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Abstract: Identifying disease-related miRNAs can improve the understanding of complex diseases.
However, experimentally finding the association between miRNAs and diseases is expensive in terms
of time and resources. The computational screening of reliable miRNA–disease associations has thus
become a necessary tool to guide biological experiments. “Similar miRNAs will be associated with
the same disease” is the assumption on which most current miRNA–disease association prediction
methods rely; however, biased prior knowledge, and incomplete and inaccurate miRNA similarity
data and disease similarity data limit the performance of the model. Here, we propose heuristic
learning based on graph neural networks to predict microRNA–disease associations (HLGNN-MDA).
We learn the local graph topology features of the predicted miRNA–disease node pairs using graph
neural networks. In particular, our improvements to the graph convolution layer of the graph neural
network enable it to learn information among homogeneous nodes and among heterogeneous nodes.
We illustrate the performance of HLGNN-MDA by performing tenfold cross-validation against
excellent baseline models. The results show that we have promising performance in multiple metrics.
We also focus on the role of the improvements to the graph convolution layer in the model. The
case studies are supported by evidence on breast cancer, hepatocellular carcinoma and renal cell
carcinoma. Given the above, the experiments demonstrate that HLGNN-MDA can serve as a reliable
method to identify novel miRNA–disease associations.

Keywords: miRNA–disease association; graph neural network; graph classification; heuristics learning

1. Introduction

Since the discovery of microRNAs, an increasing number of researchers have investi-
gated these molecules [1–8]. In particular, the discovery of a regulatory role for microRNAs
in cellular activity suggests that these molecules are inextricably linked to many dis-
eases [9–13]. Uncovering microRNA–disease associations has important implications for
understanding disease mechanisms and assisting disease treatment [14–20]. However,
due to the long time period required for biological experiments and the high resource
costs, the use of computational methods to predict miRNA–disease associations has now
become an important means for guiding traditional biological experiments, and it has
greatly improved the efficiency of discovering disease-related miRNAs.

Some miRNA–disease association prediction models derive from combinatorial op-
timization theory and metric learning ideas, such as matrix-related operations and score
estimation. MCMDA (matrix completion for miRNA–disease association) [21] performs
matrix completion by applying a singular value thresholding algorithm on known miRNA–
disease associations, and ILRMR (improved low-rank matrix recovery) [22] improves low-
rank matrix recovery by referencing a weight matrix to enhance the prediction accuracy.
MDMF (miRNA–disease Based on Matrix Factorization) [23] uses matrix factorization with
disease similarity constraints to identify potential miRNA–disease associations. MDHGI
(Decomposition and Heterogeneous Graph Inference) [24] discovers new miRNA–diseases
associations by integrating the predicted association probability obtained from matrix
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decomposition through the sparse learning method. IMIPMF (inferring miRNA–disease
interactions using probabilistic matrix factorization) [25] is a novel method for predicting
miRNA–disease associations using probabilistic matrix factorization. WBSMDA (Within
and Between Score for MiRNA–Disease Association prediction) [26] calculates a “Within
and Between Score” for each miRNA–disease pair to predict the association between them.
MLMD (Metric Learning for predicting miRNA–Disease) [27] is a novel computational
model of metric learning for predicting miRNA–disease associations. It aims at learn-
ing miRNA–disease metrics to unravel not only novel disease-related miRNAs but also
miRNA–miRNA and disease–disease similarities. DBNMDA (deep-belief network for pre-
dicting miRNA–disease associations) [28] constructs feature vectors to pre-train restricted
Boltzmann machines for all miRNA–disease pairs and applies positive samples and the
same number of selected negative samples to fine-tune a deep-belief network to obtain the
final predicted scores.

Machine learning is also a class of methods [29,30] that are commonly applied to pre-
dict miRNA–disease associations [20,31–37]. RBMMMDA (restricted Boltzmann machine
for multiple types of miRNA–disease associations) [38] proposes the restricted Boltzmann
machine model to predict various types of miRNA–disease associations.

With the development of graph neural networks and the accumulation of large-scale
graph data, in addition to traditional machine learning algorithms, DGCNN (multi-view
multi-layer convolutional neural network) [39] and other deep learning [40–45] models
have also been developed to deal with similar tasks. DGCNN focuses on large-scale
and irregular network structures and adapts to the dynamic structure of local regions in
the graph by flexibly designing convolutional filters. DeepMDA (predict miRNA–disease
associations using deep learning) [46] uses a stacked self-encoder to obtain low-dimensional
features from two high-dimensional feature vectors of miRNAs and diseases. A three-layer
deep neural network [47] has then been developed to train classifiers of miRNA–disease
feature pairs. MDA-CNN [48] constructs a three-layer miRNA–gene–disease association
(MDA) network, and the network-based features of miRNAs and diseases are extracted
using genes as the intermediate medium. The features are then downscaled using a self-
encoder. Convolutional neural networks (CNNs) [49] are then used to further learn features
from the miRNA–disease feature pairs. MDA-GCNFTG [50] predicts associations based on
graph convolutional networks via graph sampling through the feature and topology graph
to improve the training efficiency and accuracy. Instead of using heterogeneous graphs,
MDA-GCNFTG constructs a homogeneous graph with MDPs (miRNA–disease pairs) as
the nodes, which is the biggest difference with respect to our method. Although both
use the GCN algorithm, the background graphs and the model focused on are completely
different. For this task, the models focus on solving different problems.

