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Abstract: The accumulation of synthetic plastic waste in the environment has become a global concern.
Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological
tools for waste circularity; they can depolymerize materials into reusable building blocks, but
their contribution must be considered within the context of present waste management practices.
This review reports on the prospective of biotechnological tools for plastic bio-recycling within the
framework of plastic waste management in Europe. Available biotechnology tools can support
polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic
waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and
more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based
depolymerization, even if this process is currently effective only on ideal polyester-based polymers.
To extend the contribution of biotechnology to plastic circularity, optimization of collection and
sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more
recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental
impact in comparison with the present approaches should be developed to depolymerize (available or
new) plastic materials, that should be designed for the required durability and for being susceptible
to the action of enzymes.

Keywords: circular bioeconomy; biotechnology; solid waste management; biodegradation; synthetic
plastic

1. Introduction

Plastic waste management is a topic of concern at a global level [1–3]. It has been
estimated that about 53 kilo-tons per year (kt y−1) of plastic waste will be released into the
environment by 2030 [4]. This is due to inappropriate behaviors, lack of collection systems,
or leakages from transportation [5]. Environmental plastic pollution is not only a local issue
of contaminated soils and water bodies, but it is pervasive in worldwide ecosystems, also
affecting polar regions and areas with no apparent human activity [6–8]. This is because
plastic materials permeate through globally interconnected aquatic waste streams and are
fragmented and chemically modified by abiotic processes into pieces of various sizes, from
macroscopic to microscopic (nano- and microplastics) [9–11]. It has been recently reported
that nano- and microplastics have entered biological food chains, tissues, and human
blood [2,12,13]; such plastic particles are harmful for ecosystems and human health [14–17]
and can interact with (and act as carriers of) toxic compounds and pathogens [10,18,19].
Therefore, new urgent regulations are expected to be released in the next few years to
reduce plastic leakages into the environment. This will result in a higher amount of plastic
waste to be managed and valorized. In such a scenario, circular-economy-based production
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systems designed to convert waste to new resources, instead of useless compounds to get
rid of, will be favored [20–22].

In the plastic waste management field, circular economy principles are achieved by
reducing, reusing, and recycling while simultaneously increasing the lifespan of materi-
als and products. Among such activities, recycling is implemented mainly in high-tech
infrastructure demanding considerable resource, time, and financial investments. In recent
years, plastic recycling has been characterized by a decrease in costs [23,24] and an increase
in efficiency; mechanical recycling is the most utilized approach [25]. However, it is a
downcycling process that is suitable to recycle few plastic fractions and leads to products
of lower quality than those from feedstock materials [26,27]. Furthermore, the market
for recyclable materials has oscillating prices [28]. Therefore, future approaches aimed at
potentiating plastic waste circularity and its revenues will benefit from more efficient and
greener recycling technologies.

The biotechnology sector (mainly based on microbial enzyme applications) has recently
emerged as a source of opportunities for waste circularity within the circular (bio)economy
framework, as also stated by the European Union (EU) [29]. Enzymatic bioprocesses can
convert biomass- or fossil-derived low-value waste into new and marketable products of
comparable or superior quality in comparison with virgin materials, decreasing the CO2
footprints of newly extracted fossil feedstocks. Several reviews of available biotechno-
logical tools in plastic waste circularity have been published in recent years (Table 1 for
some recent examples), but none reported a combined view of the potential of biotechno-
logical approaches in the context of current plastic waste treatments. In this review, we
report an updated list of biotechnological tools for the depolymerization of plastics made
with traditional petroleum-based non-renewable polymers (e.g., PET, polyethylene (PE),
polypropylene (PP), and polystyrene (PS)), which represent most of the plastic produced
worldwide and need centuries to completely degrade if spread in natural environments [30].
We focused on relative performances, practical opportunities, and limitations within the
framework of current plastic waste flows and traditional recycling strategies. In doing
so, we attempted to answer the following research question: “What is the contribution
of biotechnology in plastic waste recycling?”. Finally, we provided the most promising
directions to potentiate the contribution of biotech approaches in plastic waste valorization
within the context of the circular (bio)economy.

Table 1. List of recent and most relevant general reviews that include biotechnology-based degrada-
tion and/or recycling of plastic waste (descending order from the oldest to the newest).

Main Topics Outlook Reference

Biotechnological options and challenges for the
valorization of plastic waste degradation products
with a focus on microbial metabolic engineering.

Few industrially implemented examples until now. The
challenges are understanding degradation pathways and
measuring the efficiency of microbial conversion to target

markets.

[31]

Chemical recycling routes of plastics with
reference to life cycle analysis; a small parenthesis
on biotechnology; evaluation of industrial systems

of sorting and collection.

New or improved chemical catalysts are needed, targeting
superior plastic contact and their stability over multiple

uses and improving heat distribution. Technological
developments will benefit from improvement of cleaning
and sorting and from avoiding the commercialization of

composite and multilayer materials.

[32]

Catalytic mechanisms and structural rationale of
microbial enzymes able to decompose both

non-starch plant biomass and synthetic plastics.

Enzymes that can degrade macromolecular polymers (either
lignin or recalcitrant plastics) share common biochemical

features. Novel plastic polymer-degrading enzymes may be
discovered to allow for investigations of the mechanisms by

which they operate.

[33]
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Table 1. Cont.

Main Topics Outlook Reference

Biotechnology-based plastic deconstruction;
clarification of biodegradable materials and

microplastic pollution; challenges and future
directions.

Plastics should be made from biomass and CO2 and with
degradation-on-demand features for products that

potentially reach the environment. Consumers must be
willing to pay an extra tax to compensate for higher

biotech-based recycled plastic prices.

[34]

Microbial degradation of synthetic plastics and
probable enzymatic mechanisms.

The biochemical and structural properties of enzymes
degrading more recalcitrant plastics need further studies to

allow for their modification towards better degradation
efficiency. The inclusion of the appropriate

pretreatment/additives might yield better results.

[35]

Comprehensive update on challenges and
opportunities in chemical and biological catalysis

for plastics deconstruction and recycling;
suggestions to find standards to compare different

mechanisms of plastic deconstruction and their
relative performance.

Biological and chemical catalysis should be combined to
depolymerize plastics and generate commodity chemicals.
These efforts could be synergistic with the development of
alternative materials with better end-of-life functionalities
that increase their amenability to catalytic deconstruction.

[36]

Enzymatic mechanisms of plastic degradation and
factors influencing their performance.

To unravel reaction mechanisms in recalcitrant C-C plastics,
basic investigations of changes in substrate polydispersity

and the resulting product molecules are required. A
‘bottom-up’ approach of structure-guided de novo enzyme

system design is needed.

[37]

Literature survey and challenges of
biodegradability of recalcitrant plastics in the

presence of pro-oxidants.

There are concerns on microfragments of oxo-plastics
reaching marine environments, as no previous study had

reported a 100% complete biodegradation of
oxo-biodegradable plastic. In the near future, bioplastics are

expected to be favored.

[38]

Microbial biodegradation of various synthetic
plastic types with a focus on algae and the gut

microbial consortium of insects.

The mode of action and mechanism of microbial
degradation calls for further studies to detect an effective

enzymatic system that fits the tested polymeric material. A
practical system for plastic biodegradation is still not

available.

[39]

Recent advances in the biotechnology-based
biodegradation of both traditional and bio-based

plastics with a focus on known degradation
mechanisms and valorization of plastic waste.

Studies of the recycling and valorization of plastic waste
could offer solutions to plastic industries. Synthetic biology

studies on the functioning of microbial cell factories are
needed to further improve the adaptability of microbes to a
circular economy of plastics; the degradation mechanisms of
some types of plastics are still missing and must be studied.

[40]

Comprehensive update on strategies for the
discovery and engineering of plastic-degrading

enzymes.

New high-throughput screening methods are needed to
identify plastic-degrading enzymes. A better connection

between protein features and functions is needed to guide
accurate protein engineering. The development of

engineered thermophilic microorganisms can overcome the
problem of short enzyme lifetimes in plastic degradation

processes.

[41]
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Table 1. Cont.

Main Topics Outlook Reference

Comprehensive update on plastic
depolymerization and upcycling routes, including

the modification of plastics to make them more
degradable and a mention of biotechnological

systems

Academia and industry need to cooperate to create
marketable solutions from different plastic recycling

technologies with a business model in mind. There should
be more international and local government efforts to

promote recycling/upcycling and penalize disposal with
enforcement. Policies should be introduced to offer more
convenient and effective recycling choices for consumers,

avoiding low recycling rates due to the collection of highly
mixed recyclables. Governments, non-profit organizations,

and academia should work together to inform and
encourage consumers to choose upcycled and/or

biodegradable materials. More interdisciplinary research is
needed to create innovative and safe products from plastic

upcycling.

