reduction
capacity. However, its high bandgap width (3.2 eV for anatase and 3.0 eV for rutile) resulted
in a response to only high-energy UV light, and its photogenerated charge carriers were
easy to recombine, thus limiting its catalytic activity [19]. For example, Guarino et al. [20]
sprayed TiO2 on a wall with a total area of 150 m2 at a spray quantity of 70 g/m2 and using
a 36 W UV light as the light source, and the degradation rate of ammonia was found to be
about 30%.

Photocatalytic materials can be used to form heterogeneous structures. For example,
Shihua Pu et al. [21] achieved the degradation of ammonia under sunlight for the first
time through the Cu2O improvement of {001}TiO2, and the degradation rate of ammonia
was found to be more than 80% within 2 h. However, due to the photocorrosion of
Cu2O itself, the degradation rate of ammonia gas was only maintained at 40% after four
repeated uses, making the choice of amendment very important. g-C3N4 has shown
a narrow band gap, with a wide range of light responses and good thermal stability,
chemical stability, and strong corrosion resistance [22]. Most studies have found that
the formation of heterostructures through the preparation of g-C3N4/TiO2 composite
catalysts could broaden the solar spectral response of the catalyst, and photogenerated
charge carriers are not easy to recombine [23]. For example, Li et al. [24] constructed a
g-C3N4/TiO2 heterostructure that achieved effective photoinduced electron-hole separation
in the photocatalytic process and showed a good photocatalytic effect and cyclic stability.
Zhao S et al. [25] used synthesized g-C3N4/TiO2 to degrade phenol with 2.41 and 3.12 times
g-C3N4 and TiO2 contents, respectively. Sun et al. [26] used synthetic g-C3N4/TiO2 to
degrade methylene blue with 1.85 and 4 times pure g-C3N4 and TiO2 content, respectively;
this showed that it was feasible to improve TiO2 degradation capacity by using g-C3N4 as
an amendment, but a study on ammonia degradation has not been previously reported.

In this study, an (A-R)TiO2 catalyst (ART) was prepared via the sol–gel method, where
g-C3N4 (CN) was used as an amendment to prepare g-C3N4/(A-R)TiO2 (ARTCN) with
a Z-type heterostructure, which improved the efficiency of photogenerated electron-hole
migration and separation. In this study, using gaseous ammonia and ammonia as the
target pollutants, we explored the ARTCN degradation of ammonia, the mechanism of
performance improvement, the intermediate, and the reaction process. We also studied
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the repeated use of ARTCN, as evidence on the properties and mechanism noted in this
research regarding the effective governance of ammonia pollution has been relatively scarce,
and this research could provide a certain theoretical basis for the management of ammonia.

2. Results
2.1. Analysis of the Characterization Results
2.1.1. XRD Analysis

When 2θ = 25.28◦, 36.95◦, 37.80◦, 38.55◦, 48.04◦, 53.89◦, 55.06◦, 62.68◦, 70.31◦, 75.03◦,
and 76.02◦, the characteristic peaks corresponding to the (101), (103), (004), (112), (200), (105),
(211), (204), (220), (215), and (301) crystal planes, respectively, were almost consistent with
the anatase TiO2 (JCPDS No. 21-1272) standard cards [27]. Furthermore, 2θ = 27.45◦, 36.09◦,
39.19◦, 41.26◦, 44.05◦, 54.32◦, 56.64◦, 64.04◦, and 69.01◦ corresponded to the (110), (101),
(200), (111), (210), (211), (220), (310), and (301) crystal planes, respectively, which was almost
consistent with the rutile TiO2 (JCPDS No. 21-1276) standard card [28]. The characteristic
peaks at 2θ = 13.1◦and 27.5◦ belonged to the (100) and (002) planes, respectively which was
largely in line with g-C3N4 (JCPDS87-1526) [29].

