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Abstract: Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared
on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and
eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence
of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia,
their recreational use is increasing. ACH derivatives have an antagonistic activity against the
N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind).
Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not
listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and
pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the
pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case
reports on intoxication.
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1. Introduction

Since the 2000s, an increasing number of new psychoactive substances (NPS) have ap-
peared on the drug market. In most cases, a single functional or chemical group constitutes
the only difference between the NPS and the parent recreational drug. This change not only
alters the molecule’s pharmacological properties, but also makes the use of a molecule legal,
simply because the derivative is not registered on the list of narcotic products—making it a
“legal high” [1–3]. Due to their very low cost (5 to 20 euros per gram) and ready availability
(facilitated by deliveries via the Internet), NPSs are an emerging public health problem.
Arylcyclohexylamine (ACH) derivatives, such as ketamine, are of particular concern, given
their rapidly increasing use and the absence of detailed toxicity data.

Although ketamine is currently the best-known member of the ACH family, the
latter’s history began with the lead compound phencyclidine (PCP). Clinical trials of PCP
as an analgesic (Sernyl®) were initiated in 1958, but abandoned in 1965 due to sometimes
uncontrollable “psychotic” adverse drug reactions in ~15% of the study participants [4,5].
PCP’s psychedelic properties led to a new chapter in its history as a street drug (“angel
dust”) and made it the first of many synthetic drugs to appear on the market as an illicit
recreational substance [6]. PCP had its heyday in 1976, with many newspaper and television
reports on its recreational use [7]. Despite stricter law enforcement controls, a move to
Schedule II of the Unites States’ Controlled Substances Act in January 1978 and a fall in
media coverage, consumption of PCP has been increasing steadily after a slight decline in
the late 1980s.
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First-generation PCP derivatives appeared at street markets between the 1960s and
1990s. The first cases of non-medical PCP use were described in 1967 and 1968 in the USA
(mainly in San Francisco and New York) [8]. Most of the PCP derivatives correspond to
basic chemical changes. Morris and Wallach estimated that there are 14 PCP derivatives
of recreational interest [9]. Over the last 10 years, only a few ACH derivatives (e.g., 3-
MeO-PCP, 2-fluorodeschloroketamine (2F-DCK) and 3-OH-PCP) have been commonly
used for recreational purposes. Like ketamine, these molecules can be extremely toxic
and sometimes fatal (see Section 3). Ketamine was synthesized from PCP in 1962 by the
pharmaceutical company Parke-Davis (Detroit, MI, USA), which was seeking to develop
new ACH anesthetics with analgesic properties [10]. The first-in-man trial took place in 1964
at Michigan State Prison (Jackson, MI, USA). Despite the presence of dissociative effects
(corresponding to a dissociation between body and mind) associated with short-acting
anesthesia, a patent was filed in 1966, and ketamine was approved for sale by the United
States Food and Drug Administration (FDA) in 1970 [11,12]. During the Vietnam War
(1955–1975), ketamine was used as an anesthetic and an analgesic [13]. In 1989, the FDA’s
approval of propofol led to a decrease in the use of ketamine as an anesthetic [14]. The use
of ketamine was revived a few years later, following the discovery of the drug’s value in
the treatment of opioid-induced hyperalgesia as well as the treatment of depression [15].
At present, ketamine is widely used in veterinary medicine, pediatrics, anesthesia and
emergency medicine. Along with ketamine’s medical uses, its powerful dissociative effect
and low price make it a sought-after recreational product. In Europe, ketamine has been
classified as a narcotic product since the 1990s [16].

Recreational ketamine use has been mainly described in electro-alternative culture,
rave parties and, more particularly, in Asian countries. The synthetic ketamine derivatives
produced in Asia are now arriving in Europe, where most are not listed as narcotics and
are, thus, legal. The first synthetic derivatives (eticyclidine (PCE), 2-oxo-eticyclidine, etc.)
were observed in the 1960s (at the same time as ketamine), although their effects were
considered to be too powerful. Furthermore, supply problems prevented the drugs from
being used widely. However, the advent of the Internet (and especially the Dark Web in
the 2010s) and better logistics led to a huge increase in the consumption of ketamine and
its derivatives. Cases of intoxication were first described in Asia, and are becoming more
frequent in Europe [17–20]. Herein, we describe the pharmacology and metabolism of ACH
derivatives and review the case reports on intoxication.