[42]

The most promising biotechnological open-loop
recycling processes for synthetic plastics with a

focus on how to improve degradation with abiotic
pretreatments, enzyme engineering, and novel

bioreactor designs

Higher degradation activities on polyester and C–C
backbone plastics will be fundamental. This can be achieved
by engineering existing enzymes and microorganisms, by
applying synergistic degradation strategies with multiple

enzymes and pretreatments, by focusing on the
optimization of the reaction conditions in the reactor, and by

evaluating the economic feasibility of plastic monomer
upcycling to high-value products

[43]

2. Plastics: From Waste Generation to Recycling
2.1. Plastic Classification

In 2019, global plastic production reached 368,000 kt y−1 [44]. Thermoplastics and
thermosets are the two categories of polymers into which plastics are divided [45]. Ther-
moplastics are composed of linear polymeric chains bridged by non-covalent hydrophobic
interactions [46], allowing for their melting above a certain temperature and their hardening
when cooled. This means that thermoplastics can be repeatedly reheated, reshaped, and
cooled (with possible loss of performance) [47]. There are three types of thermoplastic
polymers [48]: (i) In crystalline thermoplastic polymers, the regular arrangement of chains
makes them translucent. They have more mechanical impact resistance compared to other
polymers. Examples are polyethylene (low-density polyethylene (LDPE) and high-density
polyethylene (HDPE)) and PP. (ii) In amorphous thermoplastic polymers, random chain
arrangement usually provides transparency. Polyvinylchloride (PVC), polycarbonate (PC),
polymethylmethacrylate (PMMA), acrylonitrile butadiene styrene (ABS), and PS are typical
examples. (iii) Semicrystalline thermoplastic polymers have both crystalline and amor-
phous regions. Some examples are PET, polyamides (PAs), and polyester polybutylene
terephthalate (PBT).

Thermosets are composed of branched polymeric chains that form a crosslinked three-
dimensional network when heated. As these cross links are made up of covalent bonds,
after their formation, these plastics cannot be recycled by melting and reforming [49]. In
compliance with EU plastic demand distribution by resin type (Table 2), thermoplastics
(about 85%) dominate over thermosets (around 15%), with crystalline thermoplastics being
the most requested (up to 50%). Thermosets are composed of 51.3% PURs (5445 kt) and by
other thermosets, such as phenolic resins, epoxide resins, melamine resins, and urea resins,
among others.
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Table 2. Resin types and plastic demand distribution in 2019 (elaborated from [44]).

Resin Type Acronym Applications
2019 EU Demand

Distribution
(Mass %)

Chemical
Structure

Thermoplastics

Polypropylene PP

Food packaging, sweet and
snack wrappers, hinged

caps, microwave
containers, pipes,

automotive parts, bank
notes, etc.

19.4 –[CH2-
CH(CH3)]n–

Low-Density
Polyethylene LDPE

Reusable bags, trays and
containers, agricultural

film, food packaging
film, etc.

17.4 –(CH2-CH2)n–

High-Density
Polyethylene HDPE

Toys, milk bottles,
shampoo bottles, pipes,

houseware, etc.
12.4 –(CH2-CH2)n–

Polyvinyl
Chloride PVC

Window frames, profiles,
floors, wall covering, pipes,

cable insulation, garden
hoses, inflatable pools, etc.

10 –(CH2-CHCl)n–

Polyethylene
Terephthalate PET

Bottles for water, soft
drinks, juices, and cleaners;

food packaging;
textiles; etc.

7.9 –[CO(CH2)4CO-
OCH2CH2O]n–

Polystyrene
PS + Expanded

polystyrene
(EPS)

Food packaging (diary,
fishery), building

insulation, electrical and
electronic equipment, inner
liner for fridges, eyeglass

frames, etc.

6.2 –[CH2-
CH(C6H5)]n–

Other
Thermoplastics

ABS, PBT, PC,
Polytetrafluo-

roethylene
(PTFE),
PMMA.

Hub caps (ABS), optical
fibers (PBT), eyeglasses

lenses, roofing sheets (PC),
touch screens (PMMA),

cable coating in
telecommunications

(PTFE), and many other
applications in aerospace,

as well as medical implants,
surgical devices,

membranes, valves and
seals, protective

coatings, etc.

11.3 Many formulations

Thermosets

Polyurethane Polyurethane
(PUR)

Building insulation,
pillows, mattresses,
insulating foams for

fridges, etc.

7.9 –[R-OCO-NH-R2-
NH-CO-O]n–

Other
Thermosets 1

Phenol
formaldehyde

resins (PF),
urea–

formaldehyde
(UF)

Decorative laminates,
textiles, paper, foundry

sand molds, foam
insulation, paints, coatings,

adhesives, etc.

7.5 -

1 Includes other thermosets such as phenolic resins, epoxide resins, melamine resins, urea resins, and others.
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2.2. EU Plastic Waste Flows

About 66,786 kt of plastic materials were produced in 2016 in the EU (Figure 1a): 80%
(53,264 kt) with thermoplastic polymers and 18% (12,137 kt) with thermoset polymers.
The remaining 2% (1385 kt) includes fibers made both with thermoset and thermoplastic
polymers. In 2016, the amount of consumed plastic in products was 73,481 kt. Packaging
products are the most consumed (19,461 kt, up to 26% of the total), followed by a fraction
(18,101 kt, 25% of the total) that includes parts of furniture; the manufacture of plastic plates,
sheets, tubes, profiles, and bleached paper; the manufacture of fabricated metal products;
and other manufacturing (Figure 1b). Construction and transport products account for
12,297 kt and 10,545 kt, respectively, followed by electrical and electronic equipment (EEE)
(6040 kt), textiles (4521 kt), health care (1112 kt), and paints and varnishes (1404 kt).

Clustering of consumed plastics in these categories of products is useful, reflecting the
average time after which they move into the waste stream, forming so-called post-consumer
plastic waste (PCPW). Plastic construction materials and transport-related products are
assumed to remain in use in the sociotechnological system for between 30 and 50 years [50],
contributing the most to form the so-called “stock” fraction, which amounted to ≈50%
(37,696 kt) of all plastic products in 2016 [51].
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PCPW (36,592 kt in 2016) can be divided into seven different flows (Figure 1c): pack-
aging (16,122 kt), construction materials (1537 kt), transport waste (777 kt), EEE (984 kt),
textiles (1101 kt), healthcare waste (233 kt), and “other” (13,601 kt). Plastic waste from man-
ufacturing processes and from packaging products (in use for one year or less) contributes
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the most (≈50%) to PCPW, followed by the “other” fraction (≈35%), a heterogeneous mix
of waste streams collected from various economic activities (markets, street cleaning, and
municipal activities). Therefore, the “other” fraction is difficult to be correctly recognized,
separated, and managed immediately after consumption. Adding losses from transport
and handling, extra-EU imported waste, and the plastic waste generated from wastewater
treatment plants, a total of 37,068 kt of plastic waste was generated in 2016 in the EU.

PCPW has different fates (Figure 1d). In 2016, it was estimated that only 20% of
PCPW (7217 kt) was recycled, while the rest followed other paths; about 23% (8608 kt) was
incinerated with energy recovery, and around 19% (6889 kt) was burned without energy
recovery. Backfilling and reuse represent 137 kt and 183 kt, respectively. Landfilling is
among the most adopted solutions for the disposal of 19% (6837 kt) of plastic waste. Around
9% (3400 kt) of PCPW entered the environment after being dispersed or mismanaged,
accumulating and littering natural surroundings. The remaining PCPW (up to 10%, 3789 kt)
was exported; some studies have pointed out that the lack of traceability of exported
plastics may lead them to oceans [52]. Moreover, plastic waste sent to other countries is
contaminated by other polymers of lower quality[51], hampering its reuse or recycling.
Therefore, exported plastics may be summed, for the most, to environmental or landfilled
PCPW.

According to Hsu et al. [51], the EU consumption of thermoset polymers in 2016 was
equal to 11,140 kt. Moreover, 526 kt of thermosets was lost into the environment [53], poten-
tially leading to 10,614 kt of collected waste. Once collected, this thermoset waste is typically
unsorted [51] and, for the most part, is landfilled or used for energy recovery [54,55]. Me-
chanical reprocessing (through pulverization, hot compression, or the addition of adhesive)
of thermosets into new products is possible but only before becoming a waste due to their
contamination by other materials [55]. Therefore, ≈30% of PCPW is difficult to recycle with
traditional methods due to its chemical structure and characteristics.

2.3. Options for Thermoplastic Waste Recycling

Different waste recycling strategies have been developed for thermoplastics. Specifi-
cally, following the circular hierarchy, waste recycling processes can be classified as primary,
secondary, tertiary, or quaternary [46,56]. Primary recycling is used for the management
of preconsumer plastic waste and consists of re-extrusion of the material. This waste is
limited to fallout products, trimmings, or cuttings with a high level of homogeneity [56].

