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Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ac-
counting for about 90% of cases. Sorafenib, lenvatinib, and the combination of atezolizumab and
bevacizumab are considered first-line treatments for advanced HCC. However, clinical application of
these drugs has also caused some adverse reactions such as hypertension, elevated aspartate amino-
transferases, and proteinuria. At present, natural products and their derivatives have drawn more
and more attention due to less side effects as cancer treatments. Isothiocyanates (ITCs) are one type
of hydrolysis products from glucosinolates (GLSs), secondary plant metabolites found exclusively
in cruciferous vegetables. Accumulating evidence from encouraging in vitro and in vivo animal
models has demonstrated that ITCs have multiple biological activities, especially their potentially
health-promoting activities (antibacterial, antioxidant, and anticarcinogenic effects). In this review,
we aim to comprehensively summarize the chemopreventive, anticancer, and chemosensitizative
effects of ITCs on HCC, and explain the underlying molecular mechanisms.

Keywords: hepatocellular carcinoma; isothiocyanates; chemoprevention; anticarcinogenic activity;
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1. Introduction

Primary liver cancer is the sixth most common cancer and the third leading cause of
cancer-related death worldwide in 2020, with steady growth for nearly two decades [1,2].
The incidence of liver cancer is higher in transitioned countries than that of transitioning
countries, and the incidence rate and mortality rate for men are both higher than that for
women in most areas [2]. Liver tumors include hepatocellular carcinoma (HCC), intra-
hepatic cholangiocarcinoma, and other seldom tumors, among which HCC is the most
common pathological type accounting for about 90% of cases [3]. Due to the relatively
insidious onset and often late diagnosis, most patients with liver cancer are not suitable for
surgical resection. For these patients, promising treatment options, as systemic chemother-
apy and targeted drug therapy, are available. Currently, the combination of atezolizumab
and bevacizumab (an anti-VEGF antibody) has become the standard of care as first-line
therapy for advanced HCC, except for patients with contraindications to vascular endothe-
lial growth factor (VEGF) inhibitors and immunotherapy [4,5]. Nevertheless, sorafenib
(a small-molecule multikinase inhibitor) and lenvatinib (a multikinase inhibitor) are con-
sidered the first-line treatments for advanced-stage HCC patients [6,7]. However, treated
with these therapies, patients will have adverse reactions, such as hypertension, elevated
aspartate aminotransferase, and proteinuria [8].

At present, more and more studies focus on biologically active natural compounds,
especially those extracted from plants with the advantages of low toxicity and less adverse
reactions [9–11]. In the past two decades, about one-third of FDA-approved drugs have de-
rived from natural products and their derivatives [12]. Glucosinolates (GLSs) are important
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plant secondary metabolites present in the order of Brassicales [13]. GLSs are hydrolyzed by
myrosinases forming various enzymatic hydrolysis products [14]. Isothiocyanates (ITCs),
one type of hydrolysis products from GLSs, seem to be promising anticancer drugs, which
have been proved to inhibit tumors by promoting autophagy, inducing epigenetic modifica-
tion, and inhibiting glycolysis and fat metabolism in a growing number of studies [15–17].
Nowadays, some ITCs have entered clinical trials for the treatment of multiple cancer types,
such as lung cancer, prostate cancer, and oral cancer [18–20].

In this review, we provide information on GLSs and its derived ITCs, and mainly
discuss the mechanisms for different ITCs in inhibiting the carcinogenic properties of HCC.

2. Aetiology and Pathophysiology of HCC
2.1. Risk Factors for HCC

The incidence of liver cancer has continued to rise globally, posing a serious challenge
to human health. As the major histological subtype of primary liver cancer, the occurrence
of HCC is mostly relevant to chronic liver disease (more than 90% of cases), among which
liver cirrhosis of any etiology is known to predispose toward HCC [21,22]. The proportion
of liver cirrhosis developing into HHC reaches 1–6% every year, especially in patients with
liver hepatitis or liver injury triggered by hepatitis virus B (HBV) and C (HCV) infection
and unhealthy drinking, and HHC has also become one of the main causes of death in
patients with liver cirrhosis [23–26]. The major risk factors for HCC include HBV and
HCV infection, alcohol-related liver disease, type 2 diabetes, obesity-related non-alcoholic
steatohepatitis and exposure to dietary, among which HBV and HCV infection are the most
prominent risk factors, accounting for about 80% of HCC cases [8,27]. HBV is a DNA virus
that can integrate into the host genome to induce insertion mutation, leading to oncogene
activation [28]. Moreover, aflatoxin B1 exposure may have a synergistic effect with HBV to
increase the risk of HCC [29,30]. However, timely hepatitis B birth dose vaccination has
the potential to reduce HBV cases [31]. Unlike HBV, HCV is a RNA virus that does not
integrate into the host genome and, therefore effective early detection is crucial for the
treatment of HCV-infected patients [32]. Less common causes of HCC include age, sex,
race and so on [33–35].