2. Pharmacology of Ketamine and Its Synthetic Derivatives
2.1. Physical-Chemical Properties

The first-generation PCP derivatives keep a cyclohexane ring, in order to retain the
antagonistic activity against the N-methyl-D-aspartate (NMDA) receptor and, thus, the
dissociative effects. The ACH family encompasses three main subfamilies: ketamine-
like molecules, phencyclidine-like (PCP-like) molecules and eticyclidine-like (PCE-like)
molecules. These compounds are mainly derived through modification of the aryl ring, i.e.,
through the addition of an alkyl chain or substitutions of the amine group (Figure 1).

Ketamine is characterized by three rings: an aryl ring, a cyclohexyl ring, and an amine
ring (Figure 1). The cyclohexane ring is usually intact because it is required for antagonism
of the NMDA receptor. ACHs are chiral; the asymmetric carbon in the C2 position has
two optical isomers. Ketamine is marketed as a racemate (i.e., a mixture of S(+)-ketamine,
also known as esketamine and R(–)-ketamine, also known as arketamine) or as the pure
S enantiomer. Ketamine is the only ACH to have a halogen (chlorine) on the aryl ring. In
2-F-DCK, the chlorine is replaced by fluorine. In other ACH derivatives, hydroxy (OH) or
methoxy (MeO) groups are added to the aryl ring [21] (Figure 1).
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Figure 1. The ACH derivatives most frequently involved in cases of intoxication. PCP:
phencyclidine (1-(1-phenylcyclohexyl)piperidine); DCK: deschlorokétamine (2-(methylamino)-2-
phenylcyclohexan-1-one); PCE: eticyclidine (N-ethyl-1-phenylcyclohexan-1-amine); MXE: methox-
etamine (2-(ethylamino)-2-(3-methoxyphenyl)cyclohexan-1-one); MXPr: methoxpropamine (2-(3-
methoxyphenyl)-2-(propylamino)cyclohexan-1-one).

2.2. Pharmadynamics
2.2.1. Mechanism of Action

ACH derivatives act mainly by antagonizing the glutamate NMDA receptor in the
brain and spinal cord [22]. The NMDA receptor is an ion channel receptor consisting
of a combination of four subunits encoded by seven genes: GluN1, GluN2A→D and
GluN3A→B [23]. The channel is permeable to calcium ions, and triggers many intracellular
pathways [24]. ACH derivatives bind to an allosteric site (the PCP-binding site) in the
channel and act as non-competitive antagonists [25]. This antagonism is responsible for the
dissociative anesthetic and amnesic effects, and (perhaps) the antidepressant and analgesic
effects (Figure 2).

An ACH’s three-dimensional structure is important for its antagonistic action. Com-
pared with R(–)-ketamine, S(+)-ketamine has four times the activity and four times the
affinity for the PCP site of the NMDA receptor. Hence, S(+)-ketamine is twice as active as
the racemate [26].

Although data on the pharmacology of the new synthetic ACHs are scarce, all the
derivatives (including PCP and ketamine) bind to the PCP binding site [9,27] (Figure 2).

Although it is thought that ACH derivatives bind to other receptors (e.g., the muscarinic
and opioid receptors, for ketamine), there are no data on relevant clinical effects [28–30].
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Figure 2. Mechanism of action of arylcyclohexylamine derivatives.

2.2.2. Clinical Effects

Ketamine has a powerful, rapid, anesthetic and dissociative effect, but (unlike opioids)
does not cause hypotension or a respiratory depressant effect [6]. Domino et al. (1965) defined
dissociative syndrome as the failure of cortical sensory information to reach associative areas,
i.e., dissociation between the thalamocortical and limbic systems.

As is the case for the ACH derivatives’ anesthetic effects, the analgesic uses are limited
by the compound’s psychodysleptic effects. Ketamine has several mechanisms of action,
resulting in (i) a dissociative effect via the decoupling of nociceptive information from
pain, (ii) inhibition of descending inhibitory systems and astrocytic pronociceptive systems,
(iii) a local anesthetic effect and (iv) anti-inflammatory properties [31].

Interestingly, the mechanism of neuropathic pain involves activation of the NMDA
receptor (leading to the loss of downward inhibition) and inflammation-associated changes
in the spinal cord [32–36]. Ketamine’s antagonism of the NMDA receptor meant that it was
originally used as a painkiller.