Figure 1 shows the XRD patterns of the prepared samples. We found that ART
contained not only the characteristic peaks of the anatase phase but also the characteristic
peaks of the rutile phase, indicating that it was a mixed crystal type, which was the prepared
(A-R)TiO2 catalyst. CN had a weak diffraction peak near 13.1◦, corresponding to the (100)
crystal plane of CN, which was formed by the 3-S monotriazine structural unit of the
plane [30]. There was a strong diffraction peak at 27.50◦, which was caused by the layered
accumulation of graphite in the conjugate plane. The diffraction peak of the ARTCN-X
composite corresponded to pure ART, which indicated that CN did not enter the ART
lattice and was only attached to its surface. There was no diffraction peak in the composite
samples of ART and CN at 13.1◦, because the amount of CN was small and had a weak
peak. Although the peaks of CN at 27.50◦ and R-TiO2 at 27.45◦ coincided, we observed that
as the composite ratio increased from 0.1 to 1, the composite gradually widened around
27◦, indicating that the composite material was successfully prepared.
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The accuracy was further verified by calculating the rutile content of several materi-
als [31], and the calculation results are shown in Table 1. We found that the rutile contents
of ART, ARTCN-0.1, ARTCN-0.5, and ARTCN-1 were 23.49%, 25.06%, 29.43%, and 34.61%,
respectively. High temperatures were conducive to the conversion of A-TiO2 into R-TiO2,
while ART, ARTCN-0.1, ARTCN-0.5, and ARTCN-1 were prepared at the same tempera-
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ture; thus, the increased rutile content was not rutile in the real sense but rather the added
amendment of CN.

Table 1. Rutile content of the catalysts.

Samples IR (2θ = 27.24◦) IA (2θ = 25.28◦) XR

ART 523.48 2131.93 23.49%
ARTCN-0.1 605.19 2260.33 25.06%
ARTCN-0.5 704.02 2110.14 29.43%
ARTCN-1 953.81 2251.77 34.61%

Table 1 shows the rutile content of each catalyst. The formula (Equation (1)) is given
as follows:

XR =
1

1 + 0.8× IA
IR

(1)

where XR is the rutile content, IA is the peak intensity of anatase at 2θ = 25.28◦, and IR is
the peak intensity of rutile at 2θ = 27.24◦.

2.1.2. Raman Analysis

The crystal form and structure of the catalyst were further determined by Raman
spectroscopy, and Figure 2 shows the Raman spectra of the prepared catalyst. The anatase
phase of TiO2 corresponded to ν = 144 cm−1, ν = 197 cm−1, ν = 392 cm−1, ν = 514 cm−1,
and ν = 635 cm−1 [32], while ν = 437 cm−1 corresponded to rutile TiO2. The reason why
other characteristic peaks did not appear was that the content of rutile in ART was low
(as indicated by the peak intensity of XRD). ART and composite ARTCN-X both had
anatase and rutile peaks, especially the CN peak of ARTCN-1, which further validated the
XRD results.
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2.1.3. Morphology and Lattice Spacing Analysis

According to Figure 3a,h, CN was a curved and folded film with certain holes. As
shown in Figure 3b,i, ART consisted of a particle with a uniform size but serious agglom-
eration, and Figure 3c shows that CN in ARTCN-0.5 was no longer a whole film but
fragmented into many small pieces; thus, its position relative to ART could not be clearly
observed. Combined with Figure 3d–g, we clearly observed that elements O, Ti, and N
were evenly distributed in ARTCN-0.5. This showed that a composite material with a
heterogeneous structure was synthesized. In addition, as clearly shown in Figure 3j, the
ART agglomeration phenomenon was significantly improved after the improvement of
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CN, which indicated that the utilization of light by ART in the composite ARTCN-0.5 was
further enhanced.
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2.1.4. Analysis of Adsorption–Desorption of N2

The Brunauer–Emmett–Teller (BET) method was used to calculate the surface area
of the catalyst, and the Barrett–Joyner–Halenda (BJH) method was used to analyze the
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pore size and pore volume. The catalysts shown in Figure 4a all exhibited typical nitrogen
adsorption–desorption isotherms of type IV, and the hysteresis loops of the catalysts all
showed obvious openings, indicating the formation of mesoporous catalysts [33]. Figure 4b
shows the pore size distribution of the catalyst, which showed that the pore size of the
prepared catalyst was mainly concentrated at 0–20 nm, indicating that the particle size
distribution of the catalyst was narrow. Combined with the data in Table 2, we found that
the pores of the catalysts showed little difference, while the specific surface area and pore
diameter of the catalysts increased with increasing CN content.
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Table 2. Structural parameters of the samples.