2.2. Pathophysiology

The occurrence and development of HCC are a complex multi-step process that usu-
ally occurs in the context of cirrhosis and is associated with a diversity of underlying liver
diseases, including persistent inflammatory injury such as hepatocyte necrosis and regener-
ation, and fibrosis deposition [21,22,36]. The malignant transformation of liver cirrhosis
into HCC follows a precise sequence of lesions: (i) from cirrhosis to low-grade dysplastic
nodules, (ii) followed by high-grade dysplastic nodule, (iii) which subsequently transforms
into early HCC and (iv) further results in progressed and eventually advanced HCC [37].
This carcinogenesis process involves multiple genetic aberrations in the molecular control
of hepatocyte proliferation, differentiation and death, and the maintenance of genomic
integrity [3,38]. The major pathways mutated in HCC include telomere maintenance,
Wnt/β-catenin pathway, P53 cell cycle pathway, epigenetic modifiers, oxidative stress path-
way, PI3K/AKT/MTOR and RAS/RAF/mitogen-activated protein kinase pathways [38].
The pathogenesis of HCC is associated with the cumulative activation and inactivation of
oncogenes, tumor suppressor genes and other genes, as well as epigenetic alterations [8,39].

3. GLSs and Their Derived ITCs

Epidemiological studies have confirmed that intake of cruciferous vegetables in the
diet helps reduce the risk of malignant tumors, attributed to the bioactive substances
ITCs that are the hydrolysates of GLSs [40–43]. GLSs are a group of sulfur- and nitrogen-
containing secondary metabolites, present primarily in the plant order Brassicales including
Brassicaceae which contains several of daily vegetables, such as broccoli, cauliflower,
cabbage, mustard, horseradish and white radish [44]. Chemically, GLSs share a common
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structure consisting of a β-D-thioglucoside, N-hydroxysulfates sulfur-linked to a sulfonate
aldoxime and a variable side chain (R) derived from amino acids (Figure 1) [45]. To date,
about 200 GLSs have been identified [46]. According to the structure of different amino
acid precursors, GLSs are divided into arylaliphatic, aliphatic and indole GLSs [46,47].
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at present, with -N=C=S considered as the most important active group [52,53]. There are 
in vitro and in vivo evidence that ITCs have multiple biological activities including plant 
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Figure 1. Glucosinolate hydrolysis into isothiocyanates by myrosinases. Glucosinolates (GLSs) are
determined by a β-D-thioglucoside, N-hydroysulfates sulfur-linked to a sulfonate aldoxime and
a variable side chain (R) derived from amino acids. GLSs generate aglycones under the action of
myrosinases. As the structure of aglycones is unstable, ITCs are generated when the pH is greater
than 6.5. Nitrogen, sulfur and hydrogen are indicated in blue, yellow and light blue, respectively.

During food preparation, chewing, and digesting, GLSs are broken down by
β-thioglucosidase enzymes, known as myrosinases, into unstable aglycone moieties which
rearrange to form bioactive compounds such as ITCs, nitriles, thiocyanates, and related
compounds [48,49]. In intact plant tissues, GLSs and myrosinases are spatially separated,
present in the vacuoles of so-called S-cells and in adjacent cells, respectively [50]. Upon
plant tissue disruption, for instance, induced by cutting or chewing, GLSs come in contact
with myrosinases to generate a hydrolysis in the presence of water [45,51]. The enzymatic
hydrolysis of GLSs under the action of myrosinases into ITCs is shown in Figure 1.

ITCs are a family of compounds as the most intensively studied hydrolysates of GLSs
at present, with -N=C=S considered as the most important active group [52,53]. There are
in vitro and in vivo evidence that ITCs have multiple biological activities including plant
defense and benefits to human health (antioxidant, antimicrobial and anticarcinogenic
properties) [54–58]. ITCs have attracted much attention due to their potentially health-
promoting activities associated with an anticarcinogenic activity in several organs, includ-
ing lung, breast, colon, prostate, bladder and liver [59–62]. At present, the most extensively
studied ITCs derived from GLS hydrolysis are allyl isothiocyanate (AITC), sulforaphane
(SFN), benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), 4-(methylthio)
butyl isothiocyanate (4-MTB-ITC) and indole-3-carbinol (I3C, a breakdown product of
indolic ITCs) [16,63–67]. Among these components, I3C and SFN have been most fre-
quently examined for their anticancer effects [68,69]. In Table 1, we list the dietary sources,
precursors and structures of ITCs covered by this review.
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Table 1. Information on dietary sources of isothiocyanates and their glucosinolate precursors.

Isothiocyanates Structures Glucosinolate Precursors Dietary Sources References

Allyl isothiocyanate
(AITC)
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4. The Role of ITCs as Chemopreventive Agents on HCC

The preventive strategy to use naturally occurring or synthetic chemical agents to
reverse, inhibit, or delay carcinogenesis when the hosts have been exposed to pathogenic
factors is called chemoprevention [76]. Many epidemiological studies have provided strong
evidence that a high intake of cruciferous vegetables and their constituents has a decreased
risk of cancer [77,78]. As early as the 1970s, Wattenberg found that additions of ITCs to a
diet could effectively inhibit chemical carcinogensis [79]. So far, a large number of studies
have confirmed that ITCs play a significant chemopreventive role in various cancers, such
as lung cancer, breast cancer, prostate cancer and liver cancer [80–83]. The doses of ITCs
used for analysis of the chemopreventive potential in in vivo models varied considerably
from 1 to 1100 mg/kg of body weight according to the specific type [84]. Nowadays,
investigations of some individual ITCs reach the level of clinical trials for cancer prevention,
such as SFN (ClinicalTrials.gov Identifiers: NCT03232138, NCT03517995, NCT01265953,
NCT01228084 and NCT00946309) (Table 2) [85–89].