However, there are still shortcomings in these recently proposed excellent computa-
tional models. Most of the current methods for predicting miRNA–disease associations are
based on a strong assumption of similarity data. However, different models have different
definitions of similarity, which makes the prediction results inaccurate. In addition, the
miRNA functional similarity is incomplete and derived from known associations. Addition-
ally, inconsistencies and incompleteness further lead to inaccurate prediction results. In this
article, a heuristic learning method based on graph neural networks for miRNA–disease
association prediction (HLGNN-MDA) is proposed. Inputting the whole miRNA–disease
association network into the graph neural network for the model training causes high
computational costs. To overcome this, we choose to train the graph neural network on
enclosing subgraphs.

Figure 1 shows the overall framework of HLGNN-MDA. Our HLGNN-MDA model
improves the graph neural network so that it can learn the information between miRNA
and disease nodes and the topological relationships among homogeneous nodes at the same
time. Compared with the previous computational models, our proposed method does not
require too many similarity data and improves the applicability of graph neural networks
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in bipartite graph networks. More importantly, under such conditions, HLGNN-MDA can
also achieve more accurate predictions.
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Figure 1. Flowchart of HLGNN-MDA. (a) The enclosing subgraph of all pairs of nodes are extracted,
and all the nodes in each enclosing subgraph are labeled. (b) The enclosing subgraphs are input into
the graph neural network. The graph convolution layers adopt the three-layer structure model as
shown in Figure 2 where each sub-figure of three in the second part corresponds to the processing
results of three convolution modules. As shown in Figure 3, each convolution module has the
same structure. The prediction results are obtained through the graph convolution layer, the graph
pooling layer, 1D convolution and fully connected layers. Finally, the predicted results are verified
against databases.
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2. Results and Discussion
2.1. Performance Analysis of HLGNN-MDA Mode

In this section, we compare HLGNN-MDA with other related methods using tenfold
cross-validation [20]. The algorithms selected for comparison were BLHARMDA (bipartite
local models and hubness-aware regression for miRNA–disease association prediction) [51],
BNPMDA (bipartite network projection for miRNA–disease association prediction) [52],
IMCMDA (inductive matrix completion for miRNA–disease association prediction) [52],
LFEMDA (predict miRNA–disease associations by latent features extraction) [53] and MKR-
MDA (multiple kernel learning-based Kronecker regularized least squares for miRNA–
disease association prediction) [54]. All models for performance analysis experiments
adopted the association data from HMDD v2.0. We also performed a performance compari-
son with the DGCNN model in the subsequent experiments of graph convolutional layer
analysis, which is the baseline of our HLGNN-MDA convolutional module.

The miRNA functional similarity and disease semantic similarity were downloaded
directly from IMCMDA. HLGNN-MDA used 5430 known miRNA–disease associations
as positive samples and a random sample of the same number of candidate associations
as negative samples. The dataset with the positive and negative samples together was
then randomly divided into ten parts. One copy of each round was selected as the test set,
and the remaining nine copies were used as the training set. The tenfold cross-validation
was completed in turn. In each round, HLGNN-MDA removed the positive samples in
the test set from the adjacency matrix. All five comparison algorithms completed tenfold
cross-validation on the miRNA–disease association matrix. There were six evaluation
metrics to analyze the model: ACC, precision, recall, AUROC, AUPR and MCC. The results
are shown in Table 1, and their corresponding ROC curves are shown in Figure 4. The
corresponding precision–recall (PR) curves are shown in Figure 5.
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Table 1. Performance analysis of HLGNN-MDA and state-of-the-art miRNA–disease association
prediction algorithms. The bold part indicates the maximum value in the corresponding column.

Model ACC Precision Recall AUROC AUPR MCC

BNPMDA 0.79088 0.87069 0.68324 0.85648 0.88275 0.59574
IMCMDA 0.77274 0.80102 0.72578 0.84004 0.84989 0.54791
LFEMDA 0.84751 0.85590 0.83573 0.90039 0.91289 0.69522

BLHARMDA 0.85442 0.85619 0.85193 0.92838 0.92699 0.70885
MKRMDA 0.84549 0.87610 0.80479 0.89658 0.91971 0.69328

HLGNN-MDA-hop1 0.85442 0.86263 0.84309 0.92974 0.92779 0.70902
HLGNN-MDA-hop2 0.85976 0.85917 0.86059 0.92833 0.92927 0.71952
HLGNN-MDA-hop3 0.85635 0.86745 0.84125 0.92863 0.93007 0.71303
HLGNN-MDA-hop4 0.85912 0.86709 0.84825 0.93086 0.93247 0.71840
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In Table 1, HLGNN-MDA-hopx represents the HLGNN-MDA model in which the
enclosing subgraph’s hop is x (x = 1, 2, 3 or 4). Hops were used to extract subgraphs. The
extraction process is described in Section 3.2.1. Compared with other methods, HLGNN-
MDA-hopx had high performance in five of the six indicators. The minimum AUROC
of HLGNN-MDA-hopx was greater than those of BNPMDA, IMCMDA, LFEMDA and
MKRMDA. The minimum value of the AUPR of HLGNN-MDA-hopx was greater than the
results of all other algorithms.

From the ROC curve in Figure 4, HLGNN-MDA-hop4 could cover the curves of
BNPMDA, IMCMDA and MKRMDA. The maximum AUROC was 0.25% larger than the
AUROC of BLHARMDA. Similarly, in the PR curve of Figure 5, HLGNN-MDA-hop4 could
cover the PR curves of BNPMDA, IMCMDA and MKRMDA, which were roughly the same
as that of BLHARMDA. The maximum AUPR value of HLGNN-MDA-hop4 was 0.55%
larger than the maximum value of BLHARMDA.

Compared with the other algorithms, HLGNN-MDA had a relatively large advantage.
Moreover, HLGNN-MDA used less similarity information to obtain better prediction results.

2.2. Influence of Different Hops in the Enclosing Subgraph

In this section, we discuss how HLGNN-MDA was affected by different enclosing
subgraph hops. The required experimental data were miRNA–disease associations. The
positive samples represented the known associations, and a random sample of the same
number of candidates represented the negative samples. The test set was one-tenth the size
of the entire dataset.

