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Abstract: α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by
altered accumulation of a protein called α-synuclein inside neurons and glial cells. This aggrega-
tion leads to the formation of intraneuronal inclusions, Lewy bodies, that constitute the hallmark
of α-synuclein pathology. The most prevalent α-synucleinopathies are Parkinson’s disease (PD),
dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). To date, only symptomatic
treatment is available for these disorders, hence new approaches to their therapy are needed. It
has been observed that GBA1 mutations are one of the most impactful risk factors for developing
α-synucleinopathies such as PD and DLB. Mutations in the GBA1 gene, which encodes a lysosomal hy-
drolase β-glucocerebrosidase (GCase), cause a reduction in GCase activity and impaired α-synuclein
metabolism. The most abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and
E326K/E365K. The mechanisms by which GCase impacts α-synuclein aggregation are poorly un-
derstood and need to be further investigated. Here, we discuss some of the potential interactions
between α-synuclein and GCase and show how GBA1 mutations may impact the course of the most
prevalent α-synucleinopathies.

Keywords: GBA1 mutations; glycosylceramidase; glucocerebrosidase; Gaucher’s disease; α-Synuclein;
α-synucleinopathies; Parkinson’s disease; dementia with Lewy bodies; multiple system atrophy

1. Introduction

α-Synucleinopathies comprise a group of neurodegenerative diseases characterized by
altered accumulation of a protein called α-synuclein inside the neurons and glial cells [1].
α-Synuclein is an α-helical protein widely expressed in the Central Nervous System (CNS).
The exact function of α-synuclein is still poorly understood, however, mostly due to its
presynaptic localization, it is suggested that it might be associated with modulating synaptic
function, such as synaptic plasticity and activity, as well as vesicle trafficking [2].

The most prevalent α-synucleinopathies constitute Parkinson’s disease (PD), dementia
with Lewy bodies (DLB) and multiple system atrophy (MSA) [1]. Although these diseases
vary between each other in severity, symptoms and prevalence, they all affect the autonomic
nervous system. Some of the most common symptoms regarding α-synucleinopathies
comprise urinary and sexual dysfunction, constipation and cardiovascular autonomic
symptoms. Interestingly, symptoms associated with autonomic dysfunction often develop
before the onset of motor symptoms [1].

DLB is the second most common cause of dementia worldwide, accounting for 10–15%
of all its cases. The connection between DLB and GBA1 gene mutations has been confirmed.
Similar to DLB, GBA1 gene variants are regarded as the most significant risk factor for PD

Int. J. Mol. Sci. 2023, 24, 2044. https://doi.org/10.3390/ijms24032044 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24032044
https://doi.org/10.3390/ijms24032044
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-5765-1654
https://orcid.org/0000-0002-0308-580X
https://orcid.org/0000-0001-9206-1203
https://doi.org/10.3390/ijms24032044
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032044?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 2044 2 of 21

development and around 5–30% of all PD patients carry GBA1 mutations. The association
between GBA1 mutations and MSA, however, is poorly understood and there are conflicting
findings regarding their potential connection.

In this review, we outline the most abundant GBA1 mutations, highlight the link
between GBA1 gene variants and the courses of most prevalent α-synucleinopathies, as
well as discuss the mechanisms by which dysfunction of glucocerebrosidase (GBA1 gene
product) might impact α-synuclein accumulation and α-synucleinopathies progression.

2. GBA1 Gene Mutations and the Associated Pathologies
2.1. The Structure and Function of the GBA Gene and Its Protein Product, Glucocerebrosidase
2.1.1. The GBA Gene

The GBA1 gene (glucosylceramidase beta) is a protein coding gene located on chromo-
some 1 (1q21). It is currently known that the size of the GBA1 gene is approximately 7.6 kb
and it is composed of 13 exons. The GBA pseudogene’s (GBAP) size is approximately 5.7 kb
and, according to new findings, it is located 6.9 kb downstream of GBA1 [3]. The sequences
of GBA1 and GBAP1 are 96% identical and show structural similarity in exon–intron orga-
nization. Introic Alu sequence of transposon and a 55bp deletion in exon 9 surrounded by
an inverted short repeat differentiate between pseudogene and GBA1 gene [4,5]. According
to the newest report, GBAP1 may be involved in the regulation of GBA1 expression [3].
Recently, it was reported that the GBA gene has distal (P1) and proximal (P2) promoters
which have multiple splicing variants and transcription start sites (TSS) [3]. On the other
hand, GBA2 and GBA3 genes are located on chromosome 9 and 4, and contain 18 and 6,
exons, respectively [6,7].

To date, it is known that GBA1, GBA2 and GBA3 encode three distinct glucosylcerami-
dases. GBA1 product catalyzes the hydrolysis of glucosylceramides into free ceramides
and glucose in the lysosome, and it is associated with Gaucher’s disease type I and II (GD),
Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) [8,9]. GBA2 encodes a
microsomal β-glucosidase that catalyzes the hydrolysis of bile acid 3-O-glucosides and
it is associated with spastic paraplegia 46 and autosomal recessive cerebellar ataxia with
late-onset spasticity [10,11]. GBA3 is a cytosolic polymorphic pseudogene, with the most
common allele encoding the full-length protein. GBA3 mutations are associated with GD;
however, it was reported that they do not seem to modify type 1 GD manifestation [12].
This review concentrates on GBA1 as the most important gene in the pathogenesis of
α-synucleinopathies.