Table 2. Chemopreventive activity of isothiocyanates on hepatocellular carcinoma and other cancers
in in vivo models.

Isothiocyanates Types of Cancers ClinicalTrial.gov Identifiers a Doses References

SFN Lung cancer NCT03232138 Oral-120 µM/day [88]
SFN Bladder cancer NCT03517995 Oral-200 µM/day [86]
SFN Prostate cancer NCT01265953 Oral-200 µM/day [89]
SFN Prostate cancer NCT01228084 Oral-200 µM/day [85]
SFN Prostate cancer NCT00946309 Oral-100 µM/day [87]
SFN Liver cancer / 12 mg/kg [90]

PEITC Live cancer / 0.6–6.0 µM/g [91]
a represents no ClinicalTtrial.gov Identifier.

Considerable evidence suggests that ITCs could exert their cancer preventive effects
by inhibiting the activation or enhancing the detoxification of the potential carcinogens or
by acting on later stages of the carcinogenetic process, interfering with various distinct but
interconnected signaling pathways involving modulating phase I and phase II enzymes,
activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and
epigenetic regulation [17,78].
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4.1. ITCs Inhibit the Activation and Enhance the Detoxification of Carcinogens by Modulation of
Phase I and Phase II Enzymes

The metabolic activation of potential carcinogens primarily requires the catalysis
by phase I and II biotransformation enzymes to cause DNA damage and cancer [84].
Phase I enzymes convert carcinogens through oxidation into active intermediates that eas-
ily bind to biological macromolecules such as DNA, RNA, and proteins [92]. Cytochrome
P450 (CYP450) enzymes have proved to be the major phase I enzymes in the activation of
potential pro-carcinogens such as aflatoxin B1, alpha-asarone, nitrosamines, polycyclic aro-
matic hydrocarbons [93–97]. Phase II enzymes, mainly including glutathione S-transferases,
uridine 5′-diphospho-glucuronosyltransferases (UDP-glucuronosyltransferases), nicoti-
namide adenine dinucleotide phosphate (NADPH) quinone oxidoreductase 1 (NQO1),
quinine reductases and glutamate cysteine ligase, have been implicated in detoxification
of carcinogens, by promoting the conjugation of reactive intermediates with endogenous
cofactors to produce water-soluble products and facilitating their excretion from the body
through bile or urine [92,98].

In general, ITCs have been proposed to downregulate phase I enzymes to inhibit
carcinogen activation and upregulate phase II enzymes to enhance detoxification and
excretion of carcinogens, leading to the protection from carcinogenesis [98,99]. Relevant
in vitro studies have directly proved the inhibitory effect of PEITC and SFN on CYP450
activities [100,101]. Dietary doses of SFN were demonstrated to depress the hepatic activity
of CYP1A2, CYP2B and CYP3A for in vivo experiments in rats (Table 2) [90]. Besides, in
rat hepatocytes, SFN alone has also proved to significantly enhance the GSTA1 mRNA
level in a dose-dependent manner, while co-treatment of SFN with β-naphthoflavone leads
to a substantial increase in NQO1 activity and a marked decrease in CYP1A1, CYP2B,
and CYP3A4 expression, thus exerting its chemopreventive activity [102]. In addition, the
chemopreventive effect of SFN on detoxication of the aflatoxin B1-8,9-epoxide in alpha
mouse liver (AML) 12 cells has been reported to be associated with the upregulation of
several GST isozyme genes [103]. Except SFN, addition of PEITC to rats at all dietary doses
could markedly elevate the quinone reductase in liver tissues and stimulate the activity
of hepatic GSTs (Table 2) [91]. Furthermore, Marca et al. treated primary rat hepatocytes
with eight different ITCs (the aromatic benzyl, 4-hydroxybenzyl, phenethyl ITCs and the
aliphatic allyl, napin, iberin, raphasatin ITCs, and SFN) and found that aromatic ITCs
significantly increased the transcription of CYP1A1 and CYP1A2 mRNA and all these
eight ITCs up-regulated most antioxidant/detoxifying enzymes, especially NADPH [104].
Collectively, all these findings support a chemopreventive effect for ITCs in liver.

Kelch-like ECH-associated protein-1 (Keap1)-Nrf2-antioxidant response element (ARE)
signaling pathway represents one of the most important defense mechanisms against ox-
idative stress and exogenous toxic substances [105–107]. Nrf2 is an anti-oxidative stress
regulator, which is sequestered in the cytoplasm by an inhibitor partner the cytoskeletal
anchoring protein Keap1 through ubiquitination and degradation via the ubiquitin pro-
teasome system under normal conditions [108,109]. Oxidative stress inducers dissociate
this complex and cause dissociation of Nrf2 from Keap1 and subsequent translocation into
the nucleus, triggering the induction of a verity of ARE driven detoxification enzymes and
antioxidant factors, such as phase II enzymes [78]. Moreover, activating Nrf2 signaling
plays a crucial role in prevention and treatment of various oxidative stress-related diseases
including chemical carcinogenesis, metabolic and inflammatory diseases [110–113].