Samples Specific Surface Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

ART 27.28 0.08 11.28
ARTCN-0.1 33.92 0.09 10.13
ARTCN-0.5 36.16 0.08 9.65
ARTCN-1 38.08 0.12 9.29

CN 42.09 0.11 8.67

2.1.5. Optical Performance Analysis

The optical absorption properties of the prepared samples were investigated via the
UV–Vis absorption spectra, and the results are shown in Figure 5a. The optical absorption
intensity of the ARTCN-X composite material improved by CN widened in the visible
light range because the specific ART surface area improved as CN increased, and the
agglomeration phenomenon also significantly improved. These results indicated that CN
could effectively expand the optical absorption range of ART, thus improving the response
and utilization efficiency of visible light. In addition, the band gap width of the prepared
material was calculated with the Kubelka-Munk method [34], as shown in Figure 5b. The
bandgap widths of ART, ARTCN-0.1, ARTCN-0.5, ARTCN-1, and CN were 3.01, 2.92, 2.86,
2.85, and 2.84 eV, respectively. First, we clearly observed that the band gap width of ART
was smaller than the 3.12 eV value reported in the literature, because heterostructures
would form between the anatase phase TiO2 and rutile phase TiO2, enhancing the ability of
photogenerated carrier separation [35]. Secondly, we found that with the increase in the
CN content of the amendment, the band gap width of the composite ARTCN-X became
significantly smaller than that of ART and approached that of CN, which was consistent
with other studies [36].
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2.1.6. PL and EPR Analysis

A PL spectrum can be used to study the separation of the photogenerated carriers
in semiconductors, where the lower the peak intensity, the lower the recombination rate
of the photogenerated carriers and the higher the photocatalytic activity [37]. As shown
in Figure 6a, ARTCN-0.5 had the lowest peak intensity, indicating that its photocatalytic
activity was the highest, which further indicated that as an amendment, the amount
of CN addition did not follow the logic of “the more content the better” but had an
appropriate ratio with ART. In addition, we observed that the wide wavelength range
of ARTCN-X after CN modification in the interval of 451.8–468.8 nm was attributed to
the oxygen vacancy that contained two captured electrons, which both promoted the
formation of superoxide radicals (·O2

−) and hydroxyl radicals (·OH) and was favorable for
photocatalytic degradation.
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Additional EPR spectra that were collected at room temperature provided information
regarding the oxygen vacancies (Ov). As shown in Figure 6b, the signal at g = 2.002
corresponded to Ov [38]. We found that all samples had oxygen vacancy signals, and the
intensity of ARTCN-0.5 was stronger than that of single ART and CN, which indicated that
there was a large amount of Ov that could effectively inhibit the recombination of electrons
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and holes and improve the photocatalytic activity, thus confirming the results shown in
Figure 6a.

2.2. Photocatalytic Performance Test Results
2.2.1. Study on the Photocatalytic Degradation of Gaseous Ammonia

The initial concentration of ammonia was 50 mg/m3, and the flow rate of the moist air
was 0.9 mL/min. Different catalysts were used to study their influence on the degradation
of gaseous ammonia, and the results are shown in Figure 7a. This indicated that PET itself
was not good at removing gaseous ammonia, and the average degradation rates of gaseous
ammonia by ART, ARTCN-0.1, ARTCN-0.5, ARTCN-1, and CN were 52.35%, 61.43%,
88.86%, 63.90%, and 33.51%, respectively. These results indicated that the degradation
performance of gaseous ammonia by the ARTCN-X composite catalyst modified by CN
was improved, and the effect was most obvious when the amount of CN was 0.5 g because
ARTCN-0.5 had the strongest photogenerated carrier separation ability.

The initial concentration of ammonia was 50 mg/m3, and the flow rate of moist air
was adjusted. ARTCN-0.5 was selected to study its influence on the degradation of gaseous
ammonia, and the results are shown in Figure 7b. At 1.2 mL/min, the degradation rates of
gaseous ammonia by ARTCN-0.5 were 57.93%, 63.98%, 78.26%, 83.38%, 88.86%, 87.10%,
and 67.04%. The degradation rates of gaseous ammonia by ARTCN-0.5 first increased and
then decreased with the flow rate of moist air. This was because moist air was conducive to
the deposition of gaseous ammonia. However, ARTCN-0.5 could oxidize water molecules
into hydroxyl radicals (·OH) with strong oxidation in the photocatalytic reaction process,
thus improving the efficiency of the photocatalytic reaction. However, ammonia molecules
could not tightly bind to the catalyst and flow out of the system before being reacted,
resulting in a decrease in its degradation rate.