Secondary recycling (also named mechanical recycling or plastic reprocessing) is the
most used method for thermoplastic waste recycling [47], although it often lowers the
polymer quality [25,56]. The typical procedure for the secondary recycling process includes
six main steps, which can be repeated and reordered: shredding of the collected plastic
waste, washing, milling, separation and sorting (based on shape, density, size, color, and
chemical composition), drying, and extrusion [47,57].

Tertiary recycling (also named chemical or feedstock recycling) consists of depoly-
merizing polymers into oligomers or monomers that are successively repolymerized or
redirected to other applications such as fuels [46,58]. The main technological processes are
gasification, pyrolysis, glycolysis, and hydrolysis [59]. These technologies are mainly used
when the separated waste plastic fractions do not have sufficient quality to allow for fully
mechanical recycling. For example, industrial waste (e.g., from the packaging industry)
can be valorized with tertiary (or quaternary) recycling systems.

Quaternary recycling refers to incineration for recovery of the energy released during
combustion (depending on calorific values of the material and on the plant configuration)
to produce heat and electricity [59]. This process is considered the last option in the circular
hierarchy, and it is typically used when previous recycling options are not applicable or for
plastic materials that are difficult to sort.

Based on the type of the overall process, plastic recycling procedures can be further
distinguished into closed- or open-loop processes [56]. In closed-loop recycling, the recycled
materials are used to generate the same product from which they were originally recovered.
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The new product can be made up of a mixture of recycled plastic and virgin material.
Closed-loop recycling is suitable for a small portion of plastic waste (e.g., PET packaging
products) [47]. In open-loop recycling, the recycled materials are used for a product that is
different from the original one. If the quality of the produced recycled material is higher
than that of the original product, the process is defined as an upcycling process. In the
other case, the process is defined as a downcycling process. Some examples include textile
fibers made from PET bottles, printer components made up of polycarbonate from bottles
or flooring tiles from mixed polyolefins [60,61].

2.4. Thermoplastics Recycling Issues: The Plastic Packaging Waste Case

The largest PCPW flow (≈50%) consists of plastic packaging waste (PPW). A recent
detailed study on PPW in Europe [62] exemplified the amount and composition of thermo-
plastic leakages during the three stages between waste generation and recycling: collection,
sorting at material recycling facilities (MRFs), and recycling in recycling plants (RECs)
(Table 3).

Table 3. Composition of PPW and performance at the different stages of the recycling system. Values
are medians and expressed in percentage. Data are taken from [62,63] (PPW collection rate).

Polymer Type PPW Composition PPW Collection Rate MRF Sorting Rate REC Recycling Rate

PET 18 62 85 81
HDPE 20 44 85 88

PP 20 32 64 66
PS 7 30 37 66

PVC 3 20 73 80
LDPE (films) 32 36 59 71

Interestingly, the lowest value was the collection rate, with ≈60% of PPW never
entering the recycling process, heading straight to other disposal methods (e.g., landfill,
energy recovery, and incineration). Among the most diffused polymers, packaging made
of PET was more collected than PP and PE. Once reaching MRFs, up to 30% (2002 kt) of
collected PPW was rejected, while another 26% (1832 kt) was sorted for export (Figure 2).
In this step, the highest leakages were for packaging made of PP, PS, and LDPE films
(Figure 3a).
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Exported plastics (Figure 3c) were mainly composed of PET and PE polymers and
characterized by low polymer purity, which hinders their recyclability [51]. This implies
that only <20% of total PPW effectively reached RECs, where another ≈22% (696 kt) was
not recycled, mostly consisting of PS, PP, and LDPE films (Figure 3b). Globally, ≈15% of
PPW was recycled, while the rest was rejected, exported, and otherwise disposed of, mainly
during collection and sorting.

There are specific reasons for these losses of plastics before and after entering any
recycling process. Currently, mainly high-value, monopolymer, rigid types of plastics
are sorted for reprocessing [61], while plastics with low bulk density are often excluded.
These plastics include LDPE films and bags. Another challenge of the sorting step is
related to the limitations of near-infrared (NIR) sensors, the most used plastic sorting
technology [64]. Such sensors are blind to black carbon materials because black pigments
absorb the emitted light, preventing polymers from being correctly sorted. Black plastics
were estimated to represent between 3–6% and 14–18% of total PPW volume and 18%
of hard plastic [65]. Moreover, false sensor readings often occur, usually when only one
layer of a multilayered object is scanned. As a consequence, contamination occurs between
polymers that have different structures and processing melting points, leading to damage
to recycling equipment and the deterioration of the properties of recycled materials in
RECs [56]. This also occurs when NIR technologies are coupled with manual sorting (a
common practice) or other plastic sorting systems that exploit the varying densities of
polymers (e.g., sink-float and hydrocyclone processes); even if these systems ensure the
achievement of high purity levels in downstream operations, especially for high-value
plastics [47,56], they usually come at the cost of further rejects of low-quality collected
plastic waste. This problem is not specific to PPW but affects any sector of PCPW, including
textiles, which is a sector in which there has been a rapid growth of the production and
environmental dispersions of materials made with fibers obtained by mixing different
polymers. In particular, while mainly single-polymer products can be recycled at RECs,
difficult-to-separate blended materials pose a demanding challenge [66].

2.5. Removal of Environmental Plastic Pollution

Plastics released into the environment are converted by abiotic forces into plastic
debris of different sizes and can generally be divided into two categories: macroplastics,
with a minimum size of 25 mm [67], and microplastics, which are smaller than 5 mm [68].
Microplastics are further divided into primary and secondary microplastics based on their
original sizes [67]. Primary microplastics are designed and built to have microscopic
size (e.g., plastics contained in cosmetic, cleanser, and scrubber formulations), whereas
secondary microplastics are derived from macroplastic fragmentation both on land and in
marine environments [69].

The amount of plastics dispersed into the environment in 2016 in Europe [51] was esti-
mated to be ≈2264 kt of macroplastics (Figure 4a) and ≈1106 kt of microplastics (Figure 4b).
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The majority of scattered macroplastics is composed of thermoplastic polymers (PP, PE, and
PAs), while car tires and road marking coatings are the major source of microplastics [70].
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Some studies have evaluated whether recaptured dispersed macroplastics could be
potentially recyclable; the recyclability of weathered PET bottles and HDPE caps was
studied under simulated marine conditions [71]. After 3–4 years, HDPE caps were only
slightly damaged (0.096% mass reduction) but still able to close properly, while PET bottles
showed a decrease in transparency from 89 ± 3% to 43 ± 2%, making these products
unsuitable for uses requiring transparency. Furthermore, tensile strength and Young’s
modulus were not altered, whereas impact strength was reduced by 37%, and strain at
break was found to be roughly halved. These quality parameters allowed mechanical
recycling [71] after sorting and cleaning. This means that there are promising possibilities
to recycle a portion of macroplastics collected from the environment, although the amount
and quality of products is expected to be lower than from the recycling of collected PCPW.

For the removal of microplastics, the most mature technologies are based on the use
of filters and have been applied in wastewater treatment plants (WWTP) [72,73]. A study
conducted in Italy found that around 495 ± 61 microplastics per liter could be detected at the
inlet of WWTPs, mainly between 100 and 499 µm in size. HDPE-LDPE (55%) represented
the most common polymers, followed by PP (37%) and other less frequent polymers,
such as PS (3%), PAs (2%), PET (1%), polyacrylonitrile (1%), and silicones (1%) [74]. The
retention efficiency at WWTP outlets after filtration was higher than 94%. Disinfection (UV
or chlorination) further reduced microplastic concentrations by up to 5.8 ± 2.7 microplastics
per liter prior to discharge into water bodies [75]. Current European legislation does not
indicate limits for microplastic contents. Little information is available on the effects of
discharged microplastics on human health.

Apart from this common treatment process for water bodies, knowledge on microplas-
tic remediation by means of physical, chemical, and biological (microbes) approaches was
recently reviewed [76–78]. Research is mainly focused on testing the use of chemicals for
microplastic depolymerization, the creation of composting sites under controlled condi-
tions, and on the analysis of microbial diversity and chemical composition changes in
natural sediments contaminated by microplastics. Major concerns associated with the
application of in situ remediation strategies are related to the mixed and heterogeneous
composition of microplastics, the use of chemicals and radiation in natural ecosystems, and
the largely incomplete (<15%) and relatively slow biodegradation reported in composting
sites [79–81]. Collectively, the proposed methods for microplastic remediation are still far
from any large-scale application.
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3. Biotechnological Systems Applied to Plastic Depolymerization to Target Recycling

Biotechnology tools have been employed for more than 20 years to depolymerize
complex biomass waste into organic building blocks that, in turn, can be converted into
useful intermediate feedstocks. These processes are typical applications of the circular
(bio)economy concept. One of the most interesting examples is the conversion of lignocel-
lulosic materials contained in plant waste from farming activities into bioethanol [82,83].
More recently, biotechnology strategies based on the use of microbial enzymes have been
applied also to the degradation of petroleum-based plastics with the aim of providing
greener alternatives to the traditional methods of recycling (Table 1).