The ability to induce phase II and antioxidant enzymes via the Nrf2 signaling pathway
has been also reported for ITCs as SFN, I3C, PEITC, AITC and BITC [114–116]. It was
described that ITCs can bind to the sulfhydryl group of Keap1 to induce phase II enzymes,
thereby preventing carcinogens and oxidants as showed in Figure 2 [117,118]. It is worth
noting that the induction effect on Nrf2 and antioxidant enzyme HO-1 in hepatoma cell
varies with different ITCs. In HepG2, SFN not only strongly induced Nrf2 protein expres-
sion and ARE-mediated transcriptional activation, but also inhibited Keap1 to delay the
degradation of Nrf2, thus activating the transcriptional expression of HO-1; AITC also
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induced the expression of Nrf2, ARE and HO-1, but had little effect on slowing down the
degradation of Nrf2 protein; I3C could induce ARE-reporter gene expression and Nrf2
to some extent, but was not as potent as the formers [119]. Moreover, synergistic effects
were observed in combination with I3C and SFN or PEITC in a human liver hepatoma cell
line (HepG2-C8), leading to the induction of endogenous Nrf2, phase II genes (GSTm2,
UGT1A1 and NQO1) and antioxidant genes (HO-1 and SOD1), which could ultimately
enhance cancer chemopreventive activity [120].
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Figure 2. The regulatory effect of isothiocyanates on Keap1-Nrf2-ARE signaling pathway. Under
normal conditions, Nrf2 is anchored into the cytoplasm by binding to Keap1, which facilitates the
proteasomal degradation by ubiquitination. Under the action of the chemoprotective inducers ITCs,
nascent Nrf2 translocates to the nucleus due to binding of ITCs to the sulfhydryl group of Keap1, and
then binds to antioxidant response element (ARE) sequences in the nucleus, promoting the expression
of genes and enzymes that regulate redox homeostasis. Red, purple, yellow, and light green ellipses
represent ITCs, Nrf2, PBX1, and ub, while orange, dark green, blue, and red boxes represent Gulins3,
Keap1, ARE, and sMaf, respectively. ub, ubiquitination; sMaf, small Maf proteins.

4.2. Chemopreventive Activity of ITCs on HCC through Epigenetic Regulation

Epigenetic regulation, defined as heritable changes in gene expression that occur
without alterations in DNA sequence, including DNA methylation, histone modification,
and expression of microRNA (miRNA), plays a core role in the pathogenesis and chemopre-
vention of various cancers including HCC [121–123]. A large number of studies have found
that ITCs are promising natural compounds in epigenetic targeted therapy [41,122,124].

4.2.1. The Effect of ITCs on Post-Translational Histone Modification and DNA
Methylation in HCC

The N-terminal of histone can undergo a variety of post-translational modifications,
such as acetylation, methylation, phosphorylation and ubiquitination, which affect the
structure and function of chromosome and finally play a role in the occurrence and devel-
opment of cancer [125,126]. DNA methylation is an important aspect of epigenetics. A
considerable number of experimental studies underline that hypermethylation of DNA
causes changes in cell regulatory pathways, cell cycle and migration in tissues, resulting
in HCC [127–129]. There is mounting evidence that the chemoprevention mechanism of
ITCs depends on the changes of histone deacetylases (HDACs) and the inhibition of DNA
methylation in various cancers [130]. Recently, Dos Santos et al. found that SFN played
an epigenetic regulatory role in human hepatoma cells (HepG2) by inhibiting HDACs
and might affect the activity of oncogenic transcription factor through methylation of its
binding site motifs, offering insights into SFN chemopreventive molecular effects [131].



Int. J. Mol. Sci. 2022, 23, 13834 7 of 21

4.2.2. The Ability of ITCs to Alter miRNA Expression in HCC

Besides the mentioned epigenetic regulatory mechanism to inhibit the activity of
HDACs, the influence of ITCs on miRNA expression and modulation is also important.
MiRNA is a class of small endogenous RNAs that regulate gene expression after tran-
scription [132]. There is existing evidence to substantiate that multiple ITCs are capable to
modulate miRNA expression in tumor cells, such as PEITC, SFN, and BITC [133–135]. Some
studies suggested that miR-21 was upregulated in HCC [136–138]. It has been reported
that I3C acted as a miR-21 regulator, leading to the suppression of miR-21 and repression of
the tensin homologue protein (PTEN)/AKT pathway, a potential therapeutic target against
metastasis, thus inhibiting tumorigenicity of HCC cells [139].

5. Anticancer Effects and Molecular Mechanisms of ITCs on HCC

Since the surprising discovery in 1977 of the anticancer properties of ITCs, accumu-
lating evidence from encouraging in vitro and in vivo animal models has supported that
ITCs could inhibit HCC by inhibiting cell proliferation, promoting apoptosis, inhibiting cell
migration, inducing autophagy and so on, dysregulating diverse proteins and signaling
pathways (Table 3).

Table 3. Anticancer effects of isothiocyanates on hepatocellular carcinoma and their molecular targets
in in vitro and in vivo models.

