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Abstract: Several factors, such as ischemia, infection and skin injury impair the wound healing
process. One common pathway in all these processes is related to the reactive oxygen species (ROS),
whose production plays a vital role in wound healing. In this view, several strategies have been
developed to stimulate the activation of the antioxidative system, thereby reducing the damage
related to oxidative stress and improving wound healing. For this purpose, complex magnetic
fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic
patients in order to evaluate their influence on the ROS production and related wound healing
properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have
been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of
side effects on cell physiology following the ISO standard indication. Moreover, the results confirm
that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage
M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory
cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-
10 and IL-12 and an increase in the markers related to improved wound healing such as collagen
type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of
diabetic foot.

Keywords: electromagnetic field; diabetic foot; reactive oxygen species; cytokines; wound healing;
inflammation

1. Introduction

Diabetic foot, which is the most diffused cause of morbidity among diabetic patients,
shows functional and structural alteration such as ulcers often associated with osteomyeli-
tis/gangrene due to chronic inflammation and endothelial dysfunction [1,2]. The endothe-
lial cells, due to the hyperglycemic state, switch from the utilization of nitric oxide to
metabolize glucose, the depletion of which results in the inability to vasodilate [3]. The
inability to vasodilate increases the intravascular pressure, causing injury and inflammation
to the endothelial cells, which in turn causes the subintimal migration of inflammatory
cells, thereby inducing the formation of atherogenic foam cells [4]. Moreover, inflammatory
cells release lytic enzymes that further damage the extracellular matrix (ECM) and the
vessels. This condition induces an imbalance in free radicals and antioxidants, resulting in
an overproduction of reactive oxygen species (ROS) [5]. They act as secondary messengers
to immune-cells, influence the recruitment and activity of monocytes to the wound site
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and regulate the angiogenesis process. All these events induce a vasculopathy, which leads
to impaired healing and ulceration [6]. In this view, the control of the ROS production
represents a promising strategy to improve wound-healing responses, which involves
complex processes consisting of distinct, but overlapping phases, such as hemostasis,
inflammation, proliferation and remodeling [7]. To this aim, several non-invasive tech-
nologies have been developed [8–13]. In literature, it is reported that the exposure to a
magnetic field is able to favor the anti-inflammatory molecular pathways and can also
decrease the production of the ROS [14] in many cellular models. It is well accepted that
the devices committed to producing magnetic fields (EMF) are able to affect numerous
biological processes, including wound and bone healing, inflammation, osteoarthritis,
post-operative edema, chronic/neuropathy pain and tissue repair [9–25]. To ensure safe
exposures, exposure guidelines have been regularly developed and revised based on the
available scientific knowledge such as the “exposure guidelines” that are published by the
International Commission on Non-Ionizing Radiation Protection (ICNIRP). Such guidelines
exist for several frequency bands, including low-frequency electric and magnetic fields.
The first well accepted and fixed principle is that the exposure to the EMFs in the frequency
range of interest do not cause damaging effects to either the patient, the operator or any
third party. We worked on EMF for 10 years with different medical devices, studying
different models, i.e., skin and bone [26–31], confirming their safety and providing both
preclinical and clinical data characterized by the coherent data and useful interpretations in
order to provide results and be able to replicate them in this fairly “risky” field of research.
To this view, this technology can offer an excellent alternative to the classical approaches in
all chronic wounds that are as highly invalidating for the patients as Diabetic foot ulcers
(DFUs). DFUs are one the most common complications of diabetes mellitus (DM), which
often results in disability and is associated with an increased risk of mortality. Studies
also confirm that its annual incidence varies from 9.1 million to 26.1 million around the
world. DFU pathogenesis generally involves peripheral nerve lesions and peripheral artery
diseases. The classical management of DFUs include standard care such as offloading,
debridement, moisture-retentive dressings, infection management, tissue-based products,
autologous platelet-rich gel and ozone therapy. However, there is limited evidence to
support the effectiveness and safety of using EMF as a treatment for DFU, mainly due to
the definition of its mode of action and its influence on mitochondrial activity. Due to our
previous experience on diabetic cells physiology and on mitochondrial indolence on wound
healing [32–39], we focused our attention on testing the effect of a novel system based
on complex magnetic fields (CMFs) which consist of a special symphony of waveforms
that have been developed for the treatment of several biological alterations. In light of
these considerations, the present work aimed to testing the in vitro effects of CMFs on
derived diabetics cells and evaluating their effect on the mitochondrial ROS production, its
related anti-inflammatory activity and its ability to improve wound healing through both
molecular (gene expression) and biochemical (ELISA) tests.

