
Citation: Zhang, J.; Shen, Y.; Chen,

W.; Bai, B.; Ji, X.; Chi, Y. Systematic

Identification and Expression

Analysis of the Sorghum Pht1 Gene

Family Reveals Several New

Members Encoding High-Affinity

Phosphate Transporters. Int. J. Mol.

Sci. 2022, 23, 13855. https://doi.org/

10.3390/ijms232213855

Academic Editor: Vicent Arbona

Received: 20 October 2022

Accepted: 9 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Systematic Identification and Expression Analysis of the
Sorghum Pht1 Gene Family Reveals Several New Members
Encoding High-Affinity Phosphate Transporters
Jinglong Zhang †, Yixin Shen †, Wei Chen, Binqiang Bai, Xiaomin Ji and Yingjun Chi *

College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
* Correspondence: yingjunchi@njau.edu.cn
† These authors contributed equally to this work.

Abstract: Sorghum (Sorghum bicolor) is known to have a more robust capability of phosphorus uptake
than many other cereal plants, which could be attributed to its phosphate transporter 1 (Pht1) that has
a high phosphorus affinity. There are eleven SbPht1 genes in the sorghum genome, nine of which are
expressed in sorghum roots or shoots in response to phosphorus deficiency (low-P). The molecular
features of these nine genes were investigated by gene expression analysis, subcellular localization,
and a yeast mutant complementation growth assay. They were found to be induced in response
to low-P stress in root or shoot. All these SbPht1 proteins were found to be localized on the cell
membrane, and SbPht1;8 was also detected in the endoplasmic reticulum. These SbPht1s were able to
complement the yeast mutant EY917 that lacks all the functional phosphate transporters, and, among
them, SbPht1;5, SbPht1;6 and SbPht1;8 could partially complement the yeast mutant strain EY917
in low-P conditions. Overall, these findings demonstrate that SbPht1;5, SbPht1;6, and SbPht1;8 are
high-affinity phosphate transporters. SbPht1;5, in particular, is specifically involved in phosphorus
uptake in the roots, whilst SbPht1;6 and SbPht1;8 are key players in both P uptake and P transport in
response to low-P stress in sorghum.

Keywords: Pht1; sorghum; high-affinity phosphate transporter; low-P condition

1. Introduction

Phosphorus (P) is a macronutrient that plays manifold crucial roles in plant growth
and development, as it is required for the synthesis of nucleotides, the cell membrane, and
a vast number of phosphorylated primary and secondary metabolic compounds. Further, a
sufficient availability of P favorably influences plant production, development rate, and
resilience against various biotic and abiotic stresses [1]. The primary route by which plants
obtain P is the uptake by the roots of soil inorganic phosphate (Pi). However, it is commonly
considered that the available P in all soil types is generally insufficient for plant growth
and the desired crop productivity [2]. Soils with a low total P content generally have poor
retention of P fertilizers, whereas Pi is not always sufficient for plant utilization, even in
soils with a high total P content, because a considerable amount of it is precipitated by
interacting with aluminum and iron in acidic soils and with calcium in alkaline soils. The Pi
concentration is typically greater than 10 mM in plant tissues, whereas it is less than 2 µM
in soil [3–5]. Therefore, plants have evolved efficient transport systems for Pi absorption
across the plasma membrane of root epidermal and cortical cells against a strong chemical
potential gradient. Plant phosphate transporters (PTs), which are an important part of this
system, have been shown to play a key role in P acquisition [1,6].

The recent classification of plant PTs based on their structures and subcellular com-
partmentation resulted in the designations of Pht1 through Pht5. Pht1 and Pht2 are usually
found in the plasma membrane and chloroplasts, respectively, whilst the remaining three
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PTS, i.e., Pht3, Pht4, and Pht5, are typically located in the mitochondria, the Golgi appa-
ratus, and the vacuole, respectively [7–9]. The plasma membrane protein Pht1 plays a
pivotal role in Pi uptake by the plant roots from the soil. By virtue of their affinity for Pi,
PTs have been dichotomized into high-affinity and low-affinity PTs [10]. The high-affinity
PTs may translocate Pi from a P-limited external medium to the cytoplasm [11], suggestive
of their effectiveness in P acquisition under low-P stress [12]. Many of the PTs with the
highest P affinity are members of the Pht1 family [7,13]. Pht1 is, therefore, regarded as
the most important carrier for P from the soil in low-P conditions. Consequently, con-
siderable focus has been placed on Pht1 family genes in recent years, which has resulted
in their identification and functional analysis in an eclectic array of plant species, such
as Arabidopsis thaliana [14–16], Solanum lycopersicum [17–19], Medicago truncatula [20,21],
Solanum tuberosum [22,23], Oryza sativa [24,25], Zea mays [26], Triticum aestivum [27,28],
Setaria italica [29], and Glycine max [30].