Isothiocyanates Inhibitory Approaches Molecular Targets a Experimental Models Concentrations References

BITC Inhibit cell proliferation Survivin↓ Bel7402 and HLE 20 µM [140]
AITC Inhibit cell proliferation Survivin↓ HepG2 2 and 5 µM [141]

MTBITC Arrest cell cycle G2/M phase arrest HepG2 25 µM [142]

AITC Arrest cell cycle
G2/M phase arrest
Cyclin B1↓, p53↑,

and p21↑
HepG2 2 and 5 µM [141]

SFN Arrest cell cycle Sub G0/G1
phase arrest HepG2 33.8 µM [143]

SFN Arrest cell cycle G2/M phase arrest HepG2 8 µM [131]
SFN Arrest cell cycle S; G2/M phase arrest HepG2 40 µM [144]

Iberin Arrest cell cycle S; G2/M phase arrest HepG2 40 µM [144]
Alyssin Arrest cell cycle S; G2/M phase arrest HepG2 40 µM [144]

PEITC Induce cell apoptosis

caspase-9/-3/-8↑,
Bax↑, p53↑, Bcl-2↓,

BclXL↓, and
cytochrome C↓

PLC/PRF/5 cells 5 µM [145]

β-PEITC Induce cell apoptosis

caspase-9/-3↑, Bax↑,
mitochondrial

membrane potential↓,
cytochrome C↓

HepG2 20µM [146]

SFN Induce cell apoptosis caspase-3↑, Bcl-2,
BclXL↓, and Bax↑ HepG2 20 µM [147]

MTBITC Induce cell apoptosis Caspase-3/-7↑ HepG2 25 µM [142]
Wasabia japonica
extract contained
5-(methylsulfinyl)

pentyl ITC,
6-(methylsulfinyl)

hexyl ITC, and
7-(methylsulfinyl)

heptyl ITC)

Induce cell apoptosis ROS↑ and p73↑ Hep3B 0.25 to
1 mg/mL [148]
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Table 3. Cont.

Isothiocyanates Inhibitory Approaches Molecular Targets a Experimental Models Concentrations References

Wasabia japonica
extract contained
5-(methylsulfinyl)

pentyl ITC,
6-(methylsulfinyl)

hexyl ITC, and
7-(methylsulfinyl)

heptyl ITC)

Induce cell apoptosis ROS↑ and p73↑ Xenograft tumors 5 mg/kg [148]

BITC Induce cell apoptosis caspase-3↑ and
PARP-1↑ Bel7402 20 µM [140]

AITC Induce cell apoptosis caspase-3/-8↑ and
Bcl-2↓ HepG2 2 and 5 µM [141]

SFN Induce cell apoptosis

Bip/RP78↓, XBP-1↓,
caspase-12↓,

CHOP/GADD153↓,
and Bid↓

HepG2 40 µM [149]

SFN Induce cell apoptosis caspases-3/7/-9↑
caspases-8↓ HepG2 33.8 µM [143]

MTBITC Induce cell apoptosis ROS↑ HepG2 10, 20, and
40 µM [150]

Erysolin Induce cell apoptosis ROS↑ HepG2 10, 20, and
40 µM [150]

PEITC Induce cell apoptosis ROS↑ HepG2 10, 20, and
40 µM [150]

SFN Induce cell apoptosis ROS↑ HepG2 10, 20, and
40 µM [150]

Sulforaphene Induce cell apoptosis ROS↑ HepG2 10, 20, and
40 µM [150]

I3C Induce cell apoptosis p53↑, PARP↑, and
caspase-3/-7↑ SNU449 300 µM [151]

AITC Inhibit cell migration MMP-2/-9↓ SK-Hep-1 5 µM [152]

AITC Inhibit cell migration MMP-2/-9↓,
integrinα5β1↓ HepG2 2, and 5 µM [141]

PEITC Inhibit cell migration MMP-2/-9↓ and
TIMP1/2↑ SK-Hep-1 5 µM [153]

AITC Inhibit cell migration
COL8A1↓, COL4A3↓,

and
MMP-2/-9↓

SK-Hep-1 10 µM [154]

I3C Inhibit cell migration miR-21↓ and PTEN↑ SK-Hep-1 and SUN449 200 µM [139]

BITC Inhibit cell migration MMP-2/-9↓ and
CXCR4↓ Bel7402 20 µM [140]

BITC Inhibit cell migration MMP-2/-9↓ SK-Hep-1 0.1, 1, and
5µM [155]

AITC Inhibit cell migration MMP-2/-9↓ and
AKT/NF-κB pathway HepG2 2, and 5 µM [141]

PEITC Inhibit cell angiogenesis HIF-1α↓ and VEGF↓ HepG2 10 µM [156]

MTBITC Inhibit cell angiogenesis microtubule
depolymerization HepG2 10, 20, and

40 µM [150]

Erysolin Inhibit cell angiogenesis microtubule
depolymerization HepG2 10, 20, and

40 µM [150]

PEITC Inhibit cell angiogenesis microtubule
depolymerization HepG2 10, 20, and

40 µM [150]

SFN Inhibit cell angiogenesis microtubule
depolymerization HepG2 10, 20, and

40 µM [150]

Sulforaphene Inhibit cell angiogenesis microtubule
depolymerization HepG2 10, 20, and

40 µM [150]

I3C Inhibit cell angiogenesis p53↑, PARP↑, and
caspase-3/-7↑ SNU449 300 µM [151]
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Table 3. Cont.