2. Results
2.1. Safety Following Insternational Standard Indication

When a medical device is required to stay in contact with the human body and when
its function influences cellular behavior, excellent biocompatibility is fundamental with the
purpose of preventing any adverse effect. In this view, the biocompatibility was evaluated
by testing the viability of fibroblastic cells lined with an MTT assay performed after five
treatments with a CMF (Figure 1). The cells cultured on the plastic culture dish without
treatment were used as a control. The OD values related to the cells that underwent the
CMF treatment were very close to those observed in the control sample.
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Figure 1. The viability of cells after the CMF treatment with the MTT assay at 1, 3 and 5. Cells
cultured in the plastic culture dish were used as control. Data are given as the mean ± standard
deviation (n = 3 per group).

A second test was performed in order to evaluate the blood compatibility by the
hemolysis assay that quantifies the free hemoglobin released into the plasma following
damage to the blood cells. As reported in Table 1, no hemoglobin was released or detected,
confirming the lack of any hemolytic activity due to the CMF treatment.

Table 1. Hemolitic test.

Sample OD Hemolysis Index Results

Positive control 0.834 +/− 0.011 100% Hemolytic

Negative control 0.0103 +/− 0.023 0% Non Hemolitic

CMF treatment 0.0142 +/− 0.018 0.031% Non Hemolitic

No treatment 0.0131 +/− 0.022 0.045% Non Hemolitic

The mutagenic potential of the CMF treatment was moreover excluded by performing
the Ames test. As reported in Table 2, a negative result indicated that the treatment did not
induce any mutagenic event.

Table 2. AMES test.

STDisc™ TA1535 STDisc™ TA1537 STDisc™ TA98 STDisc™ TA100

Sample Revertant
Colonies Mutagenic Revertant

Colonies Mutagenic Revertant
Colonies Mutagenic Revertant

Colonies Mutagenic

Blank 4 ± 3 no 5 ± 3 no 4 ± 2 no 5 ± 2 no

Negative
control 3 ± 2 no 3 ± 2 no 3± 2 no 2 ± 2 no

Positive control:
ICR191 947 ± 85 yes 973 ± 66 yes 971 ± 79 yes 965 ± 69 yes

Positive control:
Sodium Azide 853 ± 51 yes 876 ± 52 yes 893 ± 59 yes 879 ± 64 yes

CMF treatment 3 ± 2 no 2 ± 2 no 3 ± 2 no 3 ± 2 no

No treatment 3 ± 1 no 3 ± 2 no 2 ± 2 no 5 ± 2 no

2.2. ROS Production

The classical inflammatory environment induced the fibroblasts and macrophages
to produce the ROS in a time dependent manner, as reported in Figure 2. The black bars
show the absence of any treatment. The treatment of the CMF induced a great reduction
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in the ROS in both cells type (white bars). This reduction was not present in the normal
conditions (left panels), confirming that the CMF acts only in the pathological situation.
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Figure 2. Effects of inflammation on the mitochondrial physiology evaluated by means of the
oxidation process activation in fibroblast (FU), inflamed or not, and in macrophages, inflamed or not,
in the presence of the CMF treatment (white bars) or in absence (untreated, black bars) with the CMF.