When the flow rate of moist air was 0.9 mL/min, ARTCN-0.5 was selected to study its
influence on the degradation of gaseous ammonia, and the results are shown in Figure 7c.
When the concentrations of gaseous ammonia were 30 mg/m3, 50 mg/m3, and 70 mg/m3,
the average degradation rates of gaseous ammonia by ARTCN-0.5 were 80.38%, 88.86%,
and 73.15%, respectively. The degradation rate decreased if the concentration of gaseous
ammonia was too low or too high. This was because ARTCN-0.5 released a limited number
of active free radicals after it degraded ammonia when the concentration of gaseous
ammonia was too large. Many gaseous ammonia molecules went along with the airflow,
and when the concentration of gaseous ammonia was too small, the active radicals could
not completely combine with the gaseous ammonia.

The initial concentration of ammonia was 50 mg/m3, and the flow rate of moist air
was 0.9 mL/min. After the degradation performance of ARTCN-0.5 was tested, PET loaded
with ARTCN-0.5 was removed and kept in an oven at 70 ◦C for 2 h. Then, the test was
repeated to explore the reuse performance of ARTCN-0.5; the results are shown in Figure 7d.
The average degradation rates for the five reuse cycles were 88.86%, 85.00%, 80.40%, 76.48%,
and 70.05%. Given the inevitable catalyst loss in the process of repeated testing, ARTCN-0.5
demonstrated a good overall repeatable degradation performance.

Figure 7e shows the XRD patterns of ARTCN-0.5 before and after repeated use
(five times). We found that the crystal shape and structure of ARTCN-0.5 did not sig-
nificantly change after five repeated uses, indicating that its properties were stable.
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Figure 7. Influence of different catalysts on the degradation of gaseous ammonia (a), the effect of
different humid air flow rates on the degradation of gaseous ammonia (b), the effects of different
ammonia concentrations on the degradation of gaseous ammonia (c), the repeated degradation
performance of ARTCN-0.5 (d), and XRD patterns before and after the repeated use (5 times) of
ARTCN-0.5 (e).

2.2.2. Study on the Photocatalytic Degradation of Liquid Ammonia

When pH > 10, NH4
+ hydrolyzes in an alkaline solution and then exists in the form

of NH3·H2O [39]. Therefore, we chose to adjust the pH of ammonia nitrogen to 10.1, and
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then we tested the concentration of ammonia nitrogen in the solution. We found that it
decreased by 3.82% because a small amount of NH3·H2O escaped in the gaseous form.
The degradation results of ammonia nitrogen by different catalysts are shown in Figure 8a,
where the catalytic dose was 50 mg and the initial concentration of NH4

+ was 100 mg/L.
The degradation rates of liquid ammonia by ART, ARTCN-0.1, ARTCN-0.5, ARTCN-1, and
CN after 3 h of reaction were 50.54%, 63.18%, 71.60%, 53.55%, and 37.91%, respectively,
indicating that the degradation performance of the gaseous ammonia by the ARTCN-X
composite catalyst after CN improvement was improved.
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− and NO2

− production after the
reaction (b).

When the initial concentration of ammonia nitrogen was 100 mg/L, 50 mg of ARTCN-
0.5 catalyst was added, the pH was 10.1, and the reaction was performed after 3 h. The
results are shown in Figure 8b, which shows that the NO3

− and NO2
− concentrations were

not greater than 1.4 and 0.012 mg/L, respectively. According to the literature reports, there
are three main reaction products of ammonia nitrogen, nitrate, nitrite, and nitrogen, and
ammonia nitrogen is mainly oxidized to N2 [40].

3. Discussion
3.1. Charge Transfer Mechanism Discussion

To understand the reason for the observed improved photocatalytic performance, we pro-
posed a charge separation and transfer mechanism. The conduction band position of a semicon-
ductor could be calculated by the empirical formulas shown in Equations (2) and (3) [41]:

Ec = χ − Ee − Eg/2 (2)

Ev = Ec + Eg (3)

where χ is the geometric mean of the absolute electronegativity of each atom in the semi-
conductor, with TiO2 [42] and g-C3N4 [43] χ values of 5.81 eV and 4.82 eV, respectively;
Ee is a constant relative to the standard hydrogen electrode of about 4.5 eV [44]; Eg is the
semiconductor band gap width; Ev is the semiconductor valence band energy; and Ec is
the semiconductor conduction band energy.