S(+)-ketamine can also be used as antidepressant, although the NMDA receptor’s role
in this depression has not been characterized [37]. S(+)-ketamine’s antidepressant effect
is thought to come from activation of the mammalian target of rapamycin pathway and
inactivation of glycogen synthase kinase-3 beta—especially because inhibitors of the latter
enzyme potentiate and prolong the effects of ketamine, even at low doses [38,39].

2.3. Pharmacokinetics

Little is known about the pharmacokinetics of ACH derivatives. However, it is
suspected that these derivatives are pharmacokinetically similar to ketamine, the only
molecule used therapeutically, and for which detailed studies have been undertaken.
However, sometimes very small structural modifications can greatly modify a drug’s
pharmacokinetics. Given this context, we primarily describe the pharmacokinetics of
ketamine below.

2.3.1. Absorption

The bioavailability of orally administered ketamine is very low (between 8% and
24%), due to a major hepatic first pass effect. The bioavailability of orally administered
S(+)-ketamine is even lower (~10%) [40–42]. The peak blood concentration is usually
obtained after 40 to 55 min, and the first metabolites are detected after 10 to 30 min [6,42,43].
Similarly, the bioavailability of sublingual preparations (used for analgesic purposes) is
low (~30%) [44].

In contrast, snorting or inhaling (the most frequent techniques in recreational use)
leads to almost complete absorption [45]. The intramuscular route also allows rapid, high
absorption, with a bioavailability of about 93%, and the injected ketamine can be detected



Int. J. Mol. Sci. 2022, 23, 15574 5 of 19

in plasma after just 4 min [45,46]. After intravenous injection, ketamine can be observed
after 5 min, and the plasma peak is seen at 5 to 30 min [45,47].

2.3.2. Distribution

The ACH derivatives’ high lipid solubility (estimated by LogP) is an important factor
for bioavailability and enables them to cross the various lipid membranes in tissues. The
plasma protein-bound fraction of ketamine is low (around 10–30%), which allows the drug
to cross the blood–brain barrier easily and, thus, to exert its best-known effects (anesthesia,
analgesia and anti-inflammatory properties) in the brain [48].

After systemic absorption, ketamine (LogP = 2.2) distributes rapidly through the
tissues, and especially the brain. Ketamine’s very short absorption half-life (2 to 4 min)
gives it very rapid effects [6,48]. The drug’s volume of distribution is high (3.5 L/kg) due
to its liposolubility [41,48,49] (Table 1).

2.3.3. Metabolism

The metabolism of ketamine has been extensively studied, and is summarized in
Figure 3 [26,50–57]. The primary metabolic pathway gives rise to norketamine (an active
metabolite) and hydroxylated derivatives [45,46]. Most of these compounds are then
glucuronoconjugated and excreted via the renal or biliary route. Ketamine is mainly
metabolized in the liver by cytochromes P450 (CYP450); more particularly, CYP3A4 and
CYP2B6 give rise to norketamine and dehydronorketamine (the other main metabolite),
respectively [26,57] (Figure 3).

Figure 3. Overview of ketamine’s metabolism [26,45,46,51–53]; bold arrows indicate the major path-
way and dotted arrows indicate minor metabolic pathways; FMO: flavin-containing monooxygenase.
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Table 1. The metabolic fate of ACH derivatives.

Molecule Main Metabolites Biotransformation CYP
Involved

Predicted
LogP Reference

Ketamine derivatives

DCK Dihydro-DCK Hydrogenation
Unknown 2.7 [58]

Dihydro-nor-DCK Hydrogenation + demethylation

2F-DCK Nor-2F-DCK Demethylation
Unknown 2.9 [21,58,59]Dihydro-2F-DCK Hydrogenation

Dihydro-nor-2F-DCK Hydrogenation + demethylation

Phencyclidine derivatives

PCP c-PPC
CYP1A,3A 3.6 [60,61]t-PPC Hydroxylation

PCHP

3-OH-PCP M1 Hydroxylation
Unknown 3.3 [62]M2 N-dealkylation + carboxylation

M3 O-glucuronidation

3-MeO-PCP Hydroxy-3-MeO-PCP Hydroxylation CYP2B6
3.6 [63–65]Demethyl-dihydroxy-3-MeO-PCP Demethylation + hydroxylation CYP2C19/2D6

Piperidine-dihydroxy-3-MeO-PCP Hydroxylation CYP2B6

Eticyclidine derivatives

Methoxpropamine N-despropyl(nor)MXPr Depropylation
Unknown 2.8 [58,66]O-desmethylMXPr Demethylation

DihydroMXPr Hydrogenation

2-oxo-PCE 2-en-PCA-N-Glu Dehydration + glucuronidation
Unknown 2.5 [67]