2.3. Macrophage Polarization

The polarization of the macrophages on the M1 or M2 phenotype was evaluated by
means of the gene expression of genes and miRNAs related to this event. As reported in
Figure 3 (black bars), the inflammatory environment usually induced a commitment of
the macrophages to an M1 phenotype as reveled by the high expression level of miR-181a,
miR-155-5p, miR-204-5p, miR-451, miR-125b-5p, miR-21, miR-193b-3p, miR-125a-5p, Akt2,
p110d, PTEN, TSC1, TSC2 and p85a that are gene related to the control of the activation
of this commitment pathway. In support of this, it was evident that the gene expression
of AKT1, p110a, p110b, p110g, TSC1 and PTEN related to the M2 phenotype was strongly
reduced. By contrast, in an inflamed tissue after the CMF treatment, a strong reduction
in the expression related to the M1 commitment (white bars) was evident where a strong
expression of the genes related to the M2 phenotype (black bar) was increased.

This type of commitment from an anti-inflammatory phenotype M1 (red circles) char-
acterized from a rounded shape to the anti-inflammatory phenotype M2 (elongated shape,
yellow circles) were analyzed using electron microscopy. As reported in Figure 4, the treat-
ment of the CMF increased the commitment into the M2 anti-inflammatory macrophages.
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Figure 4. SEM analyses of the macrophages without the CMF treatment (A) acquires a M1 in-
flammatory rounded shape phenotype (red circles). Treatment with the CMF (B) induced the M2
anti-inflammatory phenotype characterized by a long fusiform shape (yellow circles).

2.4. Anti-Inflammatory Markers

The gene expression of inflammatory cytokines, such as IL1b, TNF-α, iNOS, IL6 and
IL8, was detected on the macrophages cultures (Figure 5) in the presence of an inflammatory
condition, confirming that, in such situations, the macrophages are in a M1 (inflammatory)
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phenotype. In contrast, interleukins with an anti-inflammatory activity such as IL10 and
IL12 were less expressed. When the same protocols were performed in the presence of the
CMF treatment (white bars), a strong reduction in inflammatory cytokines was observed
and an increase in the anti-inflammatory cytokine expression was evident.
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presence of an inflammatory condition; the black bars in the absence of the CMF, the white bars in
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2.5. Extracellular Matrix

The ability of fibroblasts to act on the wound healing process was evaluated in vitro
(Figure 6). The gene expression of the collagen fibers confirmed that, in the presence of an
inflammation process, the fibroblasts did not produce a good extracellular matrix (ECM),
such as collagen fibers type I, III, IV, V, XIV and vitronectin, as revealed by the low level of
this gene expression (black bars). The presence of the metalloproteases (MMPs) such as
MMP2 and 9, related to the destruction of the ECM, was otherwise high in the presence
of inflammation. By contrast, the same inflammatory condition in the presence of the
CMF induced an increased the ECM component, a decreased the enzymes directed to its
digestion and increased the adhesion of proteins such as interleukins.
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Figure 6. Gene expression related to collagen, remodeling enzyme and integrin expression. All
the cells are cultured in the presence of an inflammatory condition; the black bars show normal
conditions, the white bars show the presence of the CMF.
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3. Discussion

In the field of non-invasive therapy to promote healing approved by the U.S. FDA,
PEMF is a non-thermal treatment employing an active electromagnetic waveform in order
to treat damaged tissues. The emitted electromagnetic waveforms are able to penetrate
completely through any type of tissues as reported by Dr. Mattsson M.O. and Dr. Simkó
M. [40–46]. This allows for the delivery of the therapy in a non-invasive way. The CMF
based on biophysical energy was here used for the treatment of diabetic foot ulcers for
accelerating their healing, evaluating the ROS production and their correlated biological
event during an inflammatory event. When a chronic inflammation was induced, the
principal factors associated with the failure of the healing of the diabetic foot ulcers were
the high expression of the matrix metalloprotease and the ROS in the wound tissue [47–52].
The presence of the ROS induced damage and disrupted proteins, DNA and membrane
phospholipids, and induced the diabetic wound impairment, whether in the prolonged
presence of the pro-inflammatory (M1) macrophages phenotype or the related failure of
their transition to the regenerative (M2) macrophage phenotype [53–60].