First, we evaluated the results of the HLGNN-MDA model using different hops in the
enclosed subgraph. Each model was trained with the same training set and evaluated on
the same test set. The range of the number of hops in the enclosing subgraph was 1 to 4.
Their corresponding results are shown in Table 2. The ROC, PR and accuracy curves under
different thresholds are shown in Figures 6–8.

Table 2. Influence of different hops in enclosing subgraphs on HLGNN-MDA. The bold part indicates
the maximum value in the corresponding column.

Model ACC Precision Recall AUROC AUPR MCC

HLGNN-MDA-hop1 0.88122 0.90430 0.85267 0.93535 0.93281 0.76368
HLGNN-MDA-hop2 0.92726 0.93939 0.91344 0.97212 0.97564 0.85484
HLGNN-MDA-hop3 0.93831 0.95946 0.91529 0.97266 0.97744 0.87754
HLGNN-MDA-hop4 0.96869 0.96690 0.97053 0.99178 0.99332 0.93739
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As shown in Table 2, HLGNN-MDA obtained the best value for all six metrics when
the hops were 4. In Figures 6–8, it can be seen that the curves with less hops were always
covered by curves with larger hops. In particular, it should be noted that the results of
HLGNN-MDA-hop2 had a larger increase than the results of HLGNN-MDA-hop1. The
results of HLGNN-MDA-hop4 had a larger increase than the results of HLGNN-MDA-hop3.
There was only a slight increase between HLGNN-MDA-hop3 and HLGNN-MDA-hop2, as
shown in the three figures. These findings show that using an even larger hop in enclosing
subgraphs for miRNA–disease association prediction could obtain better results.

2.3. Analysis of the Improved Graph Convolutional Layer

To show that our improvement in the graph neural network was effective, in this
section, we present the analysis of the improved graph convolutional layer. After consid-
ering the information transfer between homogeneous nodes and heterogeneous nodes,
HLGNN-MDA aggregated four propagation functions in the graph convolutional layer: A,
A2, D−1 A and D−

1
2 AD−

1
2 .

Next, we explored the role of each propagation function in graph neural networks. If
we deleted a certain propagation function from the current HLGNN-MDA but obtained a



Int. J. Mol. Sci. 2022, 23, 13155 8 of 19

better result, it showed that the propagation function had a negative effect on the graph
neural network. If the result of deleting a certain propagation function was worse, it had
a positive effect on the graph neural network. Therefore, we discussed the role of the
four propagation functions in turn in this way. The HLGNN-MDA model that removed
propagation function A was marked as HLGNN-MDA-a. In this order, the HLGNN-MDA
model deleting A2 was marked as HLGNN-MDA-b; the model without D−1 A was marked
as HLGNN-MDA-c; and the model without D−

1
2 AD−

1
2 was marked as HLGNN-MDA-d.

Then, we compared the HLGNN-MDA model with its four variations: HLGNN-MDA-
a, HLGNN-MDA-b, HLGNN-MDA-c and HLGNN-MDA-d. As shown in Figure 9, the
horizontal axis is the hop in the enclosing subgraph, and the vertical axis is the AUROC. The
red line indicates HLGNN-MDA, and the yellow line indicates HLGNN-MDA-b, wherein
A2 was deleted from HLGNN-MDA; these variations were the most disparate. These
results showed that A2 had a greater impact on the model. The difference between the
green fold of HLGNN-MDA-a and the red fold of HLGNN-MDA was minimal. However,
when the hop number was 1, 2 or 4, HLGNN-MDA gave better results than HLGNN-
MDA-a. Meanwhile, HLGNN-MDA-a and HLGNN-MDA-b all reached a maximum with
hop = 3 and decreased slightly with hop = 4. Both propagation functions A and A2 played
an effective role in improving the predictive performance of the HLGNN-MDA model.
From the figures, we could find that D−1 A (purple line) and D−

1
2 AD−

1
2 (blue line) had

similar roles in graph neural networks and complemented each other. Meanwhile, if the
evaluation metrics in Figure 9 were replaced with the AUPR and the ACC, a similar trend
could be obtained.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 19 
 

Next, we explored the role of each propagation function in graph neural networks. If 
we deleted a certain propagation function from the current HLGNN-MDA but obtained 
a better result, it showed that the propagation function had a negative effect on the graph 
neural network. If the result of deleting a certain propagation function was worse, it had 
a positive effect on the graph neural network. Therefore, we discussed the role of the four 
propagation functions in turn in this way. The HLGNN-MDA model that removed prop-
agation function A  was marked as HLGNN-MDA-a. In this order, the HLGNN-MDA 
model deleting 2A  was marked as HLGNN-MDA-b; the model without 1D A−  was 

marked as HLGNN-MDA-c; and the model without 
1 1
2 2D AD

− −  was marked as HLGNN-
MDA-d. 

Then, we compared the HLGNN-MDA model with its four variations: HLGNN-
MDA-a, HLGNN-MDA-b, HLGNN-MDA-c and HLGNN-MDA-d. As shown in Figure 9, 
the horizontal axis is the hop in the enclosing subgraph, and the vertical axis is the AU-
ROC. The red line indicates HLGNN-MDA, and the yellow line indicates HLGNN-MDA-
b, wherein 2A  was deleted from HLGNN-MDA; these variations were the most dispar-
ate. These results showed that 2A  had a greater impact on the model. The difference be-
tween the green fold of HLGNN-MDA-a and the red fold of HLGNN-MDA was minimal. 
However, when the hop number was 1, 2 or 4, HLGNN-MDA gave better results than 
HLGNN-MDA-a. Meanwhile, HLGNN-MDA-a and HLGNN-MDA-b all reached a max-
imum with hop = 3 and decreased slightly with hop = 4. Both propagation functions A  
and 2A  played an effective role in improving the predictive performance of the HLGNN-

MDA model. From the figures, we could find that 1D A−  (purple line) and 
1 1
2 2D AD

− −  (blue 
line) had similar roles in graph neural networks and complemented each other. Mean-
while, if the evaluation metrics in Figure 9 were replaced with the AUPR and the ACC, a 
similar trend could be obtained. 