Isothiocyanates Inhibitory Approaches Molecular Targets a Experimental Models Concentrations References

SFN Inhibit cell angiogenesis STAT3↓, HIF-1α↓,
and VEGF↓ HepG2 20 µM [157]

SFN Decrease
telomerase activity hTERT↑ and ROS↑ Hep3B 20 µM [158]

MTBITC Decrease
telomerase activity MAPK and hTERT↑ HepG2, Hep3B, and

Huh7 25 µM [159]

MTBITC Decrease
telomerase activity telomerase activity↓ Xenograft tumors 50 mg/kg [160]

a ↑ and ↓ represent enhanced and suppressed gene expression and/or protein levels, respectively.

5.1. Inhibition of the Proliferation of HCC Cells

Infinite proliferation is one of the main characteristics of tumor cells, and inhibition of
tumor cell proliferation has always been one of the main anti-tumor mechanisms [161,162].
ITCs could inhibit the abnormal proliferation of HCC cells through a variety of mech-
anisms, such as promoting apoptosis, inducing cycle arrest and regulating related pro-
teins [40,163,164]. BITC was suggested to suppress survivin expression and activate apop-
tosis, ultimately inhibiting the proliferation of HCC Bel7402 and BLE cells in a dose-time
dependent manner [140]. Iberin, SFN and Alyssin were found to induce the accumulation
of intracellular reactive oxygen species (ROS) and arrest cells in S and G2/M phase to block
proliferation in HepG2 [165]. It was also demonstrated that AITC and its N-acetylcysteine
conjugate (a major metabolite of AITC) suppressed the proliferation of SK-Hep-1 human
hepatoma cells by inhibiting invasion, migration and MMP-2/-9 activity [152].

5.2. Arrest of HCC Cell Cycle

The cell cycle directly regulated by cyclins and cyclin-dependent protein kinases
(CDKs) is a highly ordered set of events related to eukaryotic cell replication [166]. In
general, cell cycle is divided into four stages: G1, S, G2 and M [167]. A series of reasons
such as abnormal expression of cyclins or abnormal DNA replication would lead to the
cycle disorder of tumor cells, which has been an important strategy to inhibit the growth
of cancer cells [62,143,168]. The inhibition effect of ITCs on HCC cell cycle is obvious but
varies according to the specific type and dose. It has been reported that SFN with different
doses can block the cell cycle of human HCC HepG2 cell line through distinct periods of
stagnation. The HepG2 cell population was increasingly arrested at the sub G0/G1 phase
with SFN (33.8 µM) treatment in a time-dependent manner [143]. By contrast, SFN at 8 µM
for 24 h treatments on the HepG2 induced G2/M cell cycle arrest and upregulated the
expression of CDKN1A, CDK1, and CCNB1 that controls the DNA damage checkpoint [131].
In addition, AITC was uncovered to block the cell cycle of HepG2 in G2/M by regulating
cyclin B1 [141].

5.3. Inducing Apoptosis of HCC Cells

Apoptosis refers to a genetically determined process of spontaneous and orderly
death of cells to maintain the stability of the internal environment under physiological or
pathological conditions [169]. Apoptosis pathways could be divided into exogenous death
receptor (DR) pathway, endogenous mitochondrial pathway, and endogenous endoplas-
mic reticulum (ER) pathway [170]. Meanwhile, granzyme B has been also implicated in
the mediation of apoptosis process under certain conditions [171]. Several studies have
reported that ITC-targeted apoptosis pathways play an important role in the treatment
of cancer [172–174].

5.3.1. Apoptosis Process Mediated by Mitochondria

When cells are suffering from apoptosis-stimulating factors or activated by death
ligand, B-cell lymphoma-2 (Bcl-2) family proteins as Bak and Bax are activated, govern-
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ing the membrane potential reduction and mitochondrial outer membrane permeabi-
lization (MOMP), which further cause the release of cytochrome C and other apoptotic
factors from mitochondria to cytoplasm, caspase apoptosis pathway activation and cell
self-destruction [175]. Anticancer properties of ITCs promote activation of mitochondria-
mediated apoptosis in various types of cancer cells, including HCC. Wu et al. treated
PLC/PRF/5 cells with 5 µM PEITC and found that it could activate mitochondrial sig-
nal, release cytochrome C, reduce mitochondrial membrane potential, and then activate
caspase-3/-9/-8 to cause apoptosis [145]. In addition, PEITC promoted the protein levels of
tumor suppressor p53, which has been demonstrated to directly affect mitochondrial outer
membrane permeability [145,176]. Wasabia japonica extract containing 5-(methylsulfinyl)
pentyl ITC, 6-(methylsulfinyl) hexyl ITC and 7-(methylsulfinyl) Heptyl ITC could induce
the accumulation of ROS and decrease the mitochondrial membrane potential, causing
mitochondrial apoptotic pathway [148].