M3 Oxidative deamination
+ dehydration

O-PCA-N-Glu Glucuronidation

2-FDCNEK 2-fluorodeschloro-norketamine N-dealkylation Unknown [68]

LogP was calculated with XLogP3 software. DCK: Deschloroketamine, PCP: Phencyclidine, MXPr: Methoxpro-
pramine, PCE: Eticyclidine; c-PPC: cis-1-(1-phenyl-4-hydroxycyclohexyl)piperidine; t-PPC: trans-1-(1-phenyl-4-
hydroxycyclohexyl)piperidine; 1-(1-phenylcyclohexyl)-4-hydroxypiperidine; 2-FDCNEK: 2-fluoro-deschloro-N-
ethyl-ketamine aM: metabolite.

2.3.4. Excretion

Ketamine has a relatively short duration of action. The excretion half-life is approxi-
mately 2 to 4 h, and the drug is excreted mainly by the kidneys [40]. Only 2% of ketamine
and norketamine are excreted in unchanged form; the corresponding percentage for de-
hydronorketamine is about 16% [35,50,65–67]. Approximately 80% of hydroxyketamine
and hydroxynorketamine are glucuronoconjugated, which facilitates biliary and urinary
excretion [69]. The excretion half-life of S(+)-ketamine appears to be longer (about 4 to
7 h) than that of the racemic mixture, due to CYP450′s greater stereoselectivity for R(–)-
ketamine [40,42,43,70,71].

The limited data on the excretion of other ACH derivatives come from studies of
human metabolism [21,59,63,72]. 2F- DCK and 3-MeO-PCE were detected in the urine and
bile of an intoxicated patient, suggesting the presence of both urinary and biliary excretion.
Similarly, 2-F-DCK metabolites (including phase II metabolites) were found in the urine
and bile of an intoxicated patient who subsequently died [19].
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3. Arylcyclohexylamines: Clinical Toxicity and Forensic Cases
3.1. Clinical Toxicity

Ketamine has long been neglected by recreational users—partially because its effects
were considered to be too strong. Despite its low addictive power and mild withdrawal
syndromes, ketamine remains a highly toxic drug when taken under poorly controlled con-
ditions. Psychic dependence and craving phenomena have often been reported. Ketamine
is also often taken in combination with other molecules, which makes the drug’s effects
even harder to predict. Most of the fatal cases of intoxications involve the use of multiple
substances.

Ketamine was originally used as an anesthetic, but the absence of a respiratory de-
pressant effect has caused the drug’s role to change gradually over time [73,74]. Ketamine
has mainly been used recreationally by experienced users who wanted to discover new
sensations or new emotions. The consumption of ketamine can induce euphoric effects,
such as “cottony” drunkenness, at low doses, and hallucinations and powerful dissociation
effects at high doses.

The ketamine trafficking and dealing network is very small, and is currently limited
to free parties and (in some large cities) clubs. Ketamine has a reputation for not being
cut, which has improved its image among consumers. For recreational use, the ingested or
snorted doses are typically between 125 and 500 mg [75].

3.1.1. Acute Toxicity

Initially, ketamine was only used by a very small proportion of people in the “rave”
culture, i.e., a population of nomads who used the drug for its powerful dissociative and
hallucinogenic effects. Ketamine had a rather negative reputation, due to its radical effects
and its use in veterinary medicine.

This poor reputation faded in the 2000s, when ketamine experienced a revival among
recreational users who were younger, less extreme, more regular consumers of lower doses.
These low doses produce a drowsy sensation but do not go as far as the so-called “K-hole”—
a “black hole” effect characteristic of ketamine that can include cognitive and amnesic
disorders, mood and behavioral problems, hallucinatory delirium, nightmares and loss
of identity and contact with reality. This new form of consumption is more conventional,
and ketamine is now used more frequently in nightclubs and among friends (“ketamine
aperitifs”). A group of inexperienced users consumes ketamine in a more unreasonable
way (often combined with high doses of alcohol), and actively seeks the “K-hole” and loss
of consciousness.

The main mode of use is snorting, although some people inject ketamine intravascu-
larly or intramuscularly.

Few cases of death by overdose have been described, notably because chronic users
and poly-users tend to be aware of the doses that should not be exceeded [76–79]. The
main injuries reported (bruising, fractures, drowning, etc.) are related to the drug’s
anesthetic effect.