According to the analysis presented in Figure 5b, the Eg values of TiO2 and g-C3N4
were 3.01 and 2.84 eV, respectively. We calculated that the Ev and Ec values of ART were
2.815 and −0.195 eV, respectively, the Ev and Ec of g-C3N4 had a value of 1.59, and Ec was
−1.25 V(vs NHE). CN was more negative than ART, and the Ev of ART was higher than
that of CN. The high photocatalytic activity of the heterojunctions between ARTCN could
be explained by the following mechanism.

Two possibilities existed for the photocatalytic mechanism of the composite catalyst:
(1) conventional type II heterojunctions and (2) Z-type heterojunctions [45]. Under sim-
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ulated solar irradiation, ART and CN were excited and generated electron-hole pairs. If
the type II heterojunction mechanism was followed, the photogenerated electrons in the
conduction band of CN would be transferred to the conduction band of ART and the
photogenerated holes in the valence band of ART would be transferred to the valence band
of CN [46], as shown in Figure 9a. However, the hole in the valence band of CN could
not generate ·OH by reacting with H2O. This was because the valence band potential of
CN (1.59 eV) was lower than the standard oxidation potential E (H2O/·OH) (2.38 eV) [47],
resulting in a decrease in ·OH content, which was inconsistent with the results shown in
Figure 9b. If the charge transfer mechanism of the Z-type heterostructure was followed,
the photogenerated electrons in the ART conduction band would transfer to the valence
band of CN and combine with the photogenerated holes in the CN valence band. This
would result in a reduction in electrons in ARTCN and the accumulation of electrons in
the CN conduction band and holes in the ART valence band, which was why the content
of ·O2

− produced by CN shown in Figure 10a was higher than that of ARTCN. The holes
that accumulated in the valence band of ART had strong oxidability and could directly
degrade ammonia molecules. However, the Ec (−1.10 V) of CN was more negative than
EO (O2/·O2

−), and the electrons that accumulated in the conduction band of CN could
react with O2 to generate ·O2

−. This z-type heterostructure was more consistent with the
characterization results of ESR (Figure 10).
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To further verify the accuracy of the above results, the test results of EIS are presented
in Figure 11, which shows the impedance diagrams of ART, CN, and ARTCN. The electron
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transfer resistance in the sample was equivalent to the semicircle diameter on the EIS
diagram, where the smaller the arc radius, the lower the charge transfer resistance of the
composite sample [48]. Hence, due to the formation of the Z-type heterostructure, the
charge-transfer resistance of ARTCN-0.5 was lower than ART and CN, which significantly
improved the efficiency of photogenerated electron-hole migration and separation, which
was consistent with the work of Y.Y. Wang [49].
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3.2. Photocatalytic Degradation Mechanism Discussion

ESR was used to detect the types of free radicals in the catalysts under light, and then
we explored their degradation mechanism of ammonia. As shown in Figure 10a,b, ART,
CN, and ARTCN-0.5 did not produce free radicals in the absence of light, and superoxide
free radicals (·O2

−) and hydroxyl free radicals (·OH) were detected after light exposure.
·O2
− and ·OH played decisive roles in the entire reaction [50]. The degradation mechanism

was as follows. After gaseous ammonia combined with moist air, NH4
+ was present as

NH3·H2O under alkaline conditions. First, when the catalyst was illuminated, electrons
and holes were generated [51]. The holes oxidized the water molecules on the surface of
the catalyst, forming ·OH, while the electrons and dissolved oxygen underwent a series
of reactions to form ·O2

−, following Equations (4)–(6) [52]. ·OH and·O2
− were the main

active components in the photocatalytic reaction process, and they could rapidly oxidize
the NH4

+/NH3/NH3·H2O adsorbed on the surface of the catalyst [53]. Equations (9)–(13)
show that ammonia was directly and completely oxidized to N2 [54], and the NO3

− and
NO2

− contents were very low after the reaction. Equations (12)–(16) show that ammonia
was not completely oxidized to NO3

− and NO2
−, which was consistent with the research

of Sun et al. [55].

g-C3N4/(A-R)TiO2+hv→ g-C3N4/(A-R)TiO2 (h+ + e−) (4)

h+ + H2O→ H+ + ·OH (5)

e− + O2 →·O2
− (6)

NH3 + ·OH→ NH2 + 2H2O (7)

NH2 + ·OH→ NH + H2O (8)

NH + ·OH→ N + H2O (9)

NHx + NHy → N2Hx+y (x, y = 0, 1, 2) (10)

N2Hx+y + (x+y)OH→ N2 + (x+y) H2O (11)

NH3 + ·OH (h+)→ NH2OH + H+ (12)