Various enzymes are used by bacterial or fungal organisms to fragment polymers into
units of about 10–50 carbon atoms, which are used as carbon sources [84]. The catalytic
capacity of highly purified stocks of enzymes (produced at an industrial level) can be
exploited in biochemical processes performed under mild conditions (e.g., water solution
in the 20–80 ◦C range) because they are biocatalysts evolved to act under conditions
compatible with life. This allows for lowering of the economic and environmental costs of
traditional processes, which usually require high temperatures and pressures [27]. The wide
diversity in the metabolism of living organisms allowed for the discovery of biocatalysts
suitable for many chemical reactions, including those responsible for plastic degradation,
although consortia of whole organisms may also be required in some cases [85]. The
enzymatic or microbial recycling of plastic materials is divided into three main steps:
(i) the production of the biocatalysts, (ii) the depolymerization reaction of the polymer
into monomers, and (iii) the purification and reuse of the monomers for resynthesis of
the original material (closed-loop processes) or their bioconversion into different products
(open-loop processes) [36].

A plethora of options is available for open-loop routes leveraging biotechnologies, as
enzymes can catalyze multistep reactions to transform monomers into completely different
molecules, which possibly have a value (per mass unit) superior to that of the original
polymeric material [86]. The processes for open-loop plastic recycling can be performed in
different bioreactors (employing purified enzymatic cocktails or whole organisms) or in a
one-pot system [36]. The main classes of enzymes involved in plastic degradation and their
products are reported in Figure 5. Table 4 reports the best-performing bio-based plastic
depolymerization systems, which are predominantly implemented at laboratory scale.

Table 4. List of the most performant biological systems for traditional petroleum-based plastic
degradation known to date. They are ordered by plastic polymer type and listed by decreasing
degradation rate.

Plastic Polymer Material Source Reaction Condition Degradation Rate Reference

PET

Ultrathin PET film (2.5
to 7 nm) obtained from
amorphous PET sheets

of 2 mm thickness

IsPETaseTM [87]
and IsMHETaseSM
[88], two variants

of I. sakaiensis
PETase and

METase

PBS buffer, pH 7.4,
50 ◦C ≈70% in 1 h [89]

PET

Amorphized and
micronized PET

(≈200–250 µm) from
post-consumer

bottle-grade PET

Cutinase from
leaf–branch

compost
(ICCG variant)

100 mM
potassium

phosphate buffer,
pH 8.0, 72 ◦C

≈90% in 10 h [90]

PET

2 × 1 cm2 amorphous
Goodfellow PET film
and low-crystallinity
(13%) PET powder

PHL7/PES-H1, a
cutinase from a

compost site
(L92F/Q94Y

variant)

1 M potassium
phosphate buffer,

pH 8.0, 72 ◦C,
shaking at 1000 rpm

≈100% in 24 h [91]
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Table 4. Cont.

Plastic Polymer Material Source Reaction Condition Degradation Rate Reference

PET
3 × 0.5 cm2 flakes of an

amorphous PET
clamshell container

PHL7/PES-H1, a
cutinase from a

compost site

1 M potassium
phosphate buffer,

pH 8.0, 70 ◦C,
shaking at 1000 rpm

>95% in 24 h [92]

PET

Low-crystallinity (1.2 to
6.2%) discs (6 mm) from

51 different
post-consumer PET

products

FAST-PETase, a
variant of I.

sakaiensis
PETase

100 mM
potassium

phosphate buffer,
pH 8.0, 50 ◦C,

shaking at 180 rpm

≈100% in 1 to 7
days [93]

PET

PET/PE composite
packaging tray lid (4 mg,
thickness of 325 µm PET

and 40 µm PE)

HotPETase, a
directed-evolved

variant of I.
sakaiensis
PETase

pH 9.2, 50 mM
gly-OH buffer with

4% BugBuster
≈20% in 24 h [94]

PET ≈37% crystallinity PET
microplastics (≈300 µm)

TS-∆IsPET, a
variant of PETase

from Ideonella
sakaiensis

100 mM potassium
phosphate buffer, pH

8.0, 40 ◦C, shaking
≈26% in 2 days [95]

Polyester-type
PUR

Lab-prepared 10 µm thin
PUR and segmented

PUR urea films based on
lysine diisocyanate

Papain, Bromelain,
Ficin,

Chymotrypsin,
Proteinase K

PBS, pH 7.0, 37 ◦C Up to ≈50% in 7
days [96]

Polyester-type
PUR Impranil-DLN® Pseudomonas putida

A12
pH 8.0,
25 ◦C 92% in 4 days [97]

Polyester-type
PUR Impranil-DLN® Pestalotiopsis

Microspora E2712A
25 ◦C in a rotary

incubator 99% in 2 weeks [98]

Polyether-type
PUR PUR foam Tenebrio molitor

Guts of the larvae
(probably

microbiota-assisted)
67% after 30 days [99]

Polyester-type
PUR

Lab-prepared 0.3 mm
thin polycaprolactone

thermoplastic PUR film
(Capa 2302)

Amidase E4143
and esterase E3576 PBS, pH 7.0, 37 ◦C 33% in 51 days [100]

Polyester-type
PUR Impranil-DLN®

Cladosporium
pseudocladospo-

rioides,
Cladosporium
tenuissimum,
Cladosporium
asperulatum,

Cladosporium
montecillanum,

Aspergillus
fumigatus,
Penicillium

chrysogenum

25 ◦C, no shaking 40–87% in
2 weeks [101]

Polyester-type
PUR

Commercial 1 mm thin
PUR film

Aspergillus flavus
ITCC 6051

28 ◦C under 120 rpm
shaking 60.6% in 30 days [102]
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Table 4. Cont.

Plastic Polymer Material Source Reaction Condition Degradation Rate Reference

Polyester-type
PUR

Lab-prepared ~0.2 mm
thin PUR

Bacillus subtilis
MZA-75 and
Pseudomonas

aeruginosa MZA-85

37 ◦C under 150 rpm
shaking 40% in 30 days [103]

Polyether-type
PUR

PUR foam used for
commercial production
of mattress cushioning

Cladosporium
pseudocladospo-

rioides,
Cladosporium
tenuissimum,
Cladosporium
asperulatum,

Cladosporium
montecillanum,

Aspergillus
fumigatus,
Penicillium

chrysogenum

25–30 ◦C, no shaking 10–65% in
21 days [101]

Polyether-type
PUR

Cubical ether–PUR (1
cm3)

Alternaria sp.
PURDK2 30 ◦C, no shaking 27.5% in 70 days [104]

LDPE LDPE bag Galleria mellonella - 13% in 14 h [105–107]

LDPE LDPE film Pseudomonas
citronellolis

37 ◦C under 15 rpm
shaking 17.8% in 4 days [108]

LDPE LDPE powder Cupriavidus necator
H16

30 ◦C in a rotary
incubator 33.7% in 21 days [109]

LDPE LDPE foam Tenebrio molitor
Gut of the larvae

(probably
microbiota-assisted)

49.0% in 32 days [110]

LDPE 20 µm thin PE film Oscillatoria
subbrevis - 30% in 42 days [111]

PS PS pyrolysate oil Pseudomonas
putida CA-3

Four consecutive
treatments at 30 ◦C

for 48 h
10% in 8 days [112]

PS Brominated high-impact
PS Bacillus sp. 30 ◦C, no shaking 23.7% in 30 days [113]

PS Brominated high-impact
PS

Exiguobacterium
sp. strain YT2

30 ◦C under 150 rpm
shaking 12.4% in 30 days [114]

PP Max 250 µm
microplastic PP Bacillus cereus 33 ◦C under 150 rpm

shaking 12% in 40 days [115]

PP Isotactic PP strips
Pseudomonas sp.,

Vibrio sp.,
Aspergillus niger

pH 7.0, 30 ◦C 60% in 175 days [116]
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petroleum-based plastics in order of their biodegradability to summarize what was reported in the 
Figure 5. The main classes of enzymes involved in the degradation of different types of traditional
petroleum-based plastics in order of their biodegradability to summarize what was reported in the
text. Degradation products are exemplified. PURs—polyurethanes, AA—adipic acid, BDO—1,4-
butanediol, TDA—toluene diamine, PE—polyethylene, PP—polypropylene, PAs—polyamides, PVC—
polyvinylchloride, PS—polystyrene, PET—polyethylene terephthalate, EF—ethylene glycol, TPA—
terephthalic acid, MHET—2-hydroxyethyl terephthalate, BHET—bis(2-hydroxyethyl) terephthalate.