In this view, we first tested the CMF treatment for their safety, by means of the
analysis in vitro following the ISO requirements. Different tests were performed as well as a
mitochondrial activity assessment with MTT, an induction of mutagenesis with karyotyping
and an AMES test in bacterial and hemolitic cells. All the results confirmed the total safety
of the system. As second step, we searched for their ability to contrast the ROS production
and to exert the anti-inflammatory activity. The ROS test confirmed that the CMF induced
a reduction in these molecules, so we performed a real time PCR in order to evaluate
the miRNA and cytokines involved in the inflammatory and anti-inflammatory events.
The dysregulation of this macrophage plasticity was influenced by microRNAs (miRNAs)
that are fundamental regulators of the transcriptome output. During wound healing,
proinflammatory mediators such as lipopolysaccharide (LPS), TNF-α or IFN-γ induced the
polarization of the monocytes on the M1 macrophages phenotype. This led to an increased
expression of the specific genes that favor extracellular matrix damage and the subsequent
formation of ulcers.

In particular, miR-21, miR-155-5p, miR-204-5p, miR-451, miR-125b-5p, miR-181a-5p,
miR-193b-3p, miR-125a-5p, Akt2, p110d, PTEN, TSC1, TSC2 and p85a play an essential
role in the inflammatory immune response. In support for this, the expression of the genes
related to the M2 phenotype (AKT1, p110a, p110b, p110g, TSC1 and RICTOR/mTORC2)
was strongly reduced. However, the CMF treatment in an inflamed tissue strongly reduced
the expression related to the M1 commitment (white bars, gene under the black bar) and
strongly increased the genes related to the M2 phenotype (red bar, unlined genes). The
previous results moreover confirmed that these miRNAs promoted the production of the
reactive oxygen species (ROS) and the M1 polarization as well. Their expression was
higher in an inflammatory environment, but in the presence of a PEMF, these values were
significantly lower. In addition, the cells (M1 polarized macrophages and fibroblasts)
exhibited an upregulation of pro-inflammatory markers such as TNFa, IL-6,IL-1b, iNos
and IL-8 in the presence of inflammation, but a decrease in the presence of an EMF. The
same trend occurred when we analyzed the extracellular matrix (ECM) component in the
presence of the CMF in an inflammatory environment.

4. Materials and Methods
4.1. Patients Recruitment and Samples Collection

The ECAD-CLI (NCT03636867) is an investigator-driven, single-center, prospective,
single-arm study enrolling patients who are admitted to the Diabetic Foot Unit of the Maria
Cecilia Hospital (Cotignola, Italy) with a diagnosis of diabetes mellitus and critical limb
ischemia (CLI) with DFU (consistent with the Rutherford classes 5 or 6). Forty patients were
recruited at Maria Cecilia Hospital (Cotignola, Ravenna, Italy). The study was conducted
following the ethical principles for medical research involving human subjects from the
World Medical Association Declaration of Helsinki. The patients participated in the study
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after signing the consent form. The patients met the following inclusion criteria: they
suffered from type 2 diabetes for at least 5 years, the presence of a distal neuropathic ulcer
on the foot larger than 1 cm2 and appeared at least 6 weeks before, they had two palpable
pulses at the ankle with a triphasic Doppler waveform and they were older than 18 years.
The exclusion criteria were chronic renal failure in dialytic treatment, local ischemia with
an ankle-brachial pressure index (ABPI) < 0.9; infection according to the Infective Diseases
Societies of the Americas (IDSA) guidelines, active or chronic Charcot’s disease, HIV or any
other systemic disease interfering with the immune system, steroid or cytostatic therapy,
known or suspected cancer diagnosis and life expectancy of less than 1 year.