NH2OH + ·O2
− →·O2NHOH (13)
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O2NHOH + OH→ NO2
− + H2O + ·OH (14)

NO2
− + OH→ HONO2 (15)

HONO2 → NO3
− + H+ (16)

4. Materials and Methods
4.1. Materials

Ammonium chloride (AR, Chengdu Colon Chemicals Co., Ltd. Chengdu, Sichuan
province, China), butyl titanate (AR, Chengdu Colon Chemicals Co., Ltd. Chengdu, Sichuan
province, China), absolute ethanol (AR, Chongqing Chuandong Chemical Co., Ltd. Nanan
district, Chongqing, China), urea (AR, Sinopharm Chemical Reagent Co., Ltd. Huangpu
district, Shanghai, China), and NaOH (AR, Chongqing Chuandong Chemical Co., Ltd.
Nanan district, Chongqing, China) were used in this study.

4.2. Preparation of Catalysts

We added 30 mL of absolute ethanol to 35 mL of butyl titanate, which was denoted as
solution A. Then, we added 30 mL of absolute ethanol to 100 mL of distilled water, which
was denoted as solution B. Solution A was dropwise added to solution B at 4 drops per
second, and then it was mixed and stirred at a low speed for 2 h to obtain the TiO2 gel,
which was aged at room temperature. The aged TiO2 gel was transferred to a stainless
steel reaction kettle with a polytetrafluoron liner and maintained at 100 ◦C for 2 h. After
cooling, it was centrifuged and settled, washed with deionized water and ethanol 3 times,
and dried in a 100 ◦C air-drying oven. Then, the TiO2 catalyst powder was obtained after
grinding. The TiO2 powder was maintained at 600 ◦C for 2 h at a heating rate of 10 ◦C/min,
and then it was cooled to room temperature and ground to obtain ART.

Subsequently, 10 g of urea and 50 mL of water were added to the crucible and evenly
stirred. The crucible was placed in a muffle furnace and maintained at 500 ◦C for 2 h at a
heating rate of 10 ◦C/min. After the heating program was finished and the muffle furnace
naturally cooled, the obtained bulk particles were ground to obtain CN.

We mixed 0.1 g of CN, 0.5 g of CN, 1 g of CN, and 1 g of ART; added 5 mL of
absolute ethanol; stirred evenly; and then separated and dispersed the mixture using a cell
fragmentation apparatus (Ningbo, Zhejiang Province, China. Xinzhi Biotechnology Co.,
Ltd., SCIENTZ-IID, 65 Hibiscus Road, Ningbo National High-tech Zone). Maintaining the
temperature at 300 ◦C for 2 h at a heating rate of 10 ◦C/min, ARTCN-X was obtained and
is denoted as ARTCN-0.1, ARTCN-0.5, and ARTCN-1.

4.3. Fixation of Photocatalytic Materials

We washed the polyester fiber cotton (PET) with 1 mol/L of NaOH to remove the
surface impurities, and then we dried and set it aside. Subsequently, 100 mg of catalyst was
dissolved in water, the treated PET was added and shaken in a shaker for 30 min, and the
water on the surface and the excess catalyst were drained before the catalyst was dried at
70 ◦C for later use. The PET scanning electron microscope results before and after catalyst
loading are shown in Figure 12. We clearly observed that the photocatalytic materials
werare evenly loaded on PET.



Int. J. Mol. Sci. 2022, 23, 13131 14 of 18

Int. J. Mol. Sci. 2022, 23, 13131 14 of 19 
 

 

grinding. The TiO2 powder was maintained at 600 °C for 2 h at a heating rate of 10 °C/min, 

and then it was cooled to room temperature and ground to obtain ART. 

Subsequently, 10 g of urea and 50 mL of water were added to the crucible and evenly 

stirred. The crucible was placed in a muffle furnace and maintained at 500 °C for 2 h at a 

heating rate of 10 °C/min. After the heating program was finished and the muffle furnace 

naturally cooled, the obtained bulk particles were ground to obtain CN. 

We mixed 0.1 g of CN, 0.5 g of CN, 1 g of CN, and 1 g of ART; added 5 mL of absolute 

ethanol; stirred evenly; and then separated and dispersed the mixture using a cell frag-

mentation apparatus (Ningbo, Zhejiang Province, China. Xinzhi Biotechnology Co., Ltd., 

SCIENTZ-IID, 65 Hibiscus Road, Ningbo National High-tech Zone). Maintaining the tem-

perature at 300 °C for 2 h at a heating rate of 10 °C/min, ARTCN-X was obtained and is 

denoted as ARTCN-0.1, ARTCN-0.5, and ARTCN-1. 