3.1. Enzymatic PET Recycling: Potential Industrial-Scale Application
3.1.1. Enzymatic Degradation of PET

PET is a semicrystalline material made up of polymeric chains of alternating tereph-
thalic acid (TPA) and ethylene glycol (EG) joined by ester bonds. In crystalline regions,
the polymer chains are tightly packed in parallel, while in amorphous regions, the chains
assume a disordered conformation. The degree of crystallinity depends on the production
process and affects the chemophysical properties of the polymer which, in turn, are related
to the final product performance. For instance, PET used in the production of bottles and
textile fibers has a high crystallinity (between 30–40%), while PET is mainly amorphous in
food packaging (crystallinity < 10%).

Research on biotechnological degradation of PET started in 2005 [117]. Since then, sev-
eral microbial PET-hydrolyzing enzymes (PHEs) have been discovered for their ability to
break down PET into mono-(2-hydroxyethyl)-terephthalate (MHET), bis-(2-hydroxyethyl)-
terephthalate (BHET), TPA, and EG by hydrolyzing the ester bond [118] (Figure 5). Exam-
ples of the most active enzymes are reported in Table 4. These enzymes descend from the
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same ancestral carboxyl ester hydrolase of the GxSxG family [119]. They share the same
catalytic mechanism and span different enzymatic classes specialized on different natural
substrates: cutinase (EC 3.1.1.74), lipase (EC 3.1.1.3), and PETase (or PET hydrolase) (EC
3.1.1.101) [120–122]. Remarkably, the PETase class was created in 2016 after the discovery
of a PHE from Ideonella sakaiensis (IsPETase), a bacterium isolated near a WWTP, with
optimal PET degradation activity at 40 ◦C [123]. IsPETase and other I. sakaiensis enzymes
were identified and shown to allow for the depolymerization and metabolic assimilation
of PET degradation products as a carbon source [124]. The relevance of such a PET waste
assimilation process in natural environments was questioned because the depolymerization
of highly crystalline PET (such as that used to produce bottles) under natural conditions for
the growth of the microorganism (30 to 40 ◦C) is highly inefficient [125,126]. Indeed, highly
crystalline PET regions and low temperatures (<40 ◦C) greatly reduce the accessibility of
PET chains to PHEs. Accordingly, the accessibility is maximal between 70 and 74 ◦C, near
the glass transition temperature of bulk PET [127,128].

Consequently, known PHEs seem unsuitable for efficient degradation of untreated
highly crystalline PET at room temperature [128,129]. This prompted a search for ther-
mostable PHEs produced by protein engineering [87,90,91,93,130,131] or enzyme discov-
ery [92,132–134]. Among such attempts, the company Carbios, in a public–private part-
nership with the Toulouse Biotechnology Institute and other global partners, was the first
to produce a thermostabilized engineered variant of the leaf–branch compost cutinase
(LC-cutinase) suitable for an industrial-scale recycling process of PET in 2020 [135]. Carbios
built a demonstration plant in September 2021 with a business plan to extend the system
to other companies under a paid license agreement by 2023 and revenues expected by
2025 [136].

The Carbios technology and other promising enzymatic PET recycling processes
(Table 4) act on low-crystallinity submillimeter PET films [91–93,137] or amorphized/
micronized post-consumer PET materials (C-ZYME®, based on the enzyme variants re-
ported by Tournier et al. [90] and various patents (i.e., WO2017198786A1, EP 3517608A1,
and WO2020021118A1)). In practice, post-consumer PET degradation processes were oper-
ated after sorting, washing, grinding, and amorphization. These pretreatment steps were
already established for non-enzymatic recycling processes [138]. The step involving the
use of enzymes was designed to be performed in <1 day in a buffered water suspension
(pH between 7 and 9) inside a bioreactor containing a preprocessed polymer and close
to the PET glass transition temperature. However, enzymatic incubation above 70 ◦C
does not permit complete degradation of the amorphized PET due to an ageing process
that results into polymer recrystallization after <10 h [139,140]. Recent studies [140–142]
revealed relatively high degradation rates, even when performing the reaction at lower
temperatures (50 to 60 ◦C), despite requiring more time (≥1 day). These milder conditions
were also tested on untreated and non-micronized low-crystallinity post-consumer PET
materials [92,93]. Moreover, Tarazona et al. recently demonstrated that a reduced PET
thickness and an increased accessible surface area reduce the glass transition temperature
by up to ≈40 ◦C (for nanometric film) [89]; while this can speed up PET degradation at
lower temperatures and inhibit recrystallization, it does not block degradation-induced
thermal inactivation, which consists of the accumulation of inactivated protein aggregates
on the PET surface, causing the inhibition of further polymer degradation (a process called
passivation).

Overall, promising industrial-scale PET degradation technologies require a buffered
water suspension at ≥50 ◦C and PHEs engineered to be stable, efficient, and with low
product inhibition (eventually by combining multiple enzymes) allowing for complete
depolymerization as fast as possible in order to prevent PET recrystallization and pas-
sivation [89]. A recent work showed significant condition-dependent differences in the
depolymerization process (buffer, pH, enzyme, and substrate loading) catalyzed by similar
engineered PHE variants [141]. In addition, the enzymatic capacity to adsorb and turn-over
during PET chain hydrolysis were recently observed to follow a tradeoff [143]. For these
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reasons, the biochemical kinetics and the mechanism of enzymatic PET degradation should
be studied in detail to select the best enzymes and reaction conditions under which both
the PHE activity is optimal and the PET polymer is most degradable, prior to scaling up
the process [144]. Moreover, it is critical to set up a standard assay condition to compare
different PHEs (different conditions are used for the enzymes reported in Table 4). As
an example, a recently thermostabilized IsPETase (HotPETase) was shown to have initial
degradation rates at 60 ◦C, much higher than the ICCG LC-cutinase used by Carbios on
low- and high-crystalline materials (including a composite PET-PE film); however, it mainly
produced MHET (TPA is the main product of ICCG LC-cutinase) and was inactivated after
few hours on highly crystalline substrates, before the degradation was completed [94].
Furthermore, L92F/Q94Y PHL7 cutinase was more efficient than ICCG LC-cutinase on
low-crystalline materials, while it was less active on highly crystalline PET powder [91].
Finally, different relative degradation rates on PET of different sizes and crystallinity were
also measured when comparing many recently discovered PHEs [145], motivating the pos-
sible need for a cocktail of multiple PHEs for the degradation of PET materials of different
crystallinity and subjected to different pretreatments.

3.1.2. Closed-Loop PET Recycling by Enzymatic Depolymerization

Carbios company demonstrated the feasibility of a closed-loop recycling process
by showing that it is possible to use the monomers (TPA and EG) produced from PET
depolymerization of post-consumer PET flakes to produce a PET bottle possessing the same
properties as a bottle produced from virgin PET [90]. This process may also be fostered by
monomers recovered from PET contained in textile polyester waste; an enzymatic cocktail
of PHEs and other enzymes could be added to chemical treatments (in concert or in a
sequential manner) to allow for separation and to reach a superior depolymerization yield
of polymers without causing the high material losses associated with traditional methods.
This is because the PET contained in fibers of commercialized textile products is often
blended with other natural (i.e., cellulose and cotton) or synthetic (polyesters, nylons,
elastane, etc.) polymers [66,146].

A recent work used Carbios data to conduct a technoeconomic analysis (TEA) of
a closed-loop PET recycling process from bottle-derived post-consumer flakes [138]; a
minimum production cost (MPC) for TPA of USD 1.93 kg−1 was estimated, most of which
(>50%) was due to the price of petroleum-based PET flakes (feedstock PET) acquired
from MRFs, the plastic pretreatment, and the recovery of the degradation products and
co-products. In contrast, the step involving enzymes accounted only for 20% of the cost.
Nevertheless, the model shows that besides the feedstock PET price, which is an external
factor, the load of PET in the degradation solution and the rate of enzymatic conversion
are the other dominant factors affecting MPC, enabling a reduction in cost of up to USD
1.60 kg−1 [138], which is less than double the average petroleum-based PET price in 2021
(up to USD 0.85 kg−1) [147]. It must be pointed out that this TEA estimated that the envi-
ronmental impact of TPA obtained from the enzymatically based recycling process is nearly
halved with respect to virgin TPA production. A recently published life cycle assessment
(LCA) based on the USA economy confirmed the previous estimation of the production
costs [138] but indicated that current enzymatic PET recycling technology exhibits a 1.2 to
17 times superior environmental impact relative to virgin polymer production [148]. NaOH
usage, PET waste collection/shredding/amorphization, and electricity were estimated
to be the highest-impact contributors. Sensitivity analysis indicated that, through inter-
ventions during all stages of the recycling process, from feedstock preparation to product
recovery, it is possible to achieve an environmental impact similar or even lower than
virgin polymer production. However, a superior enzymatic depolymerization efficiency
without changing any other condition was estimated to contribute only up to 14%. Main
contributions were estimated to be provided by minimization of PET losses during sorting,
elimination of PET flake pretreatments, enzyme immobilization, and reaction buffer reuse.
A major environmental benefit should originate from the reduction in NaOH consumption
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by using completely different buffers and PET loadings to facilitate TPA precipitation or
by using more environment friendly (e.g., ammonia) or recoverable bases. Overall, this
study suggested that further process optimization is required to minimize waste during
feedstock preparation and product recovery.