Not only is sorghum the staple food for more than 500 million people, but it is also a
popular silage crop [31–33]. Prior research determined that sorghum’s capacity for Pi uptake
is significantly greater than that of maize [34]. Intriguingly, eleven Pht1 genes have been
identified in the sorghum reference genome, whereas 13 Pht1 genes have been identified
in maize, implying that biochemical properties may play a primary role in determining
their function. This is well in line with numerous previous studies, which demonstrated
that the post-transcriptional regulation of PTs and their biochemical properties influence
their functional activity more than the sheer number of genes and gene expression levels,
as demonstrated in flax, which was shown to uptake more P than other plant species from
the common mycorrhizal network in soil [35]. This necessitates the identification and
characterization of the Pht1 gene family in individual plant species, sorghum in this case,
as opposed to presuming they all behave the same.

In this study, we cloned several Pht1 genes that are expressed in sorghum root under
low-P conditions. The characteristics of these genes were investigated by gene expression
analysis, subcellular localization, and functional complementation via ectopic expression
in a yeast mutant that lacks PT activity. Our results demonstrate that SbPht1;5, SbPht1;6,
and SbPht1;8 encode high-affinity PTs in sorghum. SbPht1;5, in particular, is specifically
involved in P uptake in the root, whilst SbPht1;6 and SbPht1;8 play a more general role in
P uptake and P transport in sorghum in response to low-P stress. Furthermore, SbPht1;8
was discovered in the endoplasmic reticulum as well as in the plasm membrane, implying
that it plays a role distinct from that of other SbPht1s. Overall, these findings improve
our understanding of P uptake, trafficking, and regulation, shed additional light on the P
transport mechanism, and therefore may be conducive to bolstering P utilization efficiency
in sorghum.

2. Results
2.1. Identification of Putative SbPht1 Genes

Eleven putative Pht1 genes, designated SbPht1;1 through SbPht1;11, were identified
from the sorghum reference genome (inbred line BT×632) (Table 1). They encode proteins
varying from 510 to 554 amino acids, with the predicted molecular weights varying from
56.25 kDa to 60.42 kDa, and the predicted isoelectric point varying from 6.67 to 9.52.

Gene-specific primers were designed to isolate the putative SbPht1s by PCR. A total
of nine target fragments were obtained from the sorghum roots upon low-P treatment,
the sizes of which were consistent with the putative SbPht1s. Following the nomen-
clature in rice, they were identified as SbPht1;1, SbPht1;2, SbPht1;3, SbPht1;4, SbPht1;5,
SbPht1;6, SbPht1;8, SbPht1;9 and SbPht1;11 after DNA sequencing and sequence alignment
(Figure S1). SbPht1;7 and SbPht1;10 could not be isolated from the roots and shoots under
this experimental condition.
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Table 1. Pht1 gene family in sorghum.

Gene Alias Accession
Number CDS Size (bp) Amino acid

Length (AA)
Protein Molecular

Mass (Da)
Isoelectric Point of

Protein

SbPht1;1 Sb01g020580 XM_002467113.2 1566 522 56,952.80 7.85
SbPht1;2 Sb01g046890 XM_002465800.2 1566 522 57,129.30 8.69
SbPht1;3 Sb01g046900 XM_002468450.2 1605 535 57,871.40 8.74
SbPht1;4 Sb02g009880 XM_002461845.1 1623 541 58,903.60 7.95
SbPht1;5 Sb06g002800 XM_002447480.2 1647 549 60,197.30 7.04
SbPht1;6 Sb07g023780 XM_002445623.2 1623 541 57,785.30 8.88
SbPht1;7 Sb01g047910 DQ459071.1 1599 533 57,492.10 6.92
SbPht1;8 Sb01g020570 XM_002464513.2 1623 541 58,768.40 7.82
SbPht1;9 Sb06g002560 XM_002446106.2 1530 510 56,245.90 9.52
SbPht1;10 Sb06g002540 XM_002447472.2 1635 545 60,421.60 6.67
SbPht1;11 Sb03g029970 XM_002458208.2 1662 554 60,245.10 7.94