In France, ketamine is relatively inexpensive, at between 40 and 50 euros per g; this
quantity can be divided into several doses [80].

Users also like the fact that in contrast to alcohol, police forces cannot perform roadside
tests for ACHs. Furthermore, ketamine’s effects wear off quickly (after 20 to 40 min) and so
users can (for example) drive a motor vehicle soon after taking the drug.

In addition to the marked neurological effects, digestive disorders (such as diarrhea,
nausea and vomiting), tachycardia and hypertension have also been described [81–83].

The medical management of these patients is sometimes complicated by the fact that
several other substances have been ingested concomitantly. Management is essentially
based on symptomatic treatment, with hyperhydration (to promote substance excretion)
and tracheal intubation (to counter the effects of sedation). Clinical biochemistry variables
(especially cytolysis markers, creatinine and creatine phosphokinase) and vital signs (ar-
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terial oxygen saturation, heart rate and blood pressure) must be monitored closely. An
antipsychotic may also need to be administered, as the patients are often agitated [84].

3.1.2. Chronic Toxicity

The toxicity profile of chronic intake is still unclear, but appears to include severe,
irreversible damage to the bladder, such as thickening of the bladder wall, leading to
secondary kidney damage [85]. Although there are no data on the bladder toxicity of
other ACH derivatives, specific clinical monitoring for this entire chemical family makes
sense. Digestive disorders and abdominal pain (known as “K-pain”, ranging from simple
abdominal pain to intense colic) have also been observed [73,86]. Liver damage has also
been described: in 2017, 10 cases of choledochal cysts and dilatation of the bile duct were
linked to repeated and/or prolonged use of high-dose ketamine (>100 mg/d). Four of
these cases required liver transplantation [73,86–89]. Cognitive problems include addictive
behavior, impaired color perception, loss of memory and attention, longer reaction times,
impaired perception of time and dissociative effects [90,91].

Ketamine tolerance in humans has been described, although there have been few cases
of withdrawal syndrome. Cases of dependence have also been described [88,92–95]. The
arrival of new synthetic derivatives on the market will doubtless change this safety profile,
with greater variability in doses and product quality.

3.2. Epidemiology

The epidemiology of users of ketamine and its derivatives has changed markedly since
the 2000s, with the appearance of a new wave of younger people using lower doses, but in a
chronic manner [80]. Ketamine is usually supplied as a liquid formulation for injection, but
can be prepared as small white crystals, or even (to facilitate use) as a powder. Some sellers
report that ketamine is bought in 1- to 10-liter drums in India, sometimes colored, and then
transported in shampoo bottles or other smaller containers. The drug can then be “cooked”
into a solid form for easier use. A few cases of theft of hospital or veterinary supplies of
ketamine (often of higher quality) have been reported [96]. The drug’s nicknames include
“keta”, “ké”, “kéké”, “special K”, “kate”, “pony drug”, and “horse drug”. With the advent
of the Internet and the Dark Web, many novel ACH derivatives have attracted interest.
Polyconsumption is very frequently described, because ketamine is known to be easily
combined with other molecules (e.g., cocaine) and helps to moderate the withdrawal
symptoms of other drugs. Asia, and especially Hong Kong, have been greatly affected
by the arrival of novel ACH derivatives since the 2000s [18,97]. Even though the raw
materials are not easy to obtain, novel ACH derivatives now seem to be spreading across
over the world, and consumption is growing exponentially. Ketamine consumption is
lower in Europe than in Asia, although the United Kingdom and Spain are markets hubs for
drugs produced in Asia. A European Monitoring Center for Drugs and Drug Addictions
(EMCDDA) report estimated that only 16 ACHs were reported for the first time between
2005 and 2017—far fewer than the novel synthetic cathinones and cannabinoids [98]. The
French TREND/SINTES network has reported significant increases in ketamine dealing
and use. Supplies in France are, nevertheless, very limited for the moment, with most of
the drug coming from India, the United Kingdom and Spain [99]. Table 2 summarizes the
reported cases of ACH-derivative intoxication worldwide, and Figure 4 shows the cases’
geographical distribution.
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Table 2. Literature reports of intoxications involving ACH derivatives other than ketamine.