 
Figure 9. AUC comparison between HLGNN-MDA and its four variations under different hops. 

Furthermore, since the graph neural network [55,56] of HLGNN-MDA is improved 
with respect to DGCNN, in order to show the effectiveness of HLGNN-MDA model, we 
also compared the performance of four variants of HLGNN-MDA with DGCNN with dif-
ferent hops. From Table 3, it could be concluded that DGCNN and HLGNN-MDA-b per-
formed similarly. HLGNN-MDA-b was slightly higher than DGCNN when the enclosing 
subgraph hops were 1, 2 and 3. Compared with other HLGNN-MDA variant models, 
HLGNN-MDA-b, i.e., the 2A -deleted model, had the worst performance among all mod-
els. As the value of hops increased, the six measures of HLGNN-MDA-b also increased 
slowly, and when hop = 3, HLGNN-MDA-b reached a maximum. This finding was con-
sistent with the results presented in the above figures; that is, 2A  played a large role in 

Figure 9. AUC comparison between HLGNN-MDA and its four variations under different hops.

Furthermore, since the graph neural network [55,56] of HLGNN-MDA is improved
with respect to DGCNN, in order to show the effectiveness of HLGNN-MDA model, we
also compared the performance of four variants of HLGNN-MDA with DGCNN with
different hops. From Table 3, it could be concluded that DGCNN and HLGNN-MDA-
b performed similarly. HLGNN-MDA-b was slightly higher than DGCNN when the
enclosing subgraph hops were 1, 2 and 3. Compared with other HLGNN-MDA variant
models, HLGNN-MDA-b, i.e., the A2-deleted model, had the worst performance among
all models. As the value of hops increased, the six measures of HLGNN-MDA-b also
increased slowly, and when hop = 3, HLGNN-MDA-b reached a maximum. This finding
was consistent with the results presented in the above figures; that is, A2 played a large
role in the HLGNN-MDA model. Overall, HLGNN-MDA performed better than DGCNN
in predicting miRNA–disease associations.
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Table 3. Comparison between the four variations of HLGNN-MDA and DGCNN with different hops.

Model ACC Precision Recall AUROC AUPR MCC

HLGNN-MDA-a-hop1 0.85820 0.91121 0.79374 0.92795 0.92303 0.72242
HLGNN-MDA-a-hop2 0.90055 0.90503 0.89503 0.94681 0.94629 0.80115
HLGNN-MDA-a-hop3 0.94843 0.94516 0.95212 0.98538 0.98626 0.89689
HLGNN-MDA-a-hop4 0.93186 0.95183 0.90976 0.97535 0.97945 0.86456

HLGNN-MDA-b-hop1 0.86096 0.90164 0.81031 0.93369 0.93412 0.72565
HLGNN-MDA-b-hop2 0.87845 0.92371 0.82505 0.93721 0.94106 0.76126
HLGNN-MDA-b-hop3 0.89042 0.91569 0.86004 0.94265 0.94575 0.78229
HLGNN-MDA-b-hop4 0.88858 0.90734 0.86556 0.94257 0.94877 0.77799

HLGNN-MDA-c-hop1 0.85635 0.84127 0.87845 0.92729 0.92241 0.71340
HLGNN-MDA-c-hop2 0.92265 0.91652 0.93002 0.96673 0.96729 0.84540
HLGNN-MDA-c-hop3 0.88398 0.92464 0.83610 0.93691 0.94300 0.77150
HLGNN-MDA-c-hop4 0.93923 0.96311 0.91344 0.97610 0.97901 0.87962

HLGNN-MDA-d-hop1 0.86280 0.89879 0.81768 0.92999 0.92586 0.72857
HLGNN-MDA-d-hop2 0.93831 0.94238 0.93370 0.98012 0.98081 0.87665
HLGNN-MDA-d-hop3 0.87569 0.92324 0.81952 0.93266 0.94060 0.75617
HLGNN-MDA-d-hop4 0.94015 0.95437 0.92449 0.98585 0.98702 0.88073

DGCNN-hop1 0.85820 0.88822 0.81952 0.92889 0.92889 0.71854
DGCNN-hop2 0.87201 0.90400 0.83241 0.93509 0.93831 0.74636
DGCNN-hop3 0.88582 0.90522 0.86188 0.94241 0.94083 0.88302
DGCNN-hop4 0.89411 0.91961 0.86372 0.95250 0.95707 0.89079

In summary, the four propagation functions in HLGNN-MDA all played a positive
role, thus leading HLGNN-MDA to achieve good predictive performance. Of these, A
and A2 had a stronger role in improving the predictive performance of the model, while
D−1 A and D−

1
2 AD−

1
2 enabled the model to be stable in its results with different hops of

the enclosing subgraph. The combined use of these four propagation functions allowed
HLGNN-MDA to perform well in the task of predicting miRNA–disease associations.

2.4. Validation of Prediction Results

In this section, all the known correlations in HMDD v2.0 were the training set for the
model, and as many potential associations as possible were sampled as negative samples.
According to the above analysis, HLGNN-MDA-hop4 gave the best predictions, so training
was performed on it. All potential association relationships in HMDD v2.0 were then
extracted and predicted on the trained HLGNN-MDA-hop4.