2.1.2. GBA1 Product—Glucocerebrosidase

The GBA1 gene encodes a ubiquitously expressed hydrolase, β-glucocerebrosidase
(GCase). GCase catalyzes the cleavage of glycosphingolipids–glucosylceramide (GlcCer)
and glucosylsphingosine (GlcSph) to glucose and ceramide, and to glucose and sphingo-
sine, respectively [13]. The optimal pH for the enzyme activity is 4–5 [14]. In contrast to
other lysosomal proteins, GCase is targeted to the lysosomes by the lysosomal integral
membrane protein-2 (LIMP-2), the mannose-6-phosphate-independent trafficking recep-
tor for β-glucocerebrosidase [15]. GCase attaches to a coiled-coil domain in the LIMP-2
lumenal region and, together with associated proteins, it passes through the endosomes
and Golgi apparatus into the acidic environment of lysosome where they dissociate. Phos-
phatidylinositol 4-kinase type IIIb (PI4KIIIb) is needed for the exit of the sequentially
traversing GCase-LIMP-2 complex from the Golgi body, and the PI4K type IIa (PI4KIIa) is
required for the proper sorting of the complex from endosomes [16]. For the proper rates of
glucosylceramide hydrolysis, the interaction with sphingolipid activator proteins (SAP-2),
Saponin C and negatively charged lipids is necessary [17,18].

The functional GCase protein consists of 497 amino acids and has a size of approx-
imately 59 and 69 kD, which depends on its post-translational modifications [19]. The
enzyme comprises three intermittent regions—domain I—an antiparallel β-sheet, domain
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II—a (β/α)8 triosephosphate isomerase (TIM) barrel which shelters the active site, and
domain III—an eight-stranded β-barrel, resembling an immunoglobulin fold [20] (Figure 1).
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Figure 1. The structure of the GBA1 gene and the encoded GBA1 protein (β-
glucocerebrosidase/GCase). GBA1 gene, located at q21 region of chromosome 1, comprises
13 exons and 2 promoters (P1 and P2), and is characterized by multiple splicing variants and
transcription start sites. GBA1 protein is composed of three main regions: 39-residue signal peptide,
the conserved catalytic domain Glyco_hydro_30 (329 aa) and Glyco_hydro_30C domain (30C in the
picture; 62 aa). The mature GBA1 protein—GCase—is composed of 497 amino acids (residues 40–536)
and it includes Glyco_hydro_30 and 30C regions.

2.2. GBA1 Gene Mutations (Table 1)

Mutations in the GBA1 gene cause a reduction in GCase activity and, due to progres-
sive lysosomal dysfunction, this results in impaired α-synuclein metabolism. Accumulation
of pathological forms of α-synuclein leads to the formation of intraneuronal inclusions
named Lewy bodies, which are a key hallmark of α-synucleinopathies.

It is assumed that high homology and close proximity between GBA1 and GBAP1 genes
increase the risk for allelic recombination (both reciprocal and non-reciprocal) and promote
the formation of complex alleles. This may result in a generation of gene duplications,
fusions and conversion [5]. Many different mutations in GBA1 such as point mutations,
deletions, insertions, frameshift missense, concomitant multiple mutations, splice junctions
and null alleles have been reported [21]. The characteristic variants can be distinctly
represented in particular phenotypes as well as in specific ethnic groups. Due to the fact
that pathogenic mutations are located throughout the entire protein, the distance of the
mutations to the active site cannot be a reliable predictor of severity of the disease [22].
Main GBA1 gene mutations include c.1226A>G (N370S or N409S in new nomenclature),
c.1448T>C (L444P/L483P) and c.1093G>A (E326K/E365K). N409S mutation is located
on the interface of domains II and III [23]. Firstly, it induces loss of GCase activity, then
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activation of the unfolded protein response (UPR) signaling pathway and α-synuclein
pathology. This mutation may affect the stability of the helical turn conformation of loop
1. It results in lower disease penetrance and a milder clinical phenotype [24]. The L483P
mutation is situated on domain II and causes altered lipid profile as an indicator of increased
risk for α-synucleinopathy. It promotes higher disease penetrance and a worse clinical
phenotype [25]. Both N409S and L483P mutant variants present reduced capacity of GCase
to interact with its activator, Saposin C, and with anionic phospholipids [26].

The E365K variant affects the surface of domain III, reduces GCase activity to a lesser
extent than GD-causing mutations and defines a worse clinical phenotype [27].

2.2.1. GBA1 mutations in Gaucher’s Disease

The biallelic mutation of GBA1, a recessively inherited deficiency of the GCase, di-
rectly causes GD [22,26]. This is the most common lysosomal storage disorder and is
associated with more than 495 mutations of the GBA1 gene [21]. The disease results from
the accumulation of glucocerebrosides in the lysosomes of macrophages named ‘Gaucher
cells’, which can be characterized by deregulated expression of cell surface markers, iron
sequestration, abnormal secretion of inflammatory cytokines and ability to infiltrate tissues;
this results in hematological manifestations, splenomegaly and bone diseases [28]. There
are five known types of GD: type 1, type 2, type 3, perinatal lethal and cardiovascular,
that are distinguished on the basis of the neuronal involvement and the resulting severity
of symptoms. [29]. GD type I is non-neuronopathic and accounts for 95% of cases, that
are characterized by pancytopenia, splenomegaly and osteoporosis. Type II is acute neu-
ronopathic and type III is chronic neuronopathic—these types demonstrate progressive
neurological deterioration [30]. Manifestation of GD occurs when a patient is a carrier
of a pathogenic mutation on both alleles of the GBA1 gene, either as a homozygote or
heterozygote. GBA1 mutations are classified depending on which type of GD they may
cause. Severe mutation must be inherited from both parents and it results in severe phe-
notype of GD types II or III, characterized mainly by a more aggressive disease course
and in vitro residual GCase enzymatic activity of 13–24% [31]. When mutation is inherited
in a compound heterozygous or homozygous manner, then it is called mild mutation
with GCase activity of 32–38% in vitro and it causes the mild type of GD (type I) [32–34].
On the other hand, the most common mutations of the GBA1 gene are N409S and L483P.
Homozygosity for N409S mutation is associated exclusively with GD type I patients in the
USA, Europe and Israel, while the L483P mutant type (MT) is seen in GD type III patients
worldwide [35,36]. The newest treatment of GD includes mainly enzyme replacement ther-
apy (ERT), substrate replacement therapy (SRT), chaperone molecules, eliglustat, matched
sibling hematopoietic stem cell transplantation and gene therapy [37–39].