4.2. Cell Isolation and Characterization

The fibroblasts were isolated following our previous published protocol [61,62]. Briefly,
the dermis was removed from biopsy, washed in a phosphate-buffered saline (PBS, Euro-
Clone, Milano, Italy) added with 1% antibiotic–antimycotic (AA, Thermo Fisher Scientific,
Waltham, MA, USA), minced and digested with 200 U/mL collagenase type II (Gibco,
Thermo Fisher Scientific) in Hanks’ balanced salts solution (HBSS, Euroclone, Rome, Italy)
at 37 ◦C for 16 h. The resulting cells were seeded at a density of 5 × 104 cells/cm2 in
Dulbecco’s modified eagle medium (DMEM, EuroClone, Rome, Italy) plus 10% fetal bovine
serum (FBS, EuroClone, Rome, Italy). The isolation of the peripheral blood mononuclear
cells (PBMCs) was carried out by a Ficoll–Paque gradient method. Briefly, the peripheral
blood, freshly extracted from the patients, was carefully poured into a tube with the Ficoll
at the blood/Ficoll 1:4 proportion, centrifuged at 591× g for 30 min at room temperature.
The supernatant was discarded and the pellet containing the PBMCs was resuspended in
1 mL of PBS 1X for cell counting and viability tests. The cell cultures were maintained at
37 ◦C and 5% CO2 and the medium was changed twice a week. For mimicking the in vitro
inflammatory conditions, the samples were treated for 24 h with 0.1 mg/mL−1 of the tumor
necrosis factor-alpha (TNF-α, Celbio, Berlin, Germany). The TNF-α concentration used in
the study was higher than in the physiologic conditions.

4.3. Treatment

The CMFs instrument, Next sx version (M.F.I. Medicina Fisica Integrata, Rome, Italy), is an
electronic device that emits innovative pulsed multi-frequency electromagnetic fields between 1
and 250 microT variable in intensity, frequency, complex wave form and time stimulation.

The CMFs generator was provided with different programs that worked in relation to
the configuration of the specific sector of the application.

Each program was composed of several different steps with different intensities (1–250 microT),
frequencies (1–250 Hz), interval times (1–4 min each steps) and forms of the complex
multi-frequency waves with harmonic enrichments.

Those four parameters, frequency, induction of intensity, wave form and time stimula-
tion represented one of the steps of the machine program.

The machine program was normally formed using 6 to 10 steps.
All the details of the information regarding the machine programs were patent pending.

Despite this, we noted that the parameters used in this work were a frequency from 1 to
112 Hz, an induction intensity from 1 to 195 µT, a time duration of the steps from 1 to 4 min
each and impulsive waveforms with odd multiple harmonics.

The position of every step in the program followed the physiological priority of the
biological project that we wanted to realize. For example, if we wanted to treat wound
healing we had to consider several biological conditions, including the inflammation status,
the excess of free radicals in the ROS, the fungal and bacterial conditions, the lack of
vascularization and the lack of free energy through which the body could recreate the
conditions for regeneration. The following Table (Table 3) explains the correlation between
program and article related to the steps.



Int. J. Mol. Sci. 2023, 24, 1754 9 of 15

Table 3. Steps and bibliography.

Mechanism of Action of Program: Wound Healing

Program Step Target Bibliography

1 Anti-inflammatory [63–65]

2 Normalization Intracellular cell communication [66–68]

3 Antibacterial and anti fungal [69–73]

4 ROS modulation [74–76]

5 Normalization Intracellular cell communication [66–68]

6 Vascularization and tissue engineering regeneration [77–79]

In detail, the cells cultured in 24-well plates were positioned corresponding to the
experimental set-up, then exposed to the stimulation at room temperature (Figure 7A)
under the biological flow. The control cultures were positioned onto the device in the same
manner as the exposed cultures but without receiving stimulation (Figure 7B).
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4.4. In Vitro Cytotoxicity Test