4.3. Fixation of Photocatalytic Materials 

We washed the polyester fiber cotton (PET) with 1 mol/L of NaOH to remove the 

surface impurities, and then we dried and set it aside. Subsequently, 100 mg of catalyst 

was dissolved in water, the treated PET was added and shaken in a shaker for 30 min, and 

the water on the surface and the excess catalyst were drained before the catalyst was dried 

at 70 °C for later use. The PET scanning electron microscope results before and after cata-

lyst loading are shown in Figure 12. We clearly observed that the photocatalytic materials 

werare evenly loaded on PET. 

Figure 12. SEM of the PET scan before and after catalyst support. 

4.4. Catalyst Characterization 

A D8 Advance model X-ray diffractometer (XRD, Bruker, Germany) was used to an-

alyze the crystal characteristics of the catalyst. The operating parameters were a Cu X-ray 

tube target and a scanning range of 10–80°. An HR800 laser confocal Raman spectrometer 

(Raman, Horiba Jobin Yvon, France) was used to detect the sample structures, where the 

excitation wavelength was 633 nm. A TriStar II 3020 series automatic specific surface an-

alyzer (BET, GA, USA) was used to determine the specific surface area and porosity of the 

catalyst. The catalyst was pretreated under vacuum degassing at 200 °C for 5 h, and high-

purity nitrogen was used as the adsorbent at 77 K. Then, a UV–vis diffuse reflectance (UV–

vis DRS, Hitachi, Japan) instrument (model U-3010) was used to test the optical properties 

of the catalyst in the range of 200–800 nm. An F-2700 fluorescence spectrophotometer (PL, 

Japan, Hitachi) was used to measure the electron hole recombination, with an operating 

voltage of 250 V, a wavelength of 5 nm, and an excitation wavelength of 300 nm. The 

surface morphology and elemental distribution of the samples were analyzed by scanning 

electron microscopy (SEM, Sigma500, Germany) and an energy dispersive spectrometer 

(EDS, Bruker, Germany). Transmission electron microscopy (TEM, FEI TalOS F200S, USA) 

was used to analyze the lattice spacings of the samples. Fluorescence spectrophotometry 

(PL, HORIBA, Japan) was used to test the photogenerated carrier separation of the catalyst 

with a hydrogen light source with a pulse width of 1.0 to 1.6 ns, which was used to test 

  

Figure 12. SEM of the PET scan before and after catalyst support.

4.4. Catalyst Characterization

A D8 Advance model X-ray diffractometer (XRD, Bruker, Germany) was used to
analyze the crystal characteristics of the catalyst. The operating parameters were a Cu
X-ray tube target and a scanning range of 10–80◦. An HR800 laser confocal Raman spec-
trometer (Raman, Horiba Jobin Yvon, France) was used to detect the sample structures,
where the excitation wavelength was 633 nm. A TriStar II 3020 series automatic specific
surface analyzer (BET, GA, USA) was used to determine the specific surface area and
porosity of the catalyst. The catalyst was pretreated under vacuum degassing at 200 ◦C
for 5 h, and high-purity nitrogen was used as the adsorbent at 77 K. Then, a UV–Vis
diffuse reflectance (UV–Vis DRS, Hitachi, Japan) instrument (model U-3010) was used
to test the optical properties of the catalyst in the range of 200–800 nm. An F-2700 fluo-
rescence spectrophotometer (PL, Japan, Hitachi) was used to measure the electron hole
recombination, with an operating voltage of 250 V, a wavelength of 5 nm, and an excitation
wavelength of 300 nm. The surface morphology and elemental distribution of the samples
were analyzed by scanning electron microscopy (SEM, Sigma500, Germany) and an energy
dispersive spectrometer (EDS, Bruker, Germany). Transmission electron microscopy (TEM,
FEI TalOS F200S, USA) was used to analyze the lattice spacings of the samples. Fluores-
cence spectrophotometry (PL, HORIBA, Osaka, Japan) was used to test the photogenerated
carrier separation of the catalyst with a hydrogen light source with a pulse width of 1.0
to 1.6 ns, which was used to test the fluorescence lifetime of the sample. Electron para-
magnetic resonance (EPR, Bruke, Germany) was performed at room temperature using
an A300 spectrometer, and 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO) was used as the
spin capture agent for ESR analysis. A CHI-660C electrochemical workstation was used for
transient photocurrent measurements. A Na2SO4 aqueous solution (1 M) was used as the
electrolyte solution, and electrochemical impedance spectroscopy (EIS, Chenhua, China)
measurements were performed under visible light irradiation with frequencies ranging
from 4 × 106 to 1 × 10−2 Hz.