2.2.2. The Association between Gaucher’s Disease and Parkinson’s Disease

The hint about the association between GD and PD was based on the clinical observa-
tion that 25% of GD patients report to have a first- or second-degree relative suffering from
parkinsonism [33,40]. Subsequently, a huge, multi-center study of European, American,
Asian and Israeli patients analyzed genotypes and phenotypic data from a total of 5691
PD subjects of diverse ethnic origin and 4898 controls, demonstrating a strong association
between GBA1 MT and PD [41]. Penetrance of GBA1 mutations is variable (10–30%) and
age dependent. A cumulative risk of developing PD in 60- and 80-years-of-age subjects is,
respectively, 5% and 10–30% in heterozygous GBA1 mutation carriers compared to 1–3% in
non-carriers [41–45]. Homozygous GBA1 variant-linked patients who are affected by GD
have a 10-times greater risk of developing PD and an earlier age of symptom onset [45,46].
It has been shown in a wide array of clinical studies that around 9.1% of GBA1 mutation
carriers will develop PD [35].
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2.2.3. GBA1 Mutations in Parkinson’s Disease

According to a huge multicenter analysis by Sidransky et al., approximately 5–30% of
patients who suffer from PD have GBA1 mutations [41]. In the mentioned report, it was for
the first time definitively established that GBA1 mutations are five times more frequent
in PD patients than controls. The highest reported prevalence of the GBA1 mutation was
~20% for Ashkenazi Jewish patients, whilst in non-Ashkenazi patients, it was estimated
for ~7%. The major differences in the results obtained were due to ethnicity of the studied
populations, the number of screened mutations and the extent of exome sequencing. It
should be noted, however, that overall incidence of GBA1 mutations was increased in
all PD groups studied, regardless of the ethnicity of the participants or mutation type.
Moreover, recent genome wide association studies have confirmed that approximately
8–12% of patients who suffer from PD around the world have GBA1 mutations [47].

The disease is called GBA1-associated PD (GBA1-PD). Due to their more frequent
occurrence than mutations of other genes associated with familial PD (e.g., LRRK2, SNCA
and PARK2), variants of GBA1 gene are regarded as the most significant genetic risk factor
for PD. In the standard classification based on the phenotypic effects in GD, the GBA1
variants are divided into severe, mild, complex and risk. Complex variants result from
fusions, conversions and insertions of parts of highly homologous pseudogene GBAP1
into GBA1. Risk variants are those that increase the risk of PD, but do not induce GD
pathology [44].

Around 130 GBA1 mutations were reported in PD patients [36,48]. Similar to GD,
L483P and N409S are the two most crucial mutations among others [21]. Severe mutations
such as L483P, IVS2 + 1, L29Afs*18, V394L, RecNciI and D409H are correlated with a higher
risk of developing PD compared to mild mutations such as N409S and L29Afs*18. [49].
Moreover, severe mutations have a higher incidence, they increase cognitive decline and
risk of dementia and are linked to earlier age of onset [42,50]. In addition, the T369M
allele was associated with an increased risk for PD [51]. Compared with PD patients with
mild GBA1 mutations or idiopathic PD (iPD), subjects with extreme GBA1 mutations
show distinctly worse motor and non-motor symptoms, such as insomnia and rapid-eye-
movement (REM) sleep disturbances. Results of the recent meta-analysis indicate the higher
female prevalence with ethnic specificity and younger age of onset in GBA1-PD patients [52].
Several variants have an unclear role in GD pathogenesis, but constitute risk factors for
PD, with the most notable example of E365K mutation [53]. This indicates the potential
existence of various mechanisms by which mutations make their carriers vulnerable to
PD. Interestingly, GBA1 mutations reveal specific ethnic heterogeneity [36]. Heterozygous
GBA1 mutations, as a pivotal genetic risk factor for PD, were confirmed across different
ethno-racial populations with Asian (Chinese, Japanese, Taiwanese), Caucasian, African
and Hispanic ancestry [54–58]. N409S conveys a panethnic PD risk, R496H and 84insGG
is a common PD risk factor in the Ashkenazi Jew (AJ) population, L483P, E365K, T369M,
IVS2+1G>A, RecNciI (4856_4905), R159W, H294Q—in non-AJ populations, whereas E365K,
H294Q, D409H—in European/West Asians, R120W—in East Asians [41].

2.2.4. GBA1 Mutations in Dementia with Lewy Bodies

The association between GBA1, APOE (apolipoprotein E), SNCA (α-synuclein) gene
mutations and DLB was indisputably confirmed. Variants of the mentioned genes modulate
risk for the development of the specific DLB phenotypes [59–62]. Heritability of DLB is
estimated at 36% [61]. In many studies, it has been proven that GBA1 MT individuals
exhibit an increased risk of developing DLB, notably higher than that for PD [60,61,63].
GBA1 variants increased the risk of DLB development, especially N409S, E365K and L483P
which are strongly associated with DLB, but T369M, on the other hand, did not [64]. The
E365K mutation is also frequently found in patients with PD dementia (PDD) [65]. GBA1
expression profiles were shown to be reduced in the temporal cortex in DLB and in the
caudate nucleus in PDD, as well as in the peripheral blood in both PD and DLB patients [66].
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The genetic correlation between DLB and AD was 0.578, and between DLB and PD was
0.362 [61].