The prediction results were validated using the following databases: HMDD v3.0 [57],
dbDEMC [58] and miR2Disease [59]. One association was considered to be validated if it
was found in at least one database.

The final validation results were as follows: 10 out of the top 10 predictions were
validated; a total of 49 out of the top 50 predictions were verified; a total of 97 out of the
top 100 predictions were verified; and 169 out of the top 180 predictions were verified. The
results demonstrated the effectiveness of HLGNN-MDA and its ability to predict potential
novel associations.

2.5. Case Study
2.5.1. Breast Cancer

Breast cancer is one of the most dangerous malignancies to human health, especially
for women. Globally, breast cancer accounts for 2.088 million new cases and 627,000 deaths
per year, making it the number one malignancy in women [60]. The top 50 miRNAs
predicted to be associated with breast cancer are listed in Table 4. In total, 49 of them
were found in the relevant validation database. Only hsa-mir-362 (validation = no) does
not present a record related to breast cancer in the three databases at present. Based
on the literature validation [61], the hERG potassium channel, which enhances tumor
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aggressiveness and breast cancer proliferation, is transcriptionally regulated by hsa-miR-
362-3p and thus associated with breast cancer growth. Another study [62] compared
MDA-MB-231 and MCF7 breast cancer cell lines to the control CCD-1095Sk cell line, where
hsa-miR-362-5p showed significant upregulation. The inhibition of hsa-miR-362-5p was
found to significantly inhibit the diffusion, migration and invasion of MCF7 human breast
cancer cells.

Table 4. Top 50 miRNAs predicted by HLGNN-MDA to be associated with breast cancer.

Rank MicroRNA Validation Rank MicroRNA Validation

1 hsa-mir-211 yes <H, D> 26 hsa-mir-30e yes <H, D>

2 hsa-mir-186 yes <D> 27 hsa-mir-494 yes <H, D>

3 hsa-mir-744 yes <H, D> 28 hsa-mir-421 yes <H, D>

4 hsa-mir-138 yes <H, D> 29 hsa-mir-501 yes <H, D>

5 hsa-mir-154 yes <D> 30 hsa-mir-99b yes <H, D>

6 hsa-mir-216b yes <H, D> 31 hsa-mir-196b yes <H, D>

7 hsa-mir-106a yes <H, D> 32 hsa-mir-185 yes <H, D>

8 hsa-mir-432 yes <H, D> 33 hsa-mir-484 yes <H, D>

9 hsa-mir-32 yes <H, D> 34 hsa-mir-144 yes <H, D>

10 hsa-mir-381 yes <H, D> 35 hsa-mir-592 yes <H, D>

11 hsa-mir-142 yes <H, D> 36 hsa-mir-130a yes <H, D>

12 hsa-mir-150 yes <H, D> 37 hsa-mir-542 yes <H, D>

13 hsa-mir-491 yes <H, D> 38 hsa-mir-1224 yes <H, D>

14 hsa-mir-449a yes <H, D> 39 hsa-mir-376a yes <H, D>

15 hsa-mir-362 no 40 hsa-mir-451 yes <H, D, M>

16 hsa-mir-28 yes <H, D> 41 hsa-mir-433 yes <H, D>

17 hsa-mir-378a yes <H, D> 42 hsa-mir-483 yes <H, D>

18 hsa-mir-212 yes <H, D> 43 hsa-mir-1207 yes <H, D>

19 hsa-mir-98 yes <H, D, M> 44 hsa-mir-33b yes <H, D>

20 hsa-mir-92b yes <H, D> 45 hsa-mir-15b yes <H, D>

21 hsa-mir-455 yes <H, D> 46 hsa-mir-630 yes <H, D>

22 hsa-mir-590 yes <H, D> 47 hsa-mir-622 yes <H, D>

23 hsa-mir-330 yes <H, D> 48 hsa-mir-1271 yes <H, D>

24 hsa-mir-675 yes <H, D> 49 hsa-mir-424 yes <H, D>

25 hsa-mir-217 yes <H, D> 50 hsa-mir-95 yes <H, D>
Note: H <HMDD v3.0>, D <dbDEMC> and M <miR2Disease > represent the databases in which the relations
could be validated.

2.5.2. Hepatocellular Carcinoma

Primary liver cancer is the fifth most common cancer worldwide, mainly including
hepatocellular carcinoma (HCC) [63,64]. A total of 49 of the top 50 miRNAs predicted to
be related to hepatocellular carcinoma could be validated in three validation databases.
The results are shown in Table 5. At present, no clear association between hsa-mir-495 and
hepatocellular carcinoma could be found in these databases. However, a previous study [65]
reported that hsa-mir-495 expression was frequently downregulated in hepatocellular
carcinoma tissues and cell lines. Its expression levels were significantly correlated with
tumor size, tumor lymph node metastasis (TNM) stage and lymph node metastasis in
patients with hepatocellular carcinoma [65].
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Table 5. Top 50 miRNAs predicted by HLGNN-MDA to be associated with hepatocellular carcinoma.