5.3.2. Apoptotic Pathway Induced by Endoplasmic Reticulum Stress

Endoplasmic reticulum stress (ERS) is defined as the accumulation of unfolded or
misfolded proteins in the ER under endogenous or exogenous disturbance factors, that
activate a series of complex signaling pathways [177,178]. Excessive ERS triggers apoptotic
signals and has been considered to be the pretty important cause of apoptosis [179–181].
Multiple relevant studies have confirmed that ITCs such as AITC, BITC, PEITC, and SFN
could generate anticancer activity through ERS-mediated apoptosis [172,182–184]. As for
this pathway, the increased expression of Bip/GRP78 and XBP-1 is a marker [185,186].
Zou et al. have found that SFN treatment with 20–40 µM for 48 h significantly inhibited
the proliferation of HepG2 cells and upregulated the protein levels of Bip/GRP78, XBP-1,
caspase-12, CHOP/GADD153, and Bid, proving that ERS is the most important mechanism
of SFN-induced apoptosis of HepG2 cells [149].

5.3.3. Apoptosis Process Mediated by Death Receptors

DRs belong to the tumor necrosis factor (TNF) receptor superfamily, including Fas,
TNFR1, DR4, DR5 and DR3 [187]. When DR binds to the corresponding death ligands, it
initiates a series of signal transduction and activates downstream caspase signal pathway,
inducing apoptosis [188]. Currently, the best studied apoptotic DR signaling pathways
include Fas/Fas ligand (FasL), tumor necrosis factor related apoptosis-induced ligand
(TRAIL) and tumor necrosis factor receptor (TNFR) [189–191]. Yang et al. clarified that
SFN could activate Fas signaling pathway and induce anoikis apoptosis in HepG2 and
SMMC7721 cells by downregulating keratin 8 and keratin 18 (K8/18) [192]. TRAIL has
become a promising new anticancer biotherapeutic. Relevant studies have found that
I3C sensitizes HepG2 cells to TRAIL-induced apoptosis mainly through upregulation of
caspase-3 activity, DR4 and DR5 expression, and down-regulation of Bcl-2 expression [193].

The ITC-induced regulatory pathways of apoptosis in HCC described above are
represented in Figure 3.

5.4. Inhibition of Tumor Cell Migration

Tumor invasion and metastasis as the primary causes of death for cancer patients
correlate with the expression of matrix metalloproteinases (MMPs) and their inhibitors
(TIMPs) [194]. MMPs, a kind of Zn2+- and Ca2+-dependent proteolytic enzymes, are
responsible for extracellular matrix degradation and tissue remodeling, promoting the
angiogenesis of tumor cells and the invasion and metastasis of adjacent tissues [195]. Cur-
rently, several studies have proved that ITCs downregulate the expression of MMP-2/-9
and upregulate the expression of TIMP1/2 in HCC in vitro, finally resulting in the in-
hibition of HCC progression [140,152,153,196]. It has been found that BITC treatment
inhibited the MMP-2/-9 protein expression in a dose-dependent manner, whereas it in-
creased TIMP-2 expression in SK-Hep-1 human hepatoma cells [155]. Further investigation
revealed that the anti-metastatic activities of BITC might be achieved by the suppression
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of the phosphorylation activity of mitogen-activated protein kinases (MAPKs) [155]. Fur-
thermore, BITC significantly inhibited the expression of MMP-2 in Huh 7 and Hep G2
and exerted the antitumor effect on HCC either in-vivo or in-vitro through suppressing
HGF/pAKT/STAT3 axis [83]. Apart from BITC, AITC has been also reported exhibiting
antimetastatic activity [154].
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Figure 3. Regulatory pathways of apoptosis induced by isothiocyanates in hepatocellular carcinoma
cells. Isothiocyanates (ITCs) mainly induce three apoptotic pathways in HCC. (i) ITCs trigger a
series of mitochondria-related apoptotic responses, including decrease of mitochondrial membrane
potential, increase of Bax expression and decrease of Bcl-2 expression, ultimately promoting the
enhancement of mitochondrial outer membrane permeabilization (MOMP), which further causes the
release of cytochrome C and promotes the production of ROS that causes DNA damage. (ii) ITCs
induce endoplasmic reticulum stress (ESR)-related apoptosis pathway. As for this pathway, PERK
and IRE1 are separated from molecular chaperones such as Bip/GRP78 due to the interaction between
the unfolded/misfolded protein and molecular chaperones, and activated by autophosphorylation,
promoting the production of elF-2α and expression of XBP1. Elf-2α and XBP1 further upregulate the
levels of apoptosis signaling molecule CHOP/GADD153. Besides, ATF6 is also stimulated to transfer
into the nucleus and promotes the transcription and expression of CHOP/GADD153. Moreover,
a large amount of Ca2+ is released to enter the cytoplasm and activate calpain and caspase-12.
(iii) ITCs induce apoptosis process mediated by TNF-related apoptosis-inducing ligand (TRAIL)
and Fas/Fas ligand (FasL). ITCs inhibit keratin 8 and keratin 18 (K8/18), leading to the binding of
FasL homotrimer (FADD, Daxx, and FAD-1) complex with Fas, which initiates Fas-FasL-mediated
apoptosis of external death receptor pathway. In addition, ITCs induce TRAIL binding to DR4 and
DR5, activating caspase-3 and mitochondria-dependent pathways to facilitate apoptosis. Red, blue,
light green, dark green, pink, orange, gray, and reddish ellipses represent ITCs, Bcl-2/Bax, p53, ATF6,
CHOP/GADD15, Bip, XPB1, and eIF-2α, respectively, while red hollow circle represents ROS.
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5.5. Inhibition of Tumor Cell Angiogenesis