Co-Intoxication Matrix Concentration Mortality Country Source

3-MeO-PCP No Peripheral blood,
urine

Case 1: Peripheral blood = 71.1 ng/mL and
urine = 706.9 ng/mL/Case 2 none 2 non-fatal France [100]

Ethanol, diazepam, cocaine Femoral blood,
urine, bile, hair

Femoral blood = 63 ng/mL, bile = 64 ng/mL,
urine = 94 ng/mL 1 fatal France [101]

Methadone, THC Femoral blood,
urine

Femoral blood = 3 525 ng/mL and
urine = 7 384 ng/mL 1 fatal France [64]

Alcohol Peripheral blood,
urine

Case 1: Peripheral blood = 350.0 ng/mL and
urine = 6109.2 ng/mL/Case 2: peripheral blood =
180.1 ng/mL and urine = 3003.5 ng/mL

2 non-fatal Italy [102]

4 cases with 4-MeO-PCP, but the
majority included other novel
derivatives

Serum, urine Serum = 1 tp 242 ng/mL, urine = 2 to 52,759 ng/mL 56 cases Sweden [17]

Several substances Femoral blood Serum = 0.05–0.38 µg/g 1 fatal and 7 non-fatal Sweden [103]

Diphenydramine, THC, amphetamine Postmortem
blood Blood = 139 ± 41 µg/L 1 fatal USA [104]

Amphetamine, alcohol Postmortem
blood Blood = 152 µg/L 1 fatal The

Netherlands [105]

Methamphetamine (Case 1),
Ethanol/bupropion/paroxetine (Case 2)

Postmortem
blood Blood = Case 1: 0.63 and Case 2: 3.2 mg/L 2 fatal USA [106]

3-OH-PCP, 3-MeO-PCP, 2F-DCK,
N-ethylhexedrone, CMC Urine Urine = 110 mg/L 1 non-fatal France [72]

Alcohol, amphetamine (Case 1) Peripheral blood,
urine Blood = 49 ng/mL (Case 1) and 66 ng/mL (Case 2) 2 non-fatal Czech Republic [107]

Several substances
Peripheral and
femoral blood,
urine, bile, hair

Urine = 498 ng/mL to 16,700 ng/mL
Blood = 63 ng/mL 3 non-fatal and 2 fatal France [108]

No data Femoral blood,
urine

Case 1: Femoral blood = 63 ng/mL,
bile = 94 ng/mL/Case 2: femoral blood = 498 ng/mL
and urine = 16 700 ng/mL

2 fatal France [20]

No data Urine Qualitative test 1 non-fatal USA [109]
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Table 2. Cont.

Co-Intoxication Matrix Concentration Mortality Country Source

2F-DCK 3-MeO-PCE, 5-MeO-DMT,
amphetamine and cocaine

Peripheral blood,
urine, bile,
vitreous humor

Peripheral blood = 1780 µg/L, urine = 6106 µg/L,
bile = 12,200 µg/L, vitreous humor =1500 µg/L 1 fatal France [19]

Majority of ketamine and derivates,
cocaine, methamphetamine Urine Qualitative test 20 cases Hong Kong [59]

3-MeO-PCP, 3-OH-PCP, CMC,
N-ethylhexedrone Urine Urine = 147 mg/L 1 non-fatal France [72]

3-OH-PCP 3-MeO-PCP, CMC, 2F-DCK,
N-ethylhexedrone Urine Urine = 12,085 mg/L 1 non-fatal France [72]

3-MeO-PCE 2F-DCK, 5-MeO-DMT, amphetamine
and cocaine

Peripheral blood,
urine, bile,
vitreous humor

Peripheral blood = 90 µg/L, urine = 6.3 µg/L,
bile = 3.5 µg/L, vitreous humor = 66 µg/L 1 fatal France [19]

MXE Several substances Peripheral blood,
urine Qualitative test 8 fatal UK [110]

Alcohol/benzofuran (Case 1) Serum Serum = 0.09 to 0,2 mg/L 3 non-fatal UK [83]

Methamphetamine, dextromethorphan Serum Serum = 160 ng/mL 1 non-fatal USA [111]

Three synthetic cannabinoids Femoral blood Femoral blood = 8.6 µg/g 1 fatal Sweden [112]

Clonazepam, THC, diphenhydramine,
MDMA Peripheral blood Blood = 10 ng/mL 1 fatal USA [113]

Amphetamine Peripheral blood Peripheral blood = 0.32 µg/ml 1 fatal Poland [114]

AH-7921, benzodiazepines Serum Unknown 1 non-fatal case Norway [115]

5- or 6-APB Serum Serum = 0.16 to 0.45 mg/L 3 non-fatal case United
Kingdom [116]

Ketamine, psychotics Serum, urine,
hair

Serum = 30 and urine = 408 µg/L 1 non-fatal case France [117]
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Table 2. Cont.