Rank MicroRNA Validation Rank MicroRNA Validation

1 hsa-mir-143 yes <H, D, M> 26 hsa-mir-23b yes <H, D, M>

2 hsa-mir-196b yes <H, D> 27 hsa-mir-574 yes <H, D>

3 hsa-mir-137 yes <H, D, M> 28 hsa-mir-26b yes <H, D, M>

4 hsa-mir-520c yes <H, D> 29 hsa-mir-495 no

5 hsa-mir-376c yes <H, D> 30 hsa-mir-328 yes <H, D, M>

6 hsa-mir-184 yes <H, D> 31 hsa-mir-452 yes <H, D>

7 hsa-mir-215 yes <H, D, M> 32 hsa-mir-204 yes <H, D>

8 hsa-mir-302a yes <H, D> 33 hsa-mir-135b yes <H, D>

9 hsa-mir-34b yes <H, D> 34 hsa-mir-95 yes <H, D>

10 hsa-mir-339 yes <H, D> 35 hsa-mir-185 yes <H, D, M>

11 hsa-mir-708 yes <H, D> 36 hsa-mir-206 yes <H, D>

12 hsa-mir-193 yes <H, D> 37 hsa-mir-449a yes <H, D>

13 hsa-mir-30e yes <H, D, M> 38 hsa-mir-520a yes <H, D>

14 hsa-mir-488 yes <H, D> 39 hsa-mir-194 yes <H, D, M>

15 hsa-mir-200 yes <H, M> 40 hsa-mir-451 yes <H, D>

16 hsa-mir-342 yes <H, D> 41 hsa-mir-149 yes <H, D>

17 hsa-mir-367 yes <H, D> 42 hsa-mir-153 yes <H, D>

18 hsa-mir-302d yes <H, D> 43 hsa-mir-299 yes <H, D>

19 hsa-mir-494 yes <H, D> 44 hsa-mir133a yes <H, D, M>

20 hsa-mir-128 yes <H, D, M> 45 hsa-mir-633 yes <D>

21 hsa-mir-340 yes <H, D> 46 hsa-mir-132 yes <H, D, M>

22 hsa-mir-33b yes <H, D> 47 hsa-mir-27b yes <H, D>

23 hsa-mir-625 yes <H, D> 48 hsa-mir-935 yes <H, D>

24 hsa-mir-424 yes <H, D> 49 hsa-mir-32 yes <H, D>

25 hsa-mir-151b yes <H, D> 50 hsa-mir-186 yes <H, D, M>
Note: H <HMDD v3.0>, D <dbDEMC> and M <miR2Disease > represent the databases in which the relations
could be validated.

2.5.3. Renal Cell Carcinoma

Approximately 270,000 kidney cancer cases and 116,000 deaths are diagnosed annually
worldwide [66]. Ninety percent of kidney cancers are tumors originating from the kidney
epithelium and renal cell carcinoma [67]. The miRNAs predicted to be associated with the
top 50 renal cell carcinomas are listed in Table 6. A total of 47 of the top 50 miRNAs could
be validated clearly.

Table 6. Top 50 miRNAs predicted by HLGNN-MDA to be associated with renal cell carcinoma.

Rank MicroRNA Validation Rank MicroRNA Validation

1 hsa-mir-20a yes <H, D, M> 26 hsa-mir-181a yes <H, D>

2 hsa-mir-17 yes <H, D, M> 27 hsa-mir-192 yes <H, D>

3 hsa-mir-27b yes <H, D> 28 hsa-mir-22 yes <H, D>

4 hsa-mir-221 yes <H, D, M> 29 hsa-mir-182 yes <H, D, M>

5 hsa-mir-223 yes <H, D, M> 30 hsa-mir-29b yes <H, D, M>



Int. J. Mol. Sci. 2022, 23, 13155 12 of 19

Table 6. Cont.

Rank MicroRNA Validation Rank MicroRNA Validation

6 hsa-mir-31 yes <H, D> 31 hsa-mir-15a yes <H, D, M>

7 hsa-mir-29a yes <H, D, M> 32 hsa-mir-375 yes <H, D>

8 hsa-mir-125b yes <H, D> 33 hsa-mir-486 yes <D>

9 hsa-mir-133a yes <H, D, M> 34 hsa-mir-15b yes <H, D>

10 hsa-mir-125a yes <H, D> 35 hsa-mir-107 yes <H, D>

11 hsa-mir-18a yes <H, D> 36 hsa-mir-328 yes <D>

12 hsa-mir-1 yes <H, D> 37 hsa-mir-23a yes <D>

13 hsa-mir-30a yes <H, D, M> 38 hsa-mir-194 yes <H, D>

14 hsa-mir-181b yes <H, D> 39 hsa-mir-193b yes <H, D>

15 hsa-mir-19b yes <H, D, M> 40 hsa-mir-196b yes <D>

16 hsa-mir-214 yes <H, D, M> 41 hsa-mir-137 yes <H, D>

17 hsa-mir-130a yes <H, D> 42 hsa-mir-191 yes <H, D, M>

18 hsa-mir-222 yes <H, D> 43 hsa-mir-302a no

19 hsa-mir-148a yes <H, D> 44 hsa-mir-135b yes <D>

20 hsa-mir-25 yes <D> 45 hsa-mir-451b no

21 hsa-mir-133b yes <H, D> 46 hsa-mir-342 yes <D, M>

22 hsa-mir-183 yes <H, D> 47 hsa-mir-30b yes <H, D>

23 hsa-mir-106a yes <H, D, M> 48 hsa-mir-373 no

24 hsa-mir-24 yes <D> 49 hsa-mir-212 yes <D>

25 hsa-mir-132 yes <D> 50 hsa-mir-193a yes <H, D>
Note: H <HMDD v3.0>, D <dbDEMC> and M <miR2Disease > represent the databases in which the relations
could be validated.

3. Materials and Methods
3.1. Data Resources

We collected human miRNA–disease associations from the HMDD v2.0 database [68]
and obtained 5430 miRNA–disease associations between 495 miRNAs and 383 diseases.
Therefore, many miRNA–disease associations were organized into an adjacency matrix
Y ∈ Nnm × nd, where nm and nd represent the number of miRNAs and the number of
diseases, respectively. If an association between miRNA mi and disease dj was recorded in
HMDD v2.0, then Y(i, j) equaled 1; otherwise, it equaled 0.