4.5. Photocatalytic Activity Tests
4.5.1. Degradation of Gaseous Ammonia

Figure 13 shows the device diagram for the photocatalytic degradation of gaseous
ammonia. The light source consisted of a 300 W xenon lamp (30.2 mW/cm2), which was
installed in a quartz water pipe with a condensation cycle to absorb the heat generated by
illumination. Just below the xenon lamp was a photocatalytic quartz reaction tube, and PET
loaded with the photocatalytic materials was placed in the tube. After exiting the cylinder,
ammonia entered the reaction tube through a flowmeter. The different concentrations of
standard ammonia (mixed with nitrogen) were 30 mg/m3, 50 mg/m3, and 70 mg/m3, with
a flow rate of 100 mL/min, and the stability test results of the different concentrations of
ammonia are shown in Figure 14. Air entered the photocatalytic reaction tube through
the water, needle valve, and flowmeter in turn (moist air was the only source of oxygen).
Ammonia was mixed with air at a certain humidity to simulate gaseous ammonia. After
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connecting each pipeline, the standard gas was ventilated to determine whether there
was air leakage. The system was run for 10 min until it was stable, and the degradation
efficiency of the gaseous ammonia in the entire process was η1 (Equation (17)):

η1 = (C01 − C1) × 100%/C01 (17)

where C01 is the standard concentration of gaseous ammonia (mg/m3) and C1 is the
concentration of gaseous ammonia in the reaction process (mg/m3).
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4.5.2. Degradation of Liquid Ammonia

The photoreactor consisted of a 200 mL double-layer quartz beaker, for which the
outer layer was permeated with cooling water to ensure a constant reaction temperature
and the inner layer consisted of 100 mg/L of an ammonia nitrogen solution. The pH
was adjusted to 10.1 by sodium hydroxide. The 300 W xenon lamp (30.2 mW/m2) was
used as the light source to simulate sunlight while ensuring that the distance between the
xenon lamp and the liquid level was 15 cm. Then, 50 mg (0.5 g/L) of catalyst was added
to the solution and stirred at medium speed at room temperature; 2 mL of the sample
from the reaction solution was extracted every 60 min and centrifuged for 10 min with a
10,000 r/min high-speed centrifuge, and the supernatant was obtained to determine the
concentration of ammonia nitrogen and calculate its degradation rate η2 (Equation (18)).
The nitrate and nitrite concentrations were determined after the reaction:

η2 = (C02 − C2) × 100%/C02 (18)
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where C02 is the initial concentration of ammonia nitrogen and C2 is the concentration of
ammonia nitrogen in the reaction process (mg/L).

5. Conclusions

A g-C3N4/(A-R)TiO2 composite catalyst (ARTCN) was prepared by using g-C3N4
(CN) as the amendment, and the amount of CN had a great influence on the performance of
ARTCN. When the amount of CN was 0.5 g, ARTCN-0.5 had a better dispersion, a smaller
band gap width, a larger specific surface area, a stronger light absorption capacity, and a
stronger photogenerated carrier separation ability than ART.

The air wetness and initial concentration of the ammonia had a great influence on
the degradation of the gaseous ammonia. When the initial concentration of ammonia was
50 mg/m3 and the flow rate of the moist air was 0.9 mL/min, the degradation rate of
gaseous ammonia by ARTCN-0.5 reached 88.86%, and it had good repeatability. When
the catalytic dose was 50 mg and the initial concentration of NH4

+ was 100 mg/L, the
degradation rate of the liquid ammonia by ARTCN-0.5 was 71.60% at 3 h, and small
amounts of NO3

− and NO2
− were generated. Subsequently, ·OH and ·O2

− were the main
active components in the photocatalytic reaction process.

The photogenerated electrons in the conduction band of ART transferred to the va-
lence band of CN and combined with the photogenerated holes in the valence band of
CN, forming a Z-type heterostructure that significantly improved the efficiency of the
photogenerated electron-hole migration and separation, thus increasing the reaction rate.
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