Co-Intoxication Matrix Concentration Mortality Country Source

No data Serum, urine Serum = 5.8 µg/mL, urine = 85 µg/mL 1 fatal Poland [118]

No data Serum, urine Serum = 270 ng/ml and urine = 660 ng/mL 1 non-fatal Poland [119]

2-oxo-PCE Several substances Serum, urine No data 56 non-fatal cases Hong Kong [97]

Venlafaxine

Liver, urine, bile,
gastric content,
heart blood,
femoral blood

Liver = 6137 ng/g, urine = 3468 µg/L,
bile fluid = 3290 µg/L, gastric contents = 3086 µg/L,
heart blood = 2159 µg/L liquor = 1564 µg/L, femoral
blood = 375 µg/L

1 fatal case Germany [120]

2-FDCNEK No data Urine Urine (metabolite only: 2-FDCNEK) = 133 ng/mL 1 non-fatal case China [68]

THC: tetrahydrocannabinol; CMC: chloromethcathinone; MDMA: 3,4-methyl-enedioxy-methamphetamine; ABP: 6-(2-aminopropyl)benzofuran); AH-7921: 3,4-dichloro-N-[[1-
(dimethylamino)cyclohexyl]methyl]benzamide; 5-MeO-DMT: O-methyl-bufotenin.
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Figure 4. Geographical distribution of published cases of ACH-derivative intoxication.

3.2.1. Phencyclidine Derivatives

Phencyclidine
In 2013, the US Center for Behavioral Health Statistics and Quality reported that PCP

use and related emergency department admissions had increased substantially since the
2000s. Consumption increased by 400% between 2005 and 2011, and then by 200% between
2009 and 2011. This report, as well as Domici et al.’s (2015) observations in a Philadelphia
hospital, show that consumption fluctuates greatly over time [121,122].

4-MeO-PCP
Although 4-MeO-PCP was synthesized in the 1960s, it appeared on the narcotics

market in 2008 as one of the first “dissociative research chemicals” [4]. Many isomers or
other structurally similar molecules have since appeared, which circumvent the legislation
on drugs of abuse.

The first notification of 4-MeO-PCP from the European authorities dates back to
2012 [123]. Users described oral intakes between 50 and 100 mg, and 4-MeO-PCP appeared
to be less potent than PCP and 3-MeO-PCP. Few cases of intoxication have been described,
other than a case in Sweden in 2015 and a case in Korea in 2019 [17,124] (Table 2).

3-MeO-PCP
3-MeO-PCP is an isomer of 4-MeO-PCP. Few metabolic and kinetic data are available,

although several cases of intoxication have been published [20,63,107]. 3-MeO-PCP was
first noted by the EMCDDA in 2012 [123]. This molecule has been reported in two studies
performed in the toxicology laboratory of the Rennes University Medical Center (Rennes,
France). Berar et al. (2019) first described 3-MeO-PCP intoxication in a patient, with
initial toxic concentrations in blood (71.1 ng/mL) and urine (706.9 ng/mL) [100]. Allard
et al. (2019) then used molecular networking to describe the hepatic metabolism of 3-MeO-
PCP [63]. In another French study, Grossenbacher et al. (2018) described five cases of
3-MeO-PCP intoxication (two of which were fatal) [108] (Table 2).
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3-OH-PCP
3-OH-PCP was first reported in 2009. The drug is reportedly active at low doses

(between 1 and 10 mg). However, no cases of intoxication have yet been described in
the literature.

3.2.2. Ketamine Derivatives

The “DCKs” (deschloroketamine (DCK) and the fluorinated derivative 2F-deschloroketamine
(2F-DCK)) are the least well-described ACH derivatives. The first report on these molecules dates
to 2015, with the analysis of powders found in the USA, China and Europe [125]. DCK and
2F-DCK are mainly available on the Dark Web [126]. These derivatives are particularly consumed
in Asia in general, and in Hong Kong in particular. Although DCK was synthesized by Stevens in
1962, its misuse was not reported until 2015, and the first analytical data were published in 2016
(187,188).