Angiogenesis-related pathways play an important role in the HCC progression [197].
The VEGFs and their receptors (VEGFRs) are prime regulators in angiogenesis both physio-
logically and pathologically [198,199]. It was found that treating HCC with BITC signifi-
cantly inhibited the release of angiogenesis marker VEGF either as in-vivo or as in-vitro,
indicating that BITC could retard HCC progression by blocking cancer angiogenesis [83]. In
addition, PEITC treatment remarkably suppressed the secretion of VEGF and the accumu-
lation of hypoxia-inducible factor-1 (HIF-1α) in HepG2 during hypoxia through phospho-
tylinosital 3 kinase (PI3K) and MAPK signaling pathways [156]. The anti-angiogenesis and
anti-tumor effects of SFN on HCC HepG2 cells through inhibition of STAT3/HIF-1α/VEGF
signaling have been also demonstrated [157].

5.6. Decrease in Telomerase Activity of Tumor Cells

Telomerase is a specific reverse transcriptase that maintains telomeres on the ends
of chromosomes [200]. Telomerase is frequently overexpressed in cancer cells and its
activation is necessary for the continued development of some human cancers [201]. There
is evidence of a close relationship between the inhibitory effect of SFN on HCC and
telomerase activity, as Moon et al. found that the transcriptional and posttranslational
regulation of telomerase reverse transcriptase (hTERT) was involved in SFN-induced
suppression of telomerase activity in Hep3B cells via the ROS-dependent pathway [158].
Moreover, the DNA inhibitor MTBITC has also been implicated in the effective inhibition
of telomerase activity both in vivo and in vitro. It has been found that, after MTBITC
treatment, MAPK signaling pathway in Hep3B, HepG2 and Huh7 cells was activated,
which increased the expression of hTERT mRNA and down-regulated telomerase activity,
ultimately leading to apoptosis of HCC cells [159]. Furthermore, in an orthotopic human
HCC xenograft model, Herz et al. demonstrated for the first time that MTBITC significantly
reduced telomerase activity in vivo [160].

6. Sensitization to Chemotherapeutic Agents or Radiation Therapy by ITC
Pre- or Co-Treatment

HCC is characterized by high drug resistance, easy metastasis, and high relapse rate af-
ter cure [8,202]. As broad-spectrum anticancer natural products, ITCs combined with other
radiotherapy drugs have been clarified to greatly increase the anti-HCC efficacy [203–205].
A combination of moringin (a glycosyl-isothiocyanate, MOR) and avenanthramide (AVF-2f)
has been proved an effective chemopreventive cocktail against HCC. This therapy inhibits
Hep3B proliferation through exogenous and endogenous apoptosis, in which MOR triggers
endogenous apoptosis pathway by the increase of ROS level and activation of caspase-2/-9,
while AVF-2f induces exogenous pathway by the activation of caspase-8 expression [203].
Ren et al. found radiation increased the activity of NF-κB in HCC cells, and combined
treatment with the NF-κB inhibitor PDTC induced HCC cell death. The subsequent com-
bination of radiation and SFN with HCC cells achieved the same efficacy. It was further
proved that SFN enhances the radiosensitivity of HCC by blocking the NF-κB pathway
both in vitro and in vivo [206]. Due to insufficient uptake and non-specific distribution, cis-
platin has low chemical sensitivity and obvious side effects, which greatly limits its clinical
application [207]. Recently, SFN has been reported to restore cisplatin chemosensitivity in
HCC HepG2 cells by scavenging glutathione [205].

7. Conclusions and Perspectives

ITCs are hydrolysates derived from secondary metabolites GLSs of cruciferous vegeta-
bles. Considerable evidence supports the chemopreventive and anticancer activities of ITCs
on HCC, making them promising candidates for novel anti-HCC drugs. The effectiveness
of ITCs in the chemoprevention of HCC corelates with modulation of detoxifying enzymes
and epigenetic regulation. ITCs exert anticancer activity in HCC by interfering with diverse
proteins and signaling pathways implicated in cell cycle, apoptosis and metastasis as well
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as some other processes. In addition, the combination of ITCs and other chemotherapeutic
agents in HCC could significantly enhance the therapeutic effect by upregulating the apop-
totic pathway and detoxification, which indicates that ITCs are a good anticancer adjuvant
drug. However, so far, no ITCs have entered clinical trial stage for the treatment of HCC,
partially attributed to the deficency of sophisticated feasible treatment options containing
the type and dose of ITCs. In addition, the exact molecular mechanisms of ITC action
in HCC, especially the epigenetics, key molecular structures and action targets of ITCs,
remain largely outside our realm of cognition. The combination of ITCs with radiotherapy,
chemotherapy drugs and immunotherapy, as a valuable breakthrough point for HCC
treatment, also lacks sufficient experimental support from in vivo and in vitro models.
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