Novel biocatalysts should allow for effective PET depolymerization under different
buffer conditions (including organic solvents) of less pretreated PET-containing materials
rather than showing a superior degradation rate under a broad range of pH and tempera-
ture conditions. Moreover, this process should be evaluated on different sources of PET
waste, including those from commonly mixed products (i.e., textiles) for which traditional
technologies are less effective and for which both the high crystallinity and the material
substructure are expected to pose accessibility challenges to degradative enzymes [66].
The goal is the setup of a closed-loop enzyme-based process with a halved environmental
impact compared to virgin polymers, compensating for the superior costs of PET produced
from the enzymatic recycling process with an increased environmental gain.

3.1.3. Open-Loop PET Bio-Recycling

The use of biotechnological tools into open-loop processes could represent an opportu-
nity to overcome the overpricing problem of closed-loop enzymatic PET recycling; enzymes
and/or microorganisms can be used to assimilate and metabolically convert PET building
blocks (TPA and EG) into chemically different intermediate bulk compounds or polymers
with high added value [58]. This could also ensure the economic sustainability of treating
low-quality plastics collected from contaminated environments. Several processes have
been tested at the laboratory scale (Table 5).

Kim et al. [149] presented a two-organism system for the biological conversion of
chemically depolymerized PET; TPA was converted into protocatechuic acid (PCA) and
other PCA-derived compounds (i.e., gallic acid, pyrogallol, catechol, muconic acid, and
vanillic acid) by an engineered E. coli strain, while G. oxydans KCCM 40109 was used to
produce glycolic acid from EG. These compounds are important bulk chemicals to produce
inks, bioplastics, flavorings, and fragrances. The same authors also demonstrated the
possibility of using TPA produced by the enzymatic depolymerization of PET to produce
catechol for the production of multifunctional coating materials [150]. Kang et al. [151]
proposed the use of an engineered E. coli strain to convert TPA monomers from post-
consumer PET into 2-pyrone-4,6-dicarboxylic acid, a valuable monomer for the synthesis of
next-generation biodegradable plastics. A Pseudomonas putida KT2440 strain was engineered
to use BHET (a different PET biodegradation product) to produce β-ketoadipic acid, a
building block used to produce performance-advantaged nylons [152]. A one-pot system
was proposed by Tiso et al. for the sequential enzymatic depolymerization of PET into EG
and TPA [153], followed by Pseudomonas umsongensis GO16 conversion into intracellular
polyhydroxyalkanoates (PHAs) and extracellular hydroxyalkanoyloxy alkanoate, which
is used in a chemical copolymerization reaction to produce a novel bio-based poly(amide
urethane) PUR. A similar system based on the use of an E. coli strain was proposed by
Sadler et al. to produce vanillin flavor [154]. Liu et al. [155] proposed the first one-pot
microbial recycling system from PET using two co-cultivated engineered organisms: a
Yarrowia lipolytica Po1f strain expressing a PHE to depolymerize PET at low temperature
and a Pseudomonas stutzeri strain to convert TPA into the bioplastic polyhydroxybutyrate.
The same group showed that muconic acid can be produced with a single engineered
Pseudomonas putida strain [156].

These examples of open-loop PET recycling employing enzymes and microorganisms
represent proof-of-principle experiments demonstrating the potential of microbial enzyme-
driven upcycling processes.
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Table 5. List of recent open-loop microbial conversion attempts starting from PET and polyester-
PUR degradation products. The different approaches are distinguished with respect to the
processing strategies proposed in [36]. Abbreviations: EG—ethylene glycol, AA—adipic acid,
BDO—1,4-butanediol, TPA—terephthalic acid, BHET—bis(2-hydroxyethyl) terephthalate, PHAs—
polyhydroxyalkanoates, HAA—hydroxyalkanoyloxy alkanoate, PHBS—polyhydroxybutyrate.

Approach Enzymes or Microbial
Strain(s) Plastic Monomer Conversion Products

(Yields %) Reference

Separate
depolymerization and

conversion

Pseudomonas putida strains
JM37 and KT2440 EG Glyoxylic acid

(≈20%) [157]

Three derived Pseudomonas
putida KT2440 strains AA, BDO, EG Monorhamnolipids

(<1%) [158]

Escherichia coli strain TPA, EG

Gallic acid (≈93%),
pyrogallol (≈40%),

muconic acid (≈85%),
vanillic acid (≈40%),

glycolic acid (≈98.6%)

[149]

Escherichia coli strain TPA 2-pyrone-4,6-dicarboxylic
acid (96.08%) [151]

Pseudomonas putida KT2440
strain BHET β-ketoadipic acid

(≈76%) [152]

Escherichia coli strain TPA Catechol (≈67%) [150]

Combined
depolymerization and

conversion

LCC 1, Pseudomonas
umsongensis GO16 strain

TPA, EG PHAs and HAA
(<2%) [153]

LCC 2, Escherichia coli MG1655
RARE strain

TPA, EG Vanillin (≈79%) [154]

Consolidated
bioprocessing

Yarrowia lipolytica Po1f
expressing PETase 3,

Pseudomonas stutzeri TPA3
TPA, EG PHB (≈2.5%) [155]

Pseudomonas putida
KT2440-tacRDL expressing

LCC 4
TPA, EG Muconic acid (≈50%) [156]

1 Wild-type enzyme from [135]. 2 WCCG variant from [90]. 3 Variant from [159]. 4 ICCG variant from [90].

3.2. PUR Biodegradation Is Restricted to Polyester-Based Polymers
3.2.1. Enzymatic Degradation of PURs

PURs represent the largest fraction of plastic waste that is unrecyclable using tradi-
tional technologies. PUR polymers are formed by many different subtypes of two building
blocks belonging to polyol (e.g., 1,4-butanediol, BDO) and isocyanate (e.g., toluene diamine,
TDA) classes linked by urethane bonds (Figure 5). Moreover, isocyanates usually contain
aromatic rings that increase the rigidity of the polymer and are covalently crosslinked
to polyols of other chains by the formation of ester bonds in polyester-type PURs or by
the formation of ether bonds in polyether-type PURs [160]. PURs are among the most
diversified polymers, with different compositions in bonds, building blocks, and crosslink-
ing distributions. This permits the generation of PUR materials with tailored physical
properties [161]; however, the consequence is that a material-specific toolbox of enzymes
with different activities is required for their degradation [162].

The enzymes identified to date to cause some degradation or weight loss of PURs
are mainly promiscuous esterase (EC 3.1), urease (EC 3.5.1.5), protease (EC 3.4.21), and
amidase (EC 3.5.1.4) enzymes [161]. Some esterases were shown to potentially degrade
liquid dispersion (Impranil-DLN®) or bulk polyester-type PURs, but there is no evidence
of their capacity to cleave urethane bonds [161]. Proteases and amidases have been shown
to hydrolyze both urethane and ester bonds, but very low degradation rates were reported
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on commercial elastomer polyether-type PUR films or polyester-type PUR pellets [163].
A combined system involving an esterase and an amidase showed improved synergistic
degradation (33%) after 51 days on a model PCL-based thermoplastic PUR [100]. A laccase-
mediated (EC 1.10.3.2) system previously reported to degrade PE caused a reduction of a
few percentage points in weight of lab synthesized polyether-type PURs in 18 days [164].
Urethanases (EC 3.5.1.75), which are enzymes capable of specifically hydrolyzing the
urethane bond between polyols and isocyanate units, were recently discovered [165]; al-
though their use for full depolymerization of PURs within a few days is very promising,
these enzymes were used and demonstrated to be effective only on the urethane bonds in
low-molecular-weight dicarbamate aromatic diamines obtained after the chemical depoly-
merization (by glycolysis) of non-urethane bonds in a polyether PUR foam. Therefore, this
process is bio-based only in the last step.