Table 1. The most common GBA1 mutations, their prevalence in various populations and association
with the specific pathologies.

Common Variant Name
(New Nomenclature)

DNA Nucleotide
Change Ethnicity Disease Reference

N370S (N409S) c.1226A>G AJ *, Non-AJ *, Russian,
North African

GD type 1;
PD [21,41,64,67–70]

L444P (L483P) c.1448T>C

Chinese, Japanese,
Caucasian, Canadian,

Italian, Brazilian, Greek,
Non-AJ, AJ, North African

GD type 2 or 3 or
neuropathic;

PD;
DLB

[41,64,67,70–74]

E326K (E365K) c.1093G>A Non-AJ, AJ
PD;

DLB;
RBD

[41,53,64,67]

T369M p.T369M substitution Non-AJ, AJ PD;
RBD [41,51,67]

RecNciI (4856_4905) A456P, V460V
recombinant

Non-AJ, AJ, Japanese,
North African PD [41,67,70,75,76]

84GG (L29Afs*18) c.84dupG AJ PD [41]

* Ashkenzai Jews—AJ; non-Ashkenzai Jews—non-AJ; Gaucher’s disease—GD; Parkinson’s disease—PD; dementia
with Lewy bodies—DLB; REM sleep behavior disorder—RBD.

2.3. The Effects of GBA1 Mutations on GCase Activity

Various GBA1 mutations influence the enzymatic activity of GCase in distinct ways.
Many of them decrease or even abolish the residual activity of the enzyme [77]. It has been
shown that GBA1 homozygotes/compound heterozygotes have lower GCase enzymatic
activity as compared to GBA1 heterozygotes and GBA1 and LRRK2 non-carriers. Such
reduction in GCase enzymatic activity, especially observed in substantia nigra pars com-
pacta (SNpc) [78], is strongly associated with GBA1 mutations and modestly associated
with idiopathic PD. Thus, it can be assumed that a decrease in GCase function in both
GBA1 mutation carriers and non-carriers contributes to PD pathogenesis in a wider PD
population [47,79]. Moreover, a recent study indicated that LRRK2 kinase activity affects
the catalytic activity of GCase in a cell-type-specific manner, giving valuable implications
for therapeutic application of LRRK2 inhibitors in GBA1-linked and iPD cases [80]. It has
been established that GBA1 mutation severity correlates inversely with GCase activity [13].
The newest data indicate that the severity of α-synucleinopathies is not only related to the
level of GCase activity, but also to the fact that mutated GCase is retained in the ER and not
trafficked to lysosome. Restricted, perturbed transport of GCase to lysosome affects the
autophagic–lysosomal pathway (ALP) and is linked to aggregation of α-synuclein [15]. The
existence of invalid GCase protein can induce the UPR signaling pathway and endoplasmic
reticulum (ER) stress conditions [14]. Dysfunction of mitochondria, lipid homeostasis
and specific inflammation profile have also been reported in both GBA1-PD and DLB,
as they may also lead to α-synuclein-related pathology [18,19]. Post-translational modi-
fications of α-synuclein including phosphorylation, ubiquitination, truncation, nitration
and O-GlcNAcylation impair the lysosomal-mediated degradation of the protein, thereby
contributing to its accumulation [81] (Figure 2).
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Figure 2. The schematic representation of major molecular consequences induced by GBA1 mutations.
The structure of the GBA1 protein is presented in the middle (PDB ID: 1OGS). Mutations in GCase
usually result in significant decrease in enzyme activity, that in turn greatly impacts the functionality
of autophagy–lysosomal system (ALS); this affects lipid homeostasis due to accumulation of glucosyl-
ceramide (GlcCer) and glucosylsphingosine (GlcSph) as well as facilitates aggregation of α-synuclein
(α-syn). Excessive accumulation of lipids and abnormal proteins within the cell induces endoplasmic
reticulum (ER) stress conditions and cause damage to the mitochondria. All mentioned events lead
to induction of neuroinflammatory response with subsequent activation of NLRP3 inflammasome.

2.4. A Correlation between GCase Activity and α-Synuclein Accumulation

A link between α-synuclein and GBA1 was suggested when intraneuronal α-synuclein
inclusions were observed in GD type 1 patients with parkinsonism [20,82]. An inverse
correlation between GCase activity and α-synuclein accumulation has been reported in
GCase-deficient cells, fly and mouse models, as well as in GBA1-PD and sporadic PD
brains [77,82,83]. Overexpression of α-synuclein can induce, among others, vascular pathol-
ogy, blood brain barrier leakage and pericyte activation [84]. Not only was it observed
that overexpression of α-synuclein results in decreased GCase activity, but also that en-
hancing GCase activity can rescue α-synuclein pathology. The bidirectional loop between
α-synuclein and GCase rises from the fact that deficient GCase leads to the accumulation of
substrates bound by α-synuclein and that α-synuclein itself can lower the enzymatic activity
of GCase [17,85]. It was proven in a transgenic mouse model that pathological α-synuclein
fibrillar forms decrease GCase activity, which induces neuronal susceptibility to neurode-
generation [18]. Recently, co-cultures of astrocytes and dopaminergic neurons from GD
type 1 and 2 patients revealed reduced GCase activity, impaired Cathepsin D activity and
significant α-synuclein accumulation when treated with α-synuclein fibrils and monomers,
that contributed to neuroinflammation [16,86]. Recently, human midbrain-like organoids
(hMLOs) deficient in GCase and coupled with wild-type α-syn overexpression, accumu-
lated Lewy body-like inclusions which were absent in organoids with GCase deficiency
or SNCA triplication alone. This demonstrated that impaired GCase function promotes
α-synuclein pathology. It has been established that GCase deficiency and wild-type α-syn
overproduction are the two major risk factors for PD [26]. Furthermore, it has been proved
in animal models and clinical trials that small molecule chaperones, such as ambroxol,
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isofagomine, NCGC607 and S-181, can restore the levels of GCase and α-synuclein in PD
neurons [77].