The cytotoxicity of the treatment was evaluated in vitro using a mouse-derived established
cell line of L929 fibroblasts (Cell bank Interlab Cell Line Collection, Genova, Italy) following the
ISO 10993-5:2009 directions. The L929 cells were seeded at a density of 4 × 104/well in 24-well
plates for 24 h in the cDMEM medium. The cDMEM was created from Dulbecco’s modified
eagle medium (DMEM) (Lonza S.r.l., Milano, Italy), supplemented with 10% fetal bovine
serum (FBS) (Bidachem S.p.A., Milano, Italy) and 1% P/S. The cytotoxicity was assessed
with the treatment for the cells. The negative control consisted of the fibroblasts seeded in in
absence of the treatment; the blank was obtained by seeding the fibroblasts in the cDMEM
with no test material added. Three samples were prepared for each group. The cytotoxicity
produced for each different group was assessed with a 48 h cell exposure. After removing
the test materials and the medium, 1 mL of a 0.5 mg mL-1 MTT solution was placed in
each well. The MTT assay was then performed as previously explained. To determine the
presence of viable cells, the MTT-based proliferation assay was performed according to the
method of Denizot and Lang with minor modifications. Briefly, the tissue samples were
incubated for 3 h at 37 ◦C in 1 mL of a 0.5 mg mL−1 MTT solution prepared in PBS. After
the removal of the MTT solution by a pipette, 0.5 mL of 10% DMSO in isopropanol was
added to extract the formazan in the samples for 30 min at 37 ◦C [16]. For each sample,
the optical density (O.D.) values at 570 nm were recorded in duplicate on 200 µL aliquots
deposited in the microwell plates using a multilabel plate reader (Victor 3, Perkin Elmer,
Milano, Italy).

4.5. Hemolysis Assay

The hemolysis assay was performed following the standard practices set forth in the
ASTM F756 for evaluating the blood compatibility of the cells after a treatment of the CMF
and without treatment [29]. The blood of three healthy New Zealand rabbits was pooled
and diluted in a phosphate buffer saline (PBS; Lonza S.r.l., Milano, Italy) to achieve a total
hemoglobin concentration of 10 ± 1 mg/mL. One mL of this blood was added to 7 mL of
the following PBS extracts: triplicate 2 g portions of Ti experimental or control implants
in 10 mL PBS (test materials); triplicate 30 cm [2] portions of high-density polyethylene
(HDPE) in 10 mL of the PBS (negative control); triplicate 10 mL portions of sterile water
for injection (SWFI) (positive control). The extraction conditions were 50 ◦C for 72 h. Each
sample was incubated for 3 h at 37 ◦C, then centrifuged for 15 min at 800× g. One mL of
the resulting supernatant from all the samples was added to 1 mL of Drabkin’s reagent
(Sigma-Aldrich, St. Louis, MO, USA) and incubated at room temperature for 15 min. The
reaction product was quantified with a multilabel plate reader (Victor 3, Perkin Elmer,
Milano, Italy) by measuring the optical density (OD) at 540 nm. The hemolysis index (HI)
was then calculated using the mean OD for each group as follows.

HI(%) = OD (test material)−OD (negative control)/OD (positive control)−OD (nega-
tive control)× 100. For HI ≤ 2%, the sample was considered nonhemolytic; for HI > 2%,
the sample was considered hemolytic.

4.6. Ames Test

The mutagenic potential of the CMF treatment was evaluated with the Ames test by
using the Salmonella mutagenicity complete test kit (Moltox, Molecular toxicology Inc.,
Boone, NC, USA), as described in Ferroni et al. [30] Briefly, the Ti implants were extracted
for (24 ± 2) h at (37 ± 1) ◦C, using a nutrient broth (blank) as the extraction vehicle. The
same extraction conditions were set for the aluminum oxide ceramic rod (VITA In-Ceram
Alumina CA-12, CE 0124, lot 15,320) (negative control) and the ICR 191 acridine (Moltox,
60–101) and sodium szide (Moltox, 60–103) (positive controls). Four different strains of
Salmonella were incubated for 48 h at 37 ◦C with the different extracts, then the number
of the revertant colonies per plate was counted. Three replicates were performed for each
sample. If the number of the reverted colonies was equivalent to those observed with the
blank and negative control, the sample was considered not mutagenic. If the number of the
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reverted colonies was equivalent to those observed with positive controls, the sample was
considered mutagenic.