Overall, even if enzymes capable of degrading the urethane and ester bonds in PURs
have been discovered, processes that make exclusive use of enzymes have relatively high
degradation rates only on synthetic or oligomeric PURs designed to be more biodegrad-
able [166,167]. Therefore, the best options for PUR biodegradation are the use of environ-
mental microbial strains or consortia, the design of more degradable novel PUR materials,
or synergy with chemical methods of depolymerization [168].

3.2.2. Microbial Degradation of PURs

Some promising microbial degradation systems acting on polyester-type PURs have
been tested at lab scale in the last 10 years. Impranil-DLN® was used as the sole carbon
source by Pseudomonas putida A12, achieving 92% degradation within four days under mild
conditions [97]. Bacillus subtilis MZA-75 and Pseudomonas aeruginosa MZA-85 were able
to co-act on a polyester-type PUR film, resulting in 40% weight loss after 30 days [103].
Examples of polyester-type PUR biodegradation were also reported for fungal strains, both
on Impranil-DLN® [98], a liquid varnish [101], and a commercial film [102]. Oligomeric
fragments are usually reported as degradation products, which means that complete
hydrolysis to single building blocks was not achieved. Moreover, microorganisms usually
require other carbon sources to grow on PURs and may be susceptible to the accumulation of
metabolically toxic plastic degradation products or additives, as observed for a Pseudomonas
strain that released diamines from degraded PURs [158].

Polyether-type PURs show higher recalcitrance to microbial biodegradation, in partic-
ular when rigid aromatic polyisocyanate units are present, since they are less accessible and
not susceptible to degradation by esterase activity [160]. Until now, only three studies have
reported a significant biodegradation of polyether-type PUR materials: Tenebrio molitor
larvae were shown to ingest polyether PUR foams efficiently, resulting in a significant mass
loss of nearly 67% after 35 days. However, polyether PUR fragments were found in the
frass of the larvae, indicating partial degradation [99]. Alternaria sp. strain PURDK2 caused
27.5% degradation of polyether-type PUR cubes after 10 weeks [104], and some Cladospo-
rium fungal strains were reported to cause about 65% weight loss of a polyether-type PUR
foam in 21 days [101].

Considering the reported degradation rates, the use of simple ad hoc synthesized or
non-waste PUR products, and the lack of knowledge on the complex enzymatic machinery
produced by microbial consortia [100], it is not currently possible to depict a practical
industrial-scale biodegradation process, even for less recalcitrant polyester-type PUR
waste. Moreover, solid polyester-type PURs and polyether-type PURs were only partially
biodegraded (up to 50% at most), requiring a few weeks or even a few months. Therefore,
for more recalcitrant PURs, a manly bio-based depolymerization process is still unfeasible.

In the next few years, it will be crucial to isolate the microbial enzymatic machinery
involved in the degradation of less recalcitrant polyester PURs by using model PUR
substrates and developing new specific assays (as presented by Liu et al. [169]). This will
allow for mimicking of the whole-organism biodegradation action using an enzymatic
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cocktail or a stepwise addition of enzymes. Future investigations should also be focused
on specific commercial PUR materials [161].

3.2.3. Closed-Loop and Open-Loop PUR Bio-Recycling

The complex structure of PURs leads to a variety of degradation products, including
organic acids, organic alcohols (e.g., EG), and diamines (Figure 5). Carboxylic acids and
alcohols can be used for the synthesis of virgin PURs and other poly(ester–ether–urethane)
materials [168]. Amines such as toluene diamine (TDA) can be recovered and used to
directly synthesize polyamides or toluene isocyanate (TDI) to subsequently make virgin
PURs (bio-based closed-loop recycling). Although the full depolymerization of a polyether-
PUR foam was demonstrated with a chemoenzymatic approach [165], its application on
a real waste PUR material and the use of the degradation products (polyether-polyols,
diethylene glycol, and aromatic diamines) for the resynthesis of a waste-like PUR material
was never attempted.

Some PUR degradation products have also been tested as microbial carbon sources
(Table 5). EG can be used as a substrate to produce PHAs, which can be used to manufacture
biodegradable medical devices, as well as glyoxylic acid, which is usually used for buffering
solutions and other products to treat human skin and hair [157]. Recently, polyols (adipic
acid (AA), 1,4-butanediol (BDO), and EG) were used as a carbon source for a mixed culture
of three recombinant Pseudomonas putida KT2440 bacterial strains [158]. These bacteria
can produce rhamnolipids, which are specialty biosurfactants applied in many industrial
sectors. Coupling this process with an efficient extraction of toxic aromatic diamines
contained in PURs (i.e., TDA), as proposed by Chen et al. [170], can be used to realize a
green route for the open-loop bio-recycling of PUR degradation products.

3.3. Prospective for the Biological Degradation of Other Petroleum-Based Plastics

The biodegradation of other recalcitrant petroleum-based plastics (PAs and plastics
with only C–C covalent bonds between their building blocks, i.e., PE, PS, PP, and PVC) is
challenging; no degradative enzyme acting on the hydrolytic cleavage of the C-C bond is
known. Moreover, some of these plastics (PE, PP) are completely crystalline, preventing
enzymes from accessing the potential attack sites. Therefore, a multistep reaction catalyzed
by a combination of abiotic pretreatments and different types of oxidative enzymes has
been proposed [171].

There are many different types of PAs (polymers made of repeating units of aliphatic,
semi-aromatic, or aromatic molecules linked via amide bonds), the most popular being
nylon and Kevlar [172]. Since natural silk is also a PA from a chemical point of view, it was
expected that enzymes able to degrade synthetic PAs do exist in nature. Unfortunately, to
date, no known microorganism able to effectively degrade polymeric PAs has been identi-
fied, while it was demonstrated that several bacteria can act on short oligomers of linear or
cyclic nylon and are possibly useful for recycling the byproducts of PA production [85,173].
A more recent study by Biundo et al. [174] demonstrated that it is also possible to engineer
PHEs to abolish PET degrading activity and simultaneously increase the catalytic efficiency
towards soluble PA oligomers. A manganese-dependent peroxidase from white rot fungus
IZU-154 is the only enzyme reported to act on high-molecular-weight nylon fibers [175].

It was proposed that PE biodegradation only happens after abiotic (ultraviolet expo-
sure) or enzymatic oxidation by different classes of oxidoreductase (alkane hydroxylase
EC 1.14.15.3, laccase or multi-copper oxidase EC 1.10.3.2, peroxygenases EC 1.11.2, or
Mn-peroxidase EC 1.11.1.13). This results in the introduction of aldehydic, ketonic, or
alcoholic groups, which allows for subsequent processing by other enzymes. The latter
can produce intermediate acid oligomers that are intracellularly taken-up by microorgan-
isms and further metabolized [176,177]. Several microbial strains capable of degrading PE
with this proposed system have been reported, including the gut microbiota of inverte-
brates [106,171]; animal phenol oxidase (EC 1.14.15.3) enzymes contained in the saliva of
wax worm (Galleria mellonella) larvae were also demonstrated to be involved in the oxidative
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degradation of PE [107]. No system studied to date can achieve complete biodegradation
without abiotic intervention. Photo-oxidative and thermal pretreatments, although ex-
pensive and technically demanding, were shown to oxidize and release oligomers from
PE, improving their biodegradation rates [178]. In some cases, PE degradation of up to
30% was reported in one month [109,111], with even nearly complete bio-assimilation over
>8 months [179]. In the absence of such pretreatments, the highest biodegradation rates,
determined as polymer weight loss, were observed for LDPE films or bags (up to 10%
within a few days to one month) [105,108,171]. These degradation rates were reported only
for LDPE materials, while HDPE is less accessible to microorganism attack and much more
recalcitrant [180].

Although PS is amorphous, its C–C backbone is more resistant to enzymatic cleav-
age than PE [36]. No enzyme has been identified with the ability to efficiently degrade
high-molecular-weight PS polymers, despite some studies linking PS degradation to the
same laccase and oxidoreductase enzymes associated with PE degradation [181]. Some
organisms [113,114], including invertebrates assisted by their gut microbiome [182], were
reported to cause significant weight loss in pretreated PS material, with rates of around
10% over one month. Another study reported that Pseudomonas putida CA-3 cultures can
reach this degradation level in 8 days and produce PHAs. In this case PS was thermally
pretreated at an elevated temperature (pyrolysis) to convert it to a styrene oil; this two-step
process is very energetically demanding [112].

PP polymers can be present in three stereoisomeric forms, namely atactic, isotactic,
and syndiotactic [183]. All PP forms are more resistant than PE to heat and to chemical
attack, including the action of enzymes [178]. Some studies of PP biodegradation reported
weight loss rates of about 10% per month. In all cases, these processes required a strong
pretreatment with either γ- or UV-irradiation or heat or the use of polymer blends mixing
PP and carbohydrates [115,116,184].