3. α-Synucleinopathies Associated with GBA1 Mutations—Clinical Characteristics
3.1. Parkinson’s Disease

Clinically, GBA1-PD mirrors iPD. However, carriers of the GBA1 mutation exhibit
earlier disease onset, reduced survival, greater family history, more severe and frequent
motor symptoms (dyskinesias, dysphagia, dysarthria, freezing of gait) and non-motor
symptoms (dementia, visual hallucinations, depression, anxiety, RBD, olfactory dysfunc-
tion) [87]. They are also characterized by more severe cognitive impairment and neu-
roimaging features, such as impaired cortical activity and nigrostriatal function [36,88].
The genotype–phenotype correlations within GBA1-PD patients can be observed in diverse
clinical features which need more variant-based investigation to elucidate the influence of
specific GBA1 variants on the PD course. The more rapid decline in motor and non-motor
features in GBA1-PD patients should be considered in the context of personalized treat-
ment strategies, e.g., individualized pharmacological treatment, physiotherapy or cognitive
engagement strategies at the early course of the disease [89].

For PD patients harboring the GBA1 mutation, the mean age of onset is 56.8 years (me-
dian: 58, range: 30–79), which is 3 to 6 years earlier compared to iPD [67]. Disease manifests
about 6–11 years earlier in homozygous mutation carriers and about 3–6 years earlier in
subjects with heterozygous mutations, regardless of the severity of the mutation [42,88–90].
A cumulative risk of developing PD in 60- and 80-year-old GBA1 heterozygous mutation
carriers is 5% and 10–30%, respectively, when compared to non-carriers [42,44,91]. Mul-
tivariable analysis adjusted by sex, age of onset and disease duration in GBA1 mutation
carriers reported a reduced survival compared to non-carriers (HR = 1.85; p = 0.002) [92].

3.1.1. Clinical Features

Among GBA1-PD patients, the rigid akinetic phenotype is more common and accom-
panied by tremor and bradykinesia. Usually, these patients respond very well to levodopa,
although the deterioration during disease course and progression of the motor symptoms
is slightly faster compared to iPD, but without higher rates of motor fluctuations [93].
Motor complications, such as dyskinesia, dysphagia, dysarthria, freezing of gait and axial
symptoms such as postural instability occur earlier and are more frequent in GBA1 MT
carriers, especially in those harboring severe mutations [36,50,94–96]. Interestingly, non-
pathogenic GBA1 variants and polymorphisms are associated with a greater risk of motor
deterioration and may affect motor symptomatology [93,94]. In recent studies, the most
beneficial treatment on the motor symptoms was evaluated with deep brain stimulation
(DBS) in a cohort of GBA1-PD patients compared to iPD, albeit cognitive impairment and
non-motor symptoms did not improve [89,97].

PD patients with GBA1 mutations exhibit up to three times higher risk of developing
cognitive decline compared to iPD. This affects visual short-term memory, executive and
visuospatial functions and dementia [45,91,98]. On the contrary to other PD symptoms,
the degree of cognitive impairment is correlated with the severity of GBA1 mutation
and GCase activity [27,50,99,100]. Deficient α-synuclein clearance mechanisms in GBA1
mutants leading to intensified α-synuclein accumulation in cortical areas is considered
to exacerbate cognitive impairment and, in the long run, induce dementia in GBA1-PD
patients [94]. A subtle alteration in cognitive functioning in GBA1 mutation-positive
individuals without PD was also confirmed [47,101]. It has been found that GBA1-PD had
a greater prevalence of depression (33.3%) versus iPD (13.2%) (p < 0.05) [102]. The newest
study has reported that GBA1-PD patients with depression showed statistically valuable
decreased fractional anisotropy or increased mean diffusivity in the specific brain regions
compared with matched iPD patients with depression. It is assumed that depression in
GBA1-PD is associated with microstructural damages in the limbic system [103].
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Olfactory function worsens and tends to deteriorate over time in GBA1-PD resulting in
hyposmia, especially in patients carrying pathogenic severe variants of GBA1 [89,103,104].
Autonomic symptoms such as constipation, urogenital dysfunction, gastrointestinal symptoms,
orthostatic hypotension and sexual dysfunctions have frequently been reported in GBA1-PD
patients [42,94,105]. RBD are also more frequent among subjects with GBA1 homozygous
mutations and in patients carrying severe vs. milder mutations [8,94,106]. Increased frequency
and risk of psychiatric symptoms, such as hallucinations, delusions, and impulsive–compulsive
behavior, has also been reported in GBA1-PD patients vs. non-carriers [50,105,107]. The
prevalence of hallucinations in GBA1 MT carriers remains four times higher than in GBA1
non-carriers [95].