2F-DCK was first synthesized in 1987, and consumption was first described in Internet
forums in 2015 [59]. Between January and July 2019, Tang et al. described 20 cases
of patients in whom 2F-DCK was detected [59]. In most cases, 2F-DCK was combined
with ketamine. Tang et al. reported that 2F-DCK had the same toxic effects as ketamine,
although poly-use prevented the identification of specific clinical effects [127]. Similarly,
Weng et al. (2020) described 11 cases of 2F-DCK or DCK poisoning [128]. To broaden
the detection window, Davidsen et al. (2020) developed a hair analysis technique, which
provided the first pharmacokinetic data from samples collected from roadside offenders in
Denmark [129]. Snorted doses of 2F-DCK are generally between 87.5 and 330 mg, whereas
those for ketamine are between 60 and 250 mg [75]. There are only two case reports on
2F-DCK consumption: a fatal case of DCK and 2-oxo-PCE intoxication in Germany [113]
and our report on a patient at Lille University Medical Center (Lille, France) [19] (Table 2).

3.2.3. Eticyclidine Derivatives

Like the other molecules described here, eticyclidine derivatives are particularly
present in Asian countries, and especially in Hong Kong. Although these derivatives are
not very common, a few cases of intoxication have yielded clinical and toxicological data
(Table 2).

Methoxetamine
Methoxetamine (3-MeO-2-oxo-PCE) appears to be the most widespread ACH in

Europe, as dealers sometimes supply it instead of ketamine when supplies of the latter
run out [9,17,100,103,130]. Its effects are reportedly similar to those of ketamine, but last
longer and are more intense [81,131,132]. The doses are also very different, meaning that
the switch from ketamine is particularly dangerous. The first consumer discussions on
Internet forums date back to 2010 [133]. Methoxetamine’s nicknames include “Mexxy”,
“M-ket”, “MEX”, “Kmax”, and “legal ketamine” [134]. It is the most widely used ketamine
derivative in Europe, prompting the European authorities to classify it as a narcotic in
2013 [135]. This is also the case in Japan, the United Kingdom, China, Russia, Turkey and
Korea [136]. Nasal and oral administration routes are the most common, although cases of
intravenous, anal and sublingual administration have been described [132,134,137]. The
most commonly reported doses are 20 to 100 mg for the nasal route, 40 to 100 mg for the
oral route and 10 to 80 mg for the intramuscular route [131]. The first effects are felt after 10
to 90 min, with a peak between 1 and 7 h (depending on the administration route) [132,137].
In 2015, the World Health Organization reported 120 cases of non-fatal poisoning and
22 deaths worldwide [136]. The adverse effects are similar to those of ketamine, with
nausea/diarrhea/vomiting, tachycardia, hypertension and loss of consciousness [81–83]
(Table 2).

2-oxo-PCE
The first report to EMCDDA was made in 2016 [98]. Tang et al. (2018) described a

cluster of 56 cases of intoxication in the Hong Kong area in October 2017. The toxidrome was
similar to that of ketamine, with predominant tachycardia and hypertension. Users report
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dissociative and hallucinogenic effects similar to those of ketamine, but more powerful
(five times more than ketamine and three times more than methoxetamine). Oral doses are
reportedly between 6 and 12 mg [138,139]. Nasal swab samples from three users contained
only 2-oxo-PCE and no ketamine [97] (Table 2).

3-MeO-PCE
Although an assay for 3-MeO-PCE in biological fluids has been developed and vali-

dated, there are no published in vivo data on concentrations or metabolism [140].
Chemists have recently developed other structurally similar PCP derivatives (e.g.,

diarylethylamines), but these are not yet widely used [141] (Table 2).
As reported in Table 2, ACHs are frequently co-consumed with other drugs of abuse,

including alcohol, THC, amphetamines or cocaine. These cocktails are likely to modify the
pharmacokinetics, pharmacodynamics and toxicity profile of these drugs.

4. Conclusions

ACH consumption is growing exponentially, and is associated with an increase in
the number of cases of fatal intoxication. The rapid detection of ACHs is a challenge for
toxicology laboratories. Given the small number of reports on intoxication, few data on
the metabolism and clinical effects of ACHs have been published. The number of cases
has certainly been underestimated because the molecules are not detected or not easily
detected. However, constant improvement in analytical techniques and greater access to
databases should enable the epidemiology of this phenomenon to be better defined in the
future. Assessment of the ACHs’ metabolism and pharmacologic properties might make it
possible to provide more suitable medical management, rather than symptomatic treatment
alone. Metabolic studies will provide insights into the fate of these drugs in the body, the
presence of active metabolites, the metabolic pathways involved and, potentially, valuable
biomarkers for consolidating diagnostic evidence and broadening detection windows when
the parent molecule is no longer detectable.
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