3.2. Methods
3.2.1. Extraction of the Enclosing Subgraph of Node Pair

The design of our HLGNN-MDA model is inspired to the SEAL (learning from sub-
graphs, embedding and attributes for link prediction) [69] framework, which uses graph
neural networks for link prediction. SEAL proves that most high-order heuristics can
be approximated by learning from local enclosing subgraphs. Therefore, the first step of
HLGNN-MDA is to extract the enclosing subgraph of all pairs of nodes. The enclosing
subgraph is composed of two nodes, which are marked as central nodes, and their sur-
rounding nodes. Then, the h-hop enclosing subgraph of central nodes m and d consists of
all nodes whose distance from node m or node d is less than h steps.

HLGNN-MDA inputs the enclosing subgraphs into an “end-to-end” graph neural
network for training. The association information of the central node pair of the enclosing
subgraph is used as the supervisory label of the graph neural network. In association matrix
Y, miRNA–disease associations equal to 1 are considered known, while those equal to 0
are treated as potential. The training set extracts known associations as positive samples
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and randomly samples an equal number of potential associations as negative samples.
Subsequently, the enclosing subgraphs of all samples in the training set are extracted. To
prevent the leakage of supervised labels, the edges between the central node pairs and the
positive samples is removed during the extraction of the enclosing subgraph. The enclosing
subgraph is denoted with A.

3.2.2. Label Nodes

In this section, we label all the nodes in each enclosing subgraph. Node labeling is the
process of assigning an integer to a node in an enclosing subgraph and can be defined as
fl : V → N . Node labeling uses the DRNL (double-radius node labeling) method proposed

in SEAL. First, we label the central two nodes with label 1. Other nodes with the same
distance from the central two nodes are labeled with the same value. The farther the
distance is, the greater the value is. The label of a node i can be derived from the following
hash function:

fl(i) = 1 + min(dx, dy) + (d/2)[(d/2) + (d%2)− 1] (1)

where dx and dy represent the distances from node i to central nodes x and y, respectively,
with d = dx + dy; and d/2 and d%2 indicate division and remainder, respectively. When a
node is disconnected from the central nodes, it is labeled with 0.

In this way, we can label all the nodes in the enclosing subgraphs. Then, before being
input into the graph neural network, the label of each node is expanded into one-hot
encoding as its feature. This one-hot feature represents the position information of the node
in the enclosing subgraph.

3.2.3. Construct Graph Neural Network

After extracting the enclosing subgraphs and labeling nodes in each enclosing sub-
graph, we can input the labeled enclosing subgraphs into the graph neural network for
predicting miRNA–disease associations. At present, most of the proposed graph neural
networks are applicable to homogeneous networks, whereas the miRNA–disease associ-
ations we use are in a bipartite graph network. Therefore, we improve the graph neural
network DGCNN (deep graph convolutional neural network) to obtain better performance
in heterogeneous networks.

Graph convolution layers. The role of the graph convolution layer is to learn the
node representations [70,71]. A graph is input into the graph convolution layer through
multilayer convolution, and the vector representation of each node can be extracted. The
vector contains local substructural features of the graph. The process of graph convolution
is the aggregation of feature information from the neighbors around each node.

Given the adjacency matrix of a graph A ∈ Rn×n, its information matrix is X ∈ Rn×d,
where n indicates the number of nodes and d represents the dimension of the features.
Graph convolution can be represented as follows:

Z = σ( f (A) · X ·W) (2)

where W ∈ Rd×c indicates the parameters to be trained, which converts the d-dimensional
signal into c-dimensional signals; and f (A) represents the propagation function of adja-

cency matrix A. Usually, f (A) =
∼
D
−1∼

A or f (A) =
∼
D
− 1

2 ∼
A
∼
D
− 1

2
, where

∼
A = A + I and

∼
D are the degree matrices of

∼
A. Moreover, f (A) · X ·W indicates that the feature vector

of each node is aggregated in the manner of a propagation function and then undergoes
information conversion. In addition, σ(·) is the activation function.

In the bipartite undirected network, miRNAs are only connected with diseases. That is,
after a two-step jump, one disease node can only reach another disease, which is also true
for miRNA nodes. Therefore, we use a propagation function for second-order topological
information that allows information between homogeneous nodes to be aggregated together
directly, i.e., defining a propagation function f (A) = A2.
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With different propagation functions selected, the topological characteristics of the
graph learned by the graph convolutional network are slightly different [72]. By splicing
the neighbor information of nodes aggregated by different propagation functions, the
graph convolutional layer can learn better graph topological features. The graph convolu-
tional layer of our HLGNN-MDA model is shown in Figure 3 and can be represented by
Formula (3):

Zt+1 = σ
([

A · Zt, A2 · Zt, D−1 A · Zt, D−
1
2 AD−

1
2 · Zt

]
·Wt

)
(3)

where Z0 = X and Zt ∈ Rn×dt represent the output of the t-th graph convolutional
layer; dt is the output dimension of the t-th layer graph convolution; and [·] represents
the splicing of row vectors, which splices the node vectors obtained through different
propagation functions. The propagation functions used in our model are A, A2, D−1 A and
D−

1
2 AD−

1
2 . After splicing, the topological features captured by these several propagation

functions can be considered at the same time. W4dt×dt+1 is the parameter to be trained,
which maps the spliced node features from the 4dt dimension to the dt+1 dimension.
Dimension 4dt is used here because there are four propagation functions involved in the
graph convolution process.

Enclosing subgraph A and its node features X go through t graph convolution layers to
produce output Zt, t = 1, . . . , T. The overall graph convolution layer uses a global structure
where the results of each layer are stitched together at the end, resulting in a result denoted
as Z = [Z1, . . . , ZT ]. Each row of Z ∈ Rn×∑T

1 dt is the ∑T
1 dt-dimensional embedding vector

representation of a node that contains rich topological information about that node in that
graph. Figure 2 shows the overall architecture of the graph convolutional layer.