3.1.2. Neuroimaging Features

GBA1–PD patients exhibit deregulation of the presynaptic dopamine terminal function
observed as significant dopamine transporter (DAT) deficit, mainly in the striatum con-
tralateral to the more affected side [42]. Investigation of metabolic networks in GBA1-PD
patients using [18F]-FDG PET (fluorodeoxyglucose-positron emission tomography) has
shown increased PD-related pattern (PDRP), PD-related cognitive pattern (PDCP) levels
and significant [18F]-FDG PET hypoactivity in the parietal lobe, reflecting higher cognitive
burden compared with non-carriers [108,109]. However, it has been reported that N409S,
E365K and T369M variant carriers have reduced [18F]-FDopa uptake in the bilateral caudate
nuclei, ipsilateral anteromedial putamen and contralateral nucleus accumbens to the more
affected side [109–111]. It is yet to be established whether the slower decline rate in DAT
signal in GBA1-PD subjects is caused by the compensatory upregulation of tracer uptake
in the early stage of the disease or disruption of dopamine release preceding dopaminer-
gic terminal loss [110,111]. In addition, enlarged hyperechogenic area within substantia
nigra and interrupted brainstem raphe (a marker of serotonergic system impairment) were
detected in transcranial sonography in GBA1 mutation carriers compared with healthy
controls [105,112]. Furthermore, local brain atrophy was reported in GBA1-PD patients
resulting directly in varying intensity of cognitive decline [113,114]. Advanced neuroimag-
ing techniques such as MRI, SPECT (single-photon emission computerized tomography),
18F-FDG PET and brain perfusion studies have shown more aggressive disease course
and greater cortical involvement in GBA1-PD compared to iPD patients. The hallmark
conclusion is that cognitive impairment which stands as a ‘clinical signature’ of GBA1-PD,
seems to have its neuroimaging correlation in greater burden of cortical region in these
patients compared to iPD [115].

3.2. Dementia with Lewy Bodies

DLB is an α-synucleinopathy that is the second most common cause of degenerative
dementia, following Alzheimer’s disease (AD). It is regarded as an underlying etiology
of 10–15% of all cases of dementia. It shares genetic, pathological and clinical features
with PD and AD; however, DLB is thought to have a shorter disease duration and de-
creased survival rate compared to AD [116]. Recent meta-analyses reported that sex is
irrelevant to DLB development [64]. The microscopic hallmark of DLB is intracellular
inclusions composed by α-synuclein, ubiquitin, neurofilaments, α-crystallin B and valosin-
containing protein, which are thought to induce the progressive loss of structure and
functions of neurons. Microtubule regression and mitochondrial loss leads to decreased
cellular energy and axonal transport, ultimately ending up in the death of neurons [117].
The pathology of TAR DNA-binding protein 43 (TDP43), phosphorylation of tau, microglia
and T-lymphocyte recruitment, as an inflammatory response, also plays a key role in the
pathology of DLB [19,118–120]. According to the newest report, GBA1 mutation carriers
have more severe DLB symptoms and purer neuropathological lesions [121].
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3.2.1. Clinical Features

Patients harboring GBA1 variants have an approximately five years earlier age of
DLB onset, increased hallucinations, worse REM sleep behavior disorder (RBD) symptoms,
more severe motor and cognitive impairment and rapid symptom progression compared
to non-carriers [60,122,123]. Among GBA1 mutant carriers, the risk of developing DLB is
about three times greater than for PD [124].

The core clinical features of DLB are fluctuation in cognition and attention, recurrent
visual hallucinations and RBD occurring early in the disease course, as well as spontaneous
parkinsonian motor signs, which often occur later. If parkinsonism precedes the onset
of dementia by a year or more, the diagnosis of Parkinson’s disease dementia (PDD) is
made, whereas if parkinsonism occurs at the same time or within 1 year of dementia, DLB
is diagnosed. Lewy body dementia encompasses both DLB and PDD [63]. Supportive
clinical features of DLB include sensitivity to antipsychotic agents, postural instability,
repeated falls, syncope or other transient episodes of unresponsiveness, severe autonomic
dysfunction, hypersomnia, hyposmia, hallucinations, apathy, anosognosia, anxiety and
depression [121,125,126].

In contrast to neuronal loss primarily located in the substantia nigra, resulting in a
predominant motor clinical manifestation in PD course, in DLB, Lewy bodies are found
mainly in the neocortex and limbic system and then they propagate downwards to the
brainstem [127].. Lewy bodies’ deposition in the midbrain, which results in orthostatic hy-
potension, may induce autonomic failure that, together with motor symptoms, contributes
to a high risk of falls. The effect of α-synuclein on the enteric nerve cells or autonomic
dysfunction as seen in PD may directly lead to constipation. Interestingly, it has been
proven that misfolded α-synuclein can transfer between cells and, once trafficked into a
new cell, can recruit endogenous α-synuclein, leading to the formation of larger aggregates,
similarly to prion disease [128,129].

3.2.2. Neuroimaging features

The best-established neuroimaging method for the diagnosis of α-synucleinopathies
is dopaminergic 123I-FP-CIT SPECT scanning, which can demonstrate a reduction in the
levels of dopamine transporter in striatal neuronal pathways, in the bilateral caudate nu-
cleus and in the putamen, both in individuals with PD and DLB [130,131]. Biomarkers
for DLB detection include abnormally low uptake on 123I-MIBG in myocardial scintigra-
phy and REM sleep without atonia in polysomnography, relative preservation of medial
temporal lobe structures on MRI or CT scan, generalized low uptake on DAT-SPECT or
PET perfusion–metabolism scan and prominent posterior slow-wave activity on EEG with
periodic fluctuations in the pre-α and/or theta range [131–134].