2.2. Bioinformatics Analysis of Pht1 Transporters from Sorghum

Amino acid sequence analysis revealed that SbPht1s are endowed with a conserved do-
main, GGDYPLSATIMSE (Figure 1), and 9–12 transmembrane helices (Figure S2).
A phylogenetic tree of Pht1 (GenBank accession numbers are listed in Table S1) was con-
structed by the neighbor-joining method, which siloed the Pht1s into five distinct groups
(Figure 2). SbPht1;1, SbPht1;2, SbPht1;3, SbPht1;5, SbPht1;6, SbPht1;7, SbPht1;8 were as-
signed to Class II (Figure 2), which includes only monocotyledonous Pht1s, most of which
were not induced by arbuscular mycorrhizal (AM) [26,36]. SbPht1;11 was classified in
Class III, which contains Pht1s from both monocotyledonous and dicotyledonous species,
which were induced by AM [26,36]. SbPht1;4, SbPht1;9, and SbPht1;10 were classified into
Class IV, which contains Pht1s from both monocotyledonous and dicotyledonous species,
which were partially induced by AM [26,37].
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Figure 2. Phylogenetic analysis of Pht1. The phylogenetic analysis was based on the putative amino
acid sequences of PTs deduced from their DNA sequences. The sequences retrieved from the NCBI
GenBank are listed in Table S1.

2.3. Expression Analysis of SbPht1s in Responss to Low-P Stress

The expression of SbPht1s was profiled using qRT-PCR upon low-P treatment for 14 d
in hydroponic culture. As is evident in Figure 3, SbPht1;5 was significantly induced by the
low-P condition only in roots (p < 0.01), whereas SbPht1;3 and SbPht1;11 were significantly
induced by low-P stress only in shoots (p < 0.01), and the remaining five SbPht1 genes were
significantly induced by low-P stress in both root and shoot tissues (p < 0.01).
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2.4. Subcellular Localization of SbPht1s

The subcellular location of the nine isolated SbPht1s was assayed using a transient
expression system in N. benthamiana leaves. The open reading frame of each SbPht1
was cloned into the vector pFGC5941–GFP by in-frame fusion with GFP and generated
nine SbPht1s-GFP reporter genes. Along with the empty vector, each of them was co-
infiltrated with the PIP2α plasma membrane marker into the leaves of N. benthamiana.
At 2 d post infiltration, under a confocal laser microscope, the GFP signal was observed
to overtly overlap with the mRFP plasma membrane marker, whereas the GFP signal in
the leaves infiltrated with pFGC5941–GFP was dispersed across the entire cell (Figure 4).
These data showed that the plasma membrane is the subcellular localization site of all
nine SbPht1s (Figure 4).
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Figure 4. Subcellular localization of SbPht1s. SbPht1;1-GFP, SbPht1;2-GFP, SbPht1;3-GFP, SbPht1;4-GFP,
SbPht1;5-GFP, SbPht1;6-GFP, SbPht1;8-GFP, SbPht1;9-GFP, and SbPht1;11-GFP. The fluorescence
signals overlapped with the signal of the mRFP cell membrane marker.

The GFP signal in SbPht1;8-GFP-infiltrated leaves was also discernible around the
nucleus. For clarification, a further leaf infiltration experiment was conducted using nuclear
and endoplasmic reticulum markers. It was shown that the fluorescent signal around the
nucleus coincided with the fluorescent signal of the endoplasmic reticulum marker but
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not with that of the nuclear marker (Figure 5), demonstrating that SbPht1;8 is also an
endoplasmic reticulum-localized protein.
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2.5. Functional Analysis of SbPht1s in Yeast

The nine SbPht1s cloned from sorghum seedings were functionally analyzed using the
yeast mutant EY917, which lacks all the five functional PTs (∆pho84/∆pho87/∆pho89/
∆pho90/∆pho91) and is therefore unable to transport Pi [36]. EY917 contains a plasmid
harboring a Pho84 gene driven by the GAL1 promoter, enabling its normal growth on a
medium with galactose as the sole carbon resource. Positively transformed yeast strains
were cultured on the synthetic media SD or SG in the presence of sufficient P. It was shown
that EY917 cells ectopically expressing any of the nine SbPht1s were able to grow normally
on SG, akin to those expressing the empty vector. However, on the SD medium, their
growth appeared to be conspicuously more robust than that of the empty-vector control
(Figure 6). It is therefore evident that all the nine SbPht1s isolated from sorghum roots
could complement the yeast PTs function in the presence of sufficient P.