Graph pooling layers. A graph convolutional layer is used to learn a latent vector
representation for each node. Here, the graph pooling layer of HLGNN-MDA selects the k
most important nodes from the nodes of the graph to represent the graph. The importance
of the node is evaluated using the result of the graph convolutional layer. The last layer
of graph convolution maps the result of the previous layer to 1 dimension. That is, the
parameter, WT , of the last layer of graph convolution maps dimension 4dT−1 to 1 dimension.
In this way, a value is obtained for each node, and this value indicates how important the
node is in the graph.

We sort Z in descending order according to its last dimension. If two nodes appear
to be equal in the last dimension of Z, we compare their penultimate dimension and so
on, until the two nodes can be separated. The graph pooling layer takes the top k nodes
in the ranking as its output, which helps subsequent conventional neural network layers
to obtain a tensor with a fixed specification. When the number of nodes, n, is less than k,
(n− k) zero vectors are added after the sorted nodes.

Convolution layers and fully connected layer. After the graph pooling layer, a tensor
Z = k × ∑T

1 dt is obtained. In the remaining layers, we first use the traditional one-
dimensional convolutional neural network combined with the max pooling layer to further
refine the graph representation features and then make the final prediction using a fully
connected layer.

To train a one-dimensional convolutional neural network on tensor Z, it first needs
to be reshaped into a one-dimensional vector. To apply the filter for each node feature,
the filter size and step length of the first one-dimensional convolutional neural network
are set to ∑T

1 dt; that is, each node feature is convolved first. Then, after a max pooling
layer, a one-dimensional convolutional neural layer is used to further learn the graph to
represent the local features in the sequence features. Finally, it is connected to the fully
connected layer. We use NLLLoss as the loss function, which adds up the predicted values
of all predicted samples under the true labels. The predicted value here is a negative
number in the logarithmic form of a normalized exponential function (softmax), mapping
the prediction range from (0, 1) to (0,+∞). If all prediction samples are predicted correctly,
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NLLLoss is closer to 0. Finally, the fully connected layer outputs the probability of miRNA
and disease node pair connections.

3.2.4. Evaluation Metrics

In order to verify the model performance, we choose the following metrics: AUROC
(Receiver Operating Characteristic curve), ACC (accuracy), precision, recall, AUPR (area
under the precision–recall curve) and MCC (Matthews correlation coefficient). The relevant
definitions are as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + TN
(5)

FPR =
FP

FP + TN
(6)

ACC =
TP + TN

TP + TN + FP + FN
(7)

MCC =
TP− TN× FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

TP (true positive), FP (false positive), TN (true negative) and FN (false negative) were
all derived from the confusion matrix. The ROC curve has the FPR (false positive rate) and
TPR (recall or true positive rate) as the horizontal and vertical coordinates, respectively,
and the area under the ROC curve is the AUC value. The area under the curve with recall
and precision as the horizontal and vertical coordinates is the AUPR value.

4. Conclusions

Understanding the relationship between miRNAs and disease has important implica-
tions for disease prevention, detection and treatment. This paper proposes the HLGNN-
MDA method, which is a heuristic for learning miRNA–disease association prediction from
known miRNA–disease relationships based on graph neural networks. HLGNN-MDA
first extracts the enclosing subgraphs around each miRNA–disease pair to be predicted to
obtain the local network structure. Each node in the enclosing subgraphs is then labeled.
The labeled subgraphs are then input into the graph neural network for classification. In
particular, second-order topological information is added to the convolutional layer of the
graph neural network to enable it to learn information between similar nodes. Second,
different combinations of propagation functions are designed to improve the accuracy
and stability of the graph neural network. We compared the model with the same type of
miRNA–disease association prediction model using tenfold cross-validation. The results
showed that HLGNN-MDA was able to obtain better performance than most miRNA–
disease association prediction models. After discussing the effect of hop count on extracting
closed subgraphs, we successively evaluated each propagation function combined in the
model. Finally, we used the trained HLGNN-MDA model to make predictions and per-
formed case studies on breast cancer, hepatocellular carcinoma and renal cell carcinoma. A
total of 49 of the top 50 predicted miRNAs for breast cancer could be found in the validation
database. The remaining hsa-mir-362 was also found to be associated with breast cancer, as
supported by the literature. Similarly, 49 of the top 50 miRNAs predicted for hepatocellular
carcinoma could be validated against the database. The remaining hsa-mir-495 was also
found to be related to hepatocellular carcinoma, as supported by the literature. Finally, 47
of the top 50 miRNAs associated with renal cell carcinoma could be validated.

Generally, HLGNN-MDA has the following advantages: First, HLGNN-MDA can
select arbitrary links for prediction without having to predict all potential miRNA–disease
associations in the adjacency matrix. In particular, when predicting individual diseases or
miRNAs, HLGNN-MDA can directly obtain the corresponding results. Second, HLGNN-
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MDA does not strictly require the corresponding similarity data because it can learn
information through the topology of the network.

However, there are still some aspects for improvement. Valid miRNA and disease
signatures are also important for prediction. Therefore, adding valid miRNA and dis-
ease signatures to HLGNN-MDA should be further investigated. Second, HLGNN-MDA
is an end-to-end supervised learning algorithm framework. One of the problems with
miRNA–disease association prediction is that there is no definite negative sample. For the
potential associations, only a small proportion of them are truly associated, and most are
unassociated. In this paper, the prediction of miRNA–disease association is approximated
as a supervised learning model [73] with insufficient samples. Therefore, a new linkage
prediction heuristic represents a future researchable direction.
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