4.7. Karyotype Analysis

The fibroblast seeded onto the plastic dishes was exposed to the CMF treatment
for 1 day. After 7 days, they were subjected to a karyotype analysis by capturing the
metaphases using colchicine (Sigma-Aldrich) exposure for 6 h. The metaphases of the cells
were stained by the Q-banding technique and karyotyped according to the international
system for human cytogenetic nomenclature. Twenty-five metaphases were analyzed for
the three expansions.

4.8. Scanning Electron Microscopy (SEM)

The samples were preserved in a 2.5% glutaraldehyde/0.1 M sodium cacodylate
buffer overnight at 4 ◦C, treated with a 1% Osmio O4/0.1 M sodium cacodylate buffer
and dehydrated using ethanol solutions of increasing concentrations. The samples were
analyzed using SEM (Electronic Microscopy Service, Department of Biology, University of
Padova, Padova, Italy) with a Tecnai G12 electron microscope (FEI Company, Hillsboro,
OR, USA, acceleration voltage 100 kV). The image acquisition system consisted of a Tietz
video camera (Tietz Video and Image Processing Systems GmbH, Gauting, Germany) and
the TIA FEI imaging software 6 (FEI Company).

4.9. RNA Extraction and Real-Time PCR Array

The total RNA was extracted from the cells with the RNeasy Mini Kit (Qiagen, Hilden,
Germany). Of each sample, 500 ng of the total RNA was reverse-transcribed with the RT2
First Strand Kit (Qiagen) in a SimpliAmpTM Thermal Cycler (Applied BiosystemsTM, Rome,
Italy) Thermo Fisher Scientific, Berlin, Germany) following the manufacture indications.
The resultant first-strand complementary DNA (cDNA) was stored at −20 ◦C until the
next step. The human wound healing RT2 Profiler PCR Array (Qiagen) wwa performed
in accordance with the manufacture protocol. Briefly, the cDNA samples were mixed
with RT2 SYBR Green Mastermix (Qiagen) and then aliquoted into the wells of the RT2

Profiler PCR Array. The real-time PCR system (Applied BiosystemsTM) was set up with
the following thermal cycling conditions: denaturation at 95 ◦C for 10 min followed by
40 cycles of denaturation at 95 ◦C for 15 s and annealing and elongation at 60 ◦C for 1 min.
A dissociation curve for each well was performed by running the following program: 95 ◦C
for 1 min, 65 ◦C for 2 min and 65 ◦C to 95 ◦C at 2 ◦C/min. The relative expression was
determined using the 2−∆∆CT method. The Ct values of the target genes were normalized to
the geometric mean Ct values of the housekeeping gene (ACTB). The results were reported
as a fold regulation of the target genes in the test group (treated with EMF) compared with
the control group (no treated with EMF). The statistical significance was set at p < 0.05.

4.10. Reactive Oxygen Species (ROS) Measurements

The OxiSelect ROS Assay Kit (Cell Biolabs Inc., San Diego, CA, USA) is a cell-based
assay for measuring the intracellular activity of hydroxyls, peroxyls and other ROSs em-
ploying the cell-permeable fluorogenic probe DCFHDA. It diffuses into the cells and is
deacetylated by the cellular esterases into a non-fluorescent DCFH. In the presence of the
ROS, the DCFH is rapidly oxidized to form highly fluorescent DCF. The fluorescence was
read using a standard fluorometric plate reader.

4.11. Statistics

A one-way analysis of variance for data analyses was used. In addition, t-tests were
used to ascertain the significant differences (p < 0.05). The repeatability was calculated as
the standard deviation of the difference between the measurements. All the testing was
performed in the SPSS 16.0 software (SPSS Inc., Chicago, IL, USA; license of the University
of Ferrara, Ferrara, Italy).
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5. Conclusions

In light of these results, we conclude that the CMF induces a decrease in the ROS
production in the presence of an inflammatory environment. Since it is well established
that the ROS plays a crucial role in wound healing processes, including macrophages
polarization, the killing of bacteria and the crosslinking of ECM, the reduction in the
excessive amount of the ROS could improve tissue healing and regeneration as reported
in Figure 8. These data confirm that EMF present in the CMF MD could strongly support
tissue regeneration on chronic and difficult wounds, such diabetic foot.
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