However, under two different low-P (20 and 60 µM) conditions, the yeast cells ec-
topically expressing SbPht1;5, SbPht1;6 and SbPht1;8 grew and thrived better than those
expressing the empty vector control, whereas those overexpressing other SbPht1s resembled
the control (Figure 7). This showed that SbPht1;5, SbPht1;6 and SbPht1;8 could complement
the yeast PTs under low-P conditions and thus manifested a higher P affinity than other
PTs in sorghum.
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3. Discussion

In plants, PTs are essential for P uptake and P transport. As membrane-bound proteins,
the Pht1 family members are commonly located on the cytoplasmic membrane, acting
as the primary vehicle in plants to acquire P from the soil. The number of PTs on the
cytoplasmic membrane and their affinity for P have a direct effect on the efficiency of P
uptake [38]. Identifying the SbPht1 members that are endowed with a high affinity for P is
crucial for elucidating the process of P acquisition and transport in sorghum.

3.1. Identification of SbPht1 Family Genes

There are five families of PTs: Pht1, Pht2, Pht3, Pht4, and Pht5, among which Pht1 is
localized on the cytoplasmic membrane and plays a crucial role in plant P uptake from the
soil [39]. Like rice and maize, sorghum is a graminaceous plant species. Eleven Pht1s genes
were identified in sorghum, while thirteen Pht1s genes were identified, respectively, in
rice and maize. However, P uptake by sorghum was much higher than that by maize [34].
Moreover, the sequence of SbPht1;10 shares high homology with that of its ortholog,
ZmPht1;10, but their expression patterns are very different [26]. The association between
individual Pht1s and their P affinity may vary from species to species and invokes for the
study of individual crops before using them as important gene tools for crop improvement.

In this study, we identified nine SbPht1s that are expressed in sorghum roots and
which display a high degree of sequence identity with their paralogs in sorghum and
with orthologs in other plant species. The deduced protein sequences are endowed with
conserved hydrophobic domains and multiple transmembrane helices that are characteristic
of the known plant Pht1s [13,18,24,40]. The fact that all nine SbPht1s were found in the
plasma membrane or in the endoplasmic reticulum is consistent with their membrane-
bound nature. The yeast complementation experiments illustrated that all the nine SbPht1s
could complement the yeast mutants deficient in P uptake, demonstrating their functional
role in this process.
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3.2. SbPht1;5, SbPht1;6, and SbPht1;8 Play Important Roles in Sorghum in Response to
Low-P Stress

Studies on Pht1 in different plant species revealed that the Pht1 genes that are primarily
induced in the roots by low-P stress are responsible for P absorption, whilst those expressed
in both roots and shoots are involved in P transport and redistribution, in addition to
P uptake [14,41–44]. The root-specific upregulation of SbPht1;5 and the shoot-specific
upregulation of SbPht1;3 and SbPht1;11 are indicative of these genes’ potential specific
roles in P acquisition from the soil and in P transport in the shoot, respectively. In contrast,
the expression of the other six SbPht1 members, including SbPht1;1, SbPht1;2, SbPht1;4,
SbPht1;6, SbPht1;8, and SbPht1;9, was induced in both the root and the shoot in response to
low-P stress, suggesting that they participate in both P uptake from the soil and P transport
across different plant tissues.