The early recognition and diagnosis of DLB has critical treatment implications. The
treatment of DLB includes cholinesterase inhibitors for cognitive and behavioral impair-
ment symptoms of DLB: rivastigmine, galantamine and donepezil, memantine, atypical
antipsychotic drugs for agitation, levodopa/carbidopa for parkinsonism, pimavanserin
for psychosis, melatonin or clonazepam for RBD and personalized psycho-cognitive treat-
ment [135–137].

3.3. Multiple System Atrophy

Although all PD, DLB and MSA often share common genetic risk factors, the connec-
tion between GD and MSA is unclear and studies did not find a correlation between GD
variants and MSA. In contrast to that, previous research on large case–control groups has
shown that there might, in fact, be a correlation between some GD variants and increased
MSA risk [138]. However, there are still some conflicting findings on this subject and the
actual link between the GBA1 mutation and MSA is yet to be determined [139].
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4. Mechanisms Underlying the Crosstalk between GCase and α-Synuclein

The mechanisms by which GCase impacts α-synuclein aggregation are multifaceted
and still poorly understood. These two molecules are suspected to mostly interact in acidic
pH and to co-localize in the lysosome. Therefore, this organelle has been suggested to be
the primary site of α-synuclein and GCase interaction [140]. One important aspect is that in
the presence of mutant GCase in the lysosome, the levels of its product, ceramide, become
reduced. Mechanistically, ceramide induces maturation of cathepsins (a group of lysosomal
proteases that degrade, inter alia, α-synuclein), and lower levels of ceremide considerably
impair lysosomal function. This results in decreased degradation and higher levels of
α-synuclein, and therefore higher risk for developing PD. Increased α-synuclein levels
further inhibit GCase activity, which ultimately creates a vicious cycle [141]. Interestingly, a
study evaluating the correlation between α-synuclein pathology and GCase activity found
that the inhibition of GCase does not trigger α-synuclein de novo aggregation or upregulate
total α-synuclein levels in transgenic mice [142]. However, GCase inhibition does result
in increased α-synuclein levels upon the pathology initiation with misfolded α-synuclein
seeds. Hence, it is claimed that GCase impact on α-synuclein pathology does not depend
on the neuron type but rather on the extent of the existing pathology [18].

α-Synuclein aggregates contiguous propagation can also result from lysosomal dys-
function, which is a potential secondary effect of GBA1 function loss [143]. Nevertheless,
other molecular mechanisms, described later in this article, such as disturbed protein or
lipid metabolism, ER stress or mitochondrial dysfunction also substantially contribute to
the pathology progression in patients with GBA mutations (Figure 3).
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Figure 3. Molecular mechanisms underlying GCase mutations and the associated cellular events.
Under normal conditions, the functional GCase is synthesized in the ER, bound to lysosomal integral
membrane protein type-2 (LIMP-2) and transferred to the Golgi apparatus for glycosylation. Then,
it is targeted to the lysosomes, where it catalyzes degradation of glucosylceramide (GlcCer) and
glucosylsphingosine (GlcSph) to glucose and ceramide or glucose and sphingosine, respectively;
Saposin C (SapC) acts as a cofactor in this process. However, in the case of mutant GCase, the
activity of enzyme is markedly decreased, which leads to accumulation of GlcCer and GlcSph, and in
consequence—lipid imbalance. Impaired function of GCase also affects the degradation of other
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lysosomal substrates, such as α-synuclein oligomers. Accumulation of mutant GCase and α-synuclein
within the cell contribute to endoplasmic reticulum (ER) stress, as well as mitochondria swelling and
dysfunction. Moreover, α-synuclein aggregates inhibit the GCase transport from ER to Golgi, which
further decreases GCase activity and generates a bi-directional positive feedback loop.

4.1. Lipid Metabolism

Alterations in lipid levels associated with decreased GCase activity have been sug-
gested to impact the ability of α-synuclein to aggregate into high molecular weight (HMW)
structures and amyloid fibrils [77]. A linear correlation has been shown between insoluble
α-synuclein aggregates and GCase activity loss in human sporadic PD midbrains. More-
over, certain disturbances in lipid homeostasis, that are the result of age-dependent decline
in GCase activity, may result in altered protein lipid interactions and lead to lipid-stabilized
α-synuclein and phosphorylated tau accumulation in neuronal vesicular membrane com-
partments [144].

4.2. Autophagic–Lysosomal Pathway, Protein Metabolism and GCase Interaction with Lysosome

It is well known that GCase deficiency results in disturbances in lysosomal function as
well as in intracellular trafficking in neurons [18]. Some studies have shown that GCase
deficiency resulting in GlcCer neuronal accumulation can promote α-synuclein oligomers
formation. Mechanisms of this phenomenon are multifaceted. Supposedly, GCase decline
causes an inhibition of lysosomal proteolytic functions and therefore affects α-synuclein
degradation [145,146].

Another mechanism by which MT GBA1 alleles might impact α-synuclein accumu-
lation is through blocking chaperon-mediated autophagy (CMA). When presented at the
lysosomal surface, MT GCase can inhibit CMA and cause α-synuclein accumulation—CMA
pathway substrate [20].

On the other hand, the pathogenic A53T and A30P-synuclein may also down-regulate
their own degradation by binding to the lysosomal receptor for CMA pathway and hence
become toxic [147].

Interestingly, primary substantia nigra dopaminergic neurons without the MT GCase
CMA motif have been protected from neuronal death induced by MT GCase, which further
supports the potential role of CMA in α-synuclein pathology [20].