Finally, PVC, a synthetic polymer that contains chloride, is a form of waste that poses
a serious pollution problem [185]. Very few studies have reported the biodegradation
of low-molecular-weight PVC oligomers or film [178,186]. The capacity to degrade PVC
was associated with the activity of catalase-peroxidase (EC 1.11.1.21) enzymes in white rot
fungi [187] or from bacteria found in the gut of insects larvae [186]. Nevertheless, the use of
microorganisms to remove PVC waste is still controversial because of the possible release
of organochlorine compounds that may be highly toxic for the organisms themselves and
the environment [178].

The fatty acids released by the oxidative bio-depolymerization of C-C plastics cannot
be used in a closed-loop process of recycling, but they could be used as a carbon source for
microbial growth to produce high-added-value products. While an open-loop fully bio-
based process has not been established, in a recent proof-of-principle study, an open-loop
recycling process was designed to produce β-ketoadipate or PHAs using microbial strains
growing on organic acids obtained from chemically oxidative depolymerization of mixed
resins or post-consumer waste (made with PS, HDPE, and PET) [188]; although promising,
an LCA analysis is required to assess the industrial-scale feasibility of the proposed systems.
A recent LCA evaluation focused on the use of fatty acids from chemically depolymerized
and oxidized PE as a carbon source for growing a Pseudomonas putida KT2440 strain to
target PHA production: the proposed approaches were more expensive or had a greater
impact on the environment than waste-to-energy approaches [189].

4. Perspectives
4.1. Plastic Recycling Challenges in the EU: Current Limits of the Biotechnological Approaches

European targets for plastic waste recycling rates are set by Directive 94/62/EC to
50% and 55% by 2025 and 2030, respectively. These targets are stricter for PPW, requir-
ing that 65% and 70% of PPW be recycled by 2025 and 2030, respectively [190]. These
targets can be achieved by summing the already recycled PCPW (≈20%) with the fraction
(18,514 kt y−1, ≈50% PCPW) that we estimated to be potentially included in future recy-
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cling flows (Figure 6a). The polymer composition of this unrecycled waste plastic flow is
reported in Figure 6b.
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The main contribution (57%) of this fraction is thermoset plastics (29.4% PURs and
27.9% other thermosets) (Figure 6a). Therefore, the most urgent interventions should focus
on finding alternative recycling options to allow for the production of virgin thermoset
materials from waste.

Thermoplastic rejects from MRFs or RECs account for 25% of this unrecycled PCPW
flow (Figure 6a). Exported plastic waste (10%) was included, as the European Commission
has stated that all PPW should be recycled in the EU market by 2030 after the Chinese gov-
ernment’s ban (April 2017) on imported recyclable solid waste [191]. An improvement in
the amount of recycled plastic should be derived from improved sorting and preprocessing
to reach higher purity of PCPW fractions at RECs; this is achievable by coupling traditional
sorting technologies (i.e., manual sorting and NIR sensors) with machine-learning-based
recognition of plastic waste from images [192,193]. This is expected to only increase the
recycling rate in RECs, while thermoplastics rejects generated by mixed and small-particle
plastics would remain an issue. This suggests that a fundamental change in the plastic
value chain is required for marketable plastic materials to account for end-of-life circularity
options in waste treatment processes, especially during the sorting step.

Although environmentally dispersed plastics are reported to be the smallest flow of
unrecycled PCPW (18%, Figure 6a), they also represent the most complicated fraction to
be recaptured (microplastics) and valorized (the quality of macroplastics recovered from
the environment is poor). This flow should be lowered as much as possible by improving
plastic collection rates through a focus on public behavior and municipal policies aimed at
decreasing environmental leakages and progressively increasing the amount of collected
plastics to target recycling.

The remining PCPW mixed with non-plastic materials and disposed of as non-plastic
unrecyclable waste (targeted to landfilling, incineration, or recovery) was not considered as
a potentially recyclable flow.

Considering the necessary interventions, microbial enzyme-based biotechnology could
be integrated in the waste management sector and contribute to the introduction of new
depolymerization methods for thermosets and rejected thermoplastics, allowing for resyn-
thesis of virgin polymers or the open-loop upcycling of degradation products. Therefore, it
is necessary to make biotechnological solutions available that are suitable to treat plastic
waste of different quality, including materials made of (or blended with) many different
polymers (not necessarily synthetic) that are difficult to separate with traditional methods
prior to recycling; moreover, such systems should retain market competitiveness and an en-
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vironmental impact equal to or lower than that of existing technologies. In this regard, the
actual contribution of biotechnology to plastic degradation is limited, as only the bio-based
depolymerization systems described for amorphous aliphatic polyesters (such as pretreated
PET) and liquid polyester-type PURs have the potential to be exploited at the industrial
scale, although not competitive with traditional approaches at present. Moreover, PET is,
by far, the most consumed polyester; however, PET waste represents only a minor fraction
(≈7%) of unrecycled flows with respect to PURs, thermosets, and other non-polyester
plastics (Figure 6b).

A synergy with promising methods of abiotic secondary and tertiary PUR depolymer-
ization approaches could allow for depolymerization of recalcitrant PUR waste, but no
method has been tested on real PUR waste to date [49,165,168,194,195].

PAs and C-C backbone plastics, such as PE and PS, are currently much less efficiently
biodegraded. Moreover, some of these plastics (i.e., PVC) may release toxic components
after their degradation. Although biodegradation could be enhanced by new methods of
abiotic preprocessing in the presence of organometallic catalysts, these treatments require
a lot of energy and relatively high temperatures (>150 ◦C), thus contributing to higher
costs and environmental impact [36,196]. Moreover, as most biodegradation processes
have only been conducted at laboratory scale [176,178], without biochemical information
on the kinetics of the involved reactions, with scarce data on degradation products, and
often observing that mainly additives were cleaved [197], a fully bio-based depolymeriza-
tion of non-polyester petroleum-based plastics is predicted not to be economically and
environmentally competitive with traditional approaches within a 10-year time frame.
Instead, it is necessary to look at new approaches of tertiary recycling [34,198,199] and to
use them in combination with microbial enzymes to convert degradation products into
high-added-value chemicals [188,200,201].

4.2. Finding New Biotechnologically Degradable Plastic Materials

Biodegradable bio-based plastics made (at least partly) with polymers and monomers
that are biomass-derived are considered a future investment to reach plastic circular-
ity [202]. Since first-generation bio-based plastics can be biodegraded only over long time
periods [203], highly biodegradable polymers have been developed, such as protein-based
biofilms from plant crops seed extracts [204,205] and from milk [206]. Moreover, attempts
have been made to produce biofilms from the proteins of insects reared on organic waste
to overcome the competition with the market of plant- and animal-derived food prod-
ucts [207]. It is important to report that lab-scale experiments are ongoing to synthesize
more biodegradable thermoset materials, starting from mixing agriculturally derived oils
with traditional precursors of polyester-type PURs [166,208–211]. The advantage of these
biodegradable materials is that they can be assimilated as a carbon source by environmental
organisms or at dedicated composting sites without releasing microparticles and without
the need to develop a specific biotechnology in an industrial setup. On the other hand,
there is an obvious tradeoff between biodegradability and durability; highly degradable
bio-based plastics are highly sensitive to water and biotic factors, making them inadequate
for high-end applications and as large-scale commercialized materials [212]. Therefore,
new solutions to increase the lifespan of biodegradable biopolymers must be found.

It is known that several enzymes, including PHEs, can degrade the ester bonds present
in petroleum-based (PET, polyester-type PURs, polybutylene adipate terephthalate (PBAT),
and polycaprolactone) and bio-based (PHAs, polylactic acid (PLA), polyethylene furanoate
(PEF), polybutylene succinate (PBS), or starch–cellulose blends) aliphatic polyester ther-
moplastics [213–217]. Although some of these polymers were found to be biodegradable
(e.g., PLA and PBAT) and have already been used to produce packaging material and
composting bags at industrial scale [218], they have been shown to require months to de-
grade in the natural environment and represent only about 0.4% of total plastic production.
In addition, they are often used in blends with traditional non-biodegradable plastics to
produce composite materials, resulting in the release of microparticles of the recalcitrant
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polymer [34,219]. Therefore, it is crucial to develop new plastic products with particular
attention on aliphatic polyesters (i.e., PEF, PBAT, and PBS) to replace traditional recalcitrant
petroleum-based plastic waste. Regardless of whether these plastics are biodegradable or
bio-based, we argue that the most important aspect is the creation of suitable technologies
to allow for their bio-based degradation and circular production from waste within an
industrial setup, while avoiding environmental leakages.

4.3. Study of New Polyester-Degrading Organisms and Enzymes

Aliphatic polyesters represent valuable plastic polymers that could be, in principle,
depolymerized by microbial enzymes; however, apart from PET, limited studies are avail