It is a common practice to study the functional role of plant PTs in the yeast mutant
EY917. It was shown that all nine root-expressed SbPht1s were able to partially complement
the yeast P uptake mutant in a sufficient-P environment, but only SbPht1;5, SbPht1;6, and
SbPht1;8 were able to do so in a low-P environment, suggesting that these three genes
encode high-affinity PTs in sorghum. We also demonstrated that SbPht1;5 plays a primary
role in P uptake in roots, whilst SbPht1;6 and SbPht1;8 can improve P uptake and P transport
under low-P conditions in sorghum. These findings are well in line with two previous
studies on rice, where OsPht1;6 and OsPht1;8, the respective orthologs of SbPht1;6 and
SbPht1;8, were identified as high-affinity PTs that are induced by low P levels in both roots
and shoots and are involved in both P uptake and P transport throughout the entire growth
period [25,45]. In rice, OsPht1.8 was strongly expressed in roots, stems, leaves, endosperm,
seed shells, and anthers and was involved in the regulation of root architecture in response
to low-P stress, in addition to its effect on grain filling by regulating the P transport [45,46].
In our study, it is intriguing to note that SbPht1;8 was the only SbPht1 member that was
localized in the endoplasmic reticulum in addition to the plasma membrane. The functional
specificity of SbPht1;8 in P homeostasis in plants is intriguing but elusive and warrants
further investigation.

3.3. SbPht1;7 and SbPht1;10 May Have Divergent Functions

The absence of SbPht1;7 and SbPht1;10 in the shoots and roots of sorghum under
the specific experimental conditions of this study implies for them a specific role that
is distinct from that of other SbPht1s expressed in roots and shoots. A previous study
showed that SbPht1;10 was induced by AM, suggesting that it may act in concert with
AM to acquire and/or distribute Pi [35]. It is therefore plausible that SbPht1;10 is only
expressed in response to AM induction. The fact that it was not induced by the low-P
treatment is intriguing but elusive and remains to be investigated. In Arabidopsis, AtPht1;6
was undetectable in the roots and shoots and was not inducible by low-P stress; rather,
it was found to play a role in supplying P to flowers [14,41], inkling an area that could
be investigated for the potentially divergent role of SbPht1;7. Future studies of different
SbPht1 family members for a more nuanced understanding of their diversified and versatile
functionalities are clearly warranted.

4. Materials and Methods
4.1. Plant Materials and Growth Condition

The sorghum (Sorghum bicolor) accession 12,484 was used for SbPht1 isolation. The
seeds of sorghum were surface-sterilized with 75% ethanol for 5 min, blotted dry, and
then germinated on moist filter paper prior to being transferred to distilled water for plant
establishment. At the three-leaf stage, the seedlings were transferred to either a sufficient-P
condition (Hoagland solution with 1.0 mmol/L KH2PO4) or a low-P condition (Hoagland
solution with 1 µmol/L KH2PO4 and 1.0 mmol/L KCl) and cultured for two weeks in a
growth chamber with a 12 h light (28 ◦C)/12 h dark (22 ◦C) cycle. The nutrient solution
(pH = 5.8) was renewed every three days (d). There were three replicates of each treatment.
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Every two days, roots and shoots exposed to different P concentrations were harvested and
frozen at −80 ◦C for the subsequent experiments.

4.2. Isolation of Pht1s from Sorghum

The S. bicolor genome database (http://plantgdb.org/ accessed on 15 March 2020)
was blasted with the previously identified plant PT genes, including those from A. thaliana,
Oryza sativa, and S. bicolor. After removing overlapping sequences, the remaining genes
were verified in the Pfam database (http://pfam.xfam.org/ accessed on 25 March 2020).
At 2, 4, 6, 8, 10, 12, and 14 d, the root and shoot tissues of S. bicolor accession 12,484 grown
under sufficient-P or low-P conditions were collected. The total RNAs were extracted using
a Plant RNA Extraction Kit (TIANGEN, Beijing, China). The first strand of cDNA was syn-
thesized by using the HiScript II 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China).
Specific primers were designed and synthetized based on the putative Pht1 gene sequences
in S. bicolor (Table S2). All the attained SbPht1 genes were verified using DNA sequencing.

4.3. Bioinformatics Analyses

The transmembrane (TM) segments were predicted using the program TMHMM
(http://www.cbs.dtu.dk/services/TMHMM/ accessed on 25 March 2020). The deduced
SbPht1 sequences were aligned, together with their homologs from other plant species, by
the ClustalW with default parameters, and a phylogenetic tree was constructed by MEGA
5 using the neighbor-joining method after a preliminary assessment of the methodologies
(data not presented).