Moreover, in GBA-PD brains, the fraction of GBA that fails to fold in the ER is targeted
to the lysosomes, which has been shown to inhibit lysosome-associated membrane protein
2 (LAMP2A) multimerization, subsequently blocking degradation of other CMA substrates,
including α-synuclein. The described processes lead to disturbance in proteostasis, α-
synuclein aggregation and thereby contribute to further PD pathology progression [20,148].

It has been demonstrated that upregulation of GCase activity by a small molecule
GCase modulator S-181 in induced pluripotent stem cells (iPSC)-derived dopaminergic
neurons can ameliorate α-synuclein accumulation, lipid substrate accumulation, dopamine
oxidation and lysosomal dysfunction in both GBA1-linked and non-GBA1-linked PD cases.
Hence, regulating GCase activity may be a promising target to reduce the lysosomal
dysfunction and toxic oxidized dopamine accumulation in the affected dopaminergic
neurons [149].

4.3. Mitochondrial Dysfunction

It is known that, apart from lysosomal dysfunction, cells expressing GBA1 muta-
tions also show altered mitochondrial homeostasis and dysregulation in calcium levels.
Interestingly, studies on postmortem anterior cingulate cortical tissue from PD patients
with heterozygous GBA mutations suggested that GBA mutation may impair mitochon-
drial function via mitophagy inhibition. This alteration prevents cells from discarding
dysfunctional mitochondria and leads to their accumulation [150,151].
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In primary neurons and astrocytes from a neuronopathic GD mouse model, dysfunc-
tional mitochondria accumulate in cells due to a dysfunction of protein and organelle
degradation machinery. It is suggested that these autophagy defects and subsequent
buildup of dysfunctional organelles and protein aggregates could importantly impact the
course of disease in cells with GBA mutations [152,153].

Studies conducted on cell cultures and GBA knockout GD mouse models suggest
a loss-of-function mechanism by which GBA mutations impair mitochondrial activity
associated with GD [154]. Nevertheless, the mechanism by which heterozygous GBA
mutations impair mitochondrial function is still unclear.

4.4. Neuroinflammation

It has been shown that PD patients with GBA mutations have increased plasma
levels of some inflammatory molecules, including some monocyte markers (such as IL-
8, MCP1, stem cell factor, pulmonary and activation-regulated chemokine (PARC) and
macrophage inflammatory protein 1α (MIP1α)) β [155], in comparison with sporadic PD
cases. Hence, neuroinflammation could also be implicated in PD pathology in patients with
GBA mutations [156]. Some studies also show that the above-mentioned faulty lysosomal
storage may lead to activation of the NLRP3 inflammasome in Gaucher macrophages; this
supports the neuroinflammatory mechanism by which GBA mutations may contribute to
exacerbating PD pathology at the molecular level [157]. However, the mechanisms and
function of microglial GCase need to be further investigated to fully understand how glial
cells may affect the course of PD in patients with GBA mutations.

4.5. Glucocerebrosidase and LIMP-2

The role of the lysosomal integral membrane protein type-2 (LIMP-2), which mediates
the transport of GCase to lysosome is also unclear and little is known about its molecular
interactions with GCase. In PD fibroblasts, it has been discovered that the GBA1 mutation
(particularly N370S) may impact proper LIMP-2 function via altered lysosomal cholesterol
accumulation [158]. It has been shown that mice with knocked-out SCARB2 gene exhibit
features such as upregulated levels of GluCer, accumulation of α-synuclein and dopamin-
ergic neurodegeneration [159]. Nevertheless, further research is needed to characterize the
connection between LIMP-2 function and GBA mutations in humans [158].

5. Conclusions

GBA1 mutations constitute one of the highest risk factors for developing PD and DLB,
which are the most prevalent α-synucleinopathies. It is known that either type of GBA1
mutation or its localization may critically impact the course of GD and the related patholo-
gies. For instance, in comparison with patients with PD who do not carry GBA1 mutations,
GBA1-PD patients exhibit more severe and frequent motor and non-motor PD symptoms,
as well as reduced survival rate. Hence, GBA1 variants prevail as an intriguing subject
to investigate in the context of α-synucleinopathies. However, some questions remain
unanswered, such as if there is a correlation between GBA1 mutations and MSA. The most
abundant GBA1 gene mutations are N370S or N409S, L444P/L483P and E326K/E365K.
They are known to impact GCase activity and affect the pathways in which it is involved.
As described earlier in this article, mechanisms by which GBA1 mutations affect the severity
of α-synucleinopathies severity occur through various molecular events, such as decreased
GCase activity and disturbances in the MT GCase trafficking from the ER to the lyso-
some, which result in the accumulation of various products. Subsequently, perturbations
in GCase transport affect ALP and CMA pathways. Moreover, GCase dysfunction may
initiate ER stress conditions and trigger the activation of the UPR signaling pathway. The
following events such as mitochondrial dysfunction, disturbances in lipid homeostasis and
neuroinflammation are also proposed to further aggravate α-synuclein accumulation. In
sum, considering the vital role that GCase may play in α-synucleinopathies pathogenesis,
studying the pathways in which it is involved could result in a better understanding of
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these incurable diseases and offer a new approach to their treatment. Especially, person-
alized targeted therapies are of utmost interest in the case of various genetic variants of
GBA1, either in the potential treatment of GD or in α-synucleinopathies. Furthermore,
the underestimated role of GBA1 mutations in parkinsonian patients should be taken into
consideration in applying novel therapeutic approaches. As the presence of MT GBA1
often results in earlier symptom onset and more severe disease course, it may be essential
to distinguish such PD patients and evaluate them for the presence of GBA1 mutation; this
could provide an opportunity for the application of modern, targeted therapy, that could
be more effective in case of genetically affected patients.
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