4.4. Gene Expression Analysis

Quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) was per-
formed by the AceQ® qPCR SYBR® Green Master Mix (Vazyme). The PCR was conducted
with a pre-denaturation at 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 10 s and
60 ◦C for 30 s. Based on the evaluation of two different validation programs, including
GeNorm and NormFinder, Sb18S rRNA was selected as an internal control gene, which was
identified as the most stably expressed gene among five tested reference genes (18S rRNA,
Action, EIF4a, GAPDH, UBQ10), as shown in Figure S3 [47,48]. The relative expression
value of the SbPht1 genes at a specific time under low-P treatment is presented as fold
changes compared to the untreated sample at the same time using the 2−∆∆Ct method [49].
There were three independent biological replicates. All the primers used for qRT-PCR are
listed in Table S3.

4.5. Subcellular Location

For the subcellular localization assay, the entire coding region without the stop codon
of SbPht1s was amplified using specific primers (Table S4), and the resultant PCR prod-
uct was cloned into the vector pFGC5941–GFP to generate the recombinant construct
SbPht1:GFP using the recombinase-dependent single-fragment cloning kit ClonExpress® II
One Step Cloning Kit (Vazyme). Following DNA sequencing confirmation, the resulting
vectors were transformed into Agrobacterium tumefaciens strain GV3101, which was used to
infiltrate Nicotiana benthamiana leaves as previously described [50]. Two days after infiltra-
tion, the GFP fluorescence signals in the infiltrated leaves were imaged using a confocal
laser scanning microscope LSM510 (Carl Zeiss, Oberkochen, Germany) [51]. The plasma
membrane-specific AtPIP2A was used as a control [52].

4.6. Yeast Mutant Complement Growth Assay

The yeast (Saccharomyces cerevisiae) mutant strain EY917 that is defective in all the
five functional PTs (∆pho84/∆pho87/∆pho89/∆pho90/∆pho91) was used for the func-
tional complementation assay [36]. EY917 contains a plasmid harboring a Pho84 gene under
the transcriptional control of the GAL1 promoter, permitting the normal growth of this
strain on synthetic media using galactose as the sole carbon resource [36].

http://plantgdb.org/
http://pfam.xfam.org/
http://www.cbs.dtu.dk/services/TMHMM/
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Then, the open reading frames of the SbPht1;1, SbPht1;2, SbPht1;3, SbPht1;4, SbPht1;5,
SbPht1;6, SbPht1;8, SbPht1;9 and SbPht1;11 genes were amplified from the cDNAs derived
from the seedlings of sorghum accession 12484 and were then cloned into the pENTR/D-
TOPO vector (Invitrogen, Carlbad, CA, USA) using specific primers (Table S5). The clones
harboring each of these vectors were selected by a PCR assay, and the vectors’ authen-
ticity and integrity were further verified by DNA sequencing. Each of these vectors was
then recombined with the destination vector, pAG426GPD-ccdB, using the Gateway sys-
tem as previously described [53]. As the vector pAG426GPD-ccdB contains Ura3 driven
by a constitutive promoter, EY917 cells transformed with the recombinant constructs,
pAG426GPD-SbPht1s, were selected on a synthetic medium supplemented with galactose
(SG) without Ura, while the empty vector pAG426GPD was used as a negative control.

The transformed yeast cells were harvested by centrifugation, washed with 3% glucose
once and with sterile water for three times prior to adjusting their concentration to an
OD600 of 0.5. A 3 µL aliquot of the serial dilutions of 10, 100, 1000 times was spotted onto
the SG or the synthetic medium-supplemented glucose (SD) agar plates and incubated at
30 ◦C for 3 d. The cells were also transferred to SD liquid medium containing different Pi
concentrations (20 and 60 µM) and incubated at 30 ◦C for one week, which was followed
by cell density measurements at OD600.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms232213855/s1, Figure S1: Amplification of SbPht1.
1–11 represent SbPht1;1-SbPht1;11 in turn. M represents DL 2000 DNA maker; Figure S2: Prediction
of SbPht1 transmembrane domains; Figure S3: The stability of five reference genes in different S.
bicolor organs; Table S1: GenBank of sequences for phylogenetic analysis; Table S2: Gene-specific
primers used for isolation of Pht1s in Sorghum; Table S3: Gene-specific primers used for gene expres-
sion analysis by qPCR; Table S4: Gene-specific primers used for construction of fusion expression
vector for subcellular localization; Table S5: Gene-specific primers were used to clone SbPht1 genes
into pENTR/D-TOPO vector for yeast mutant complement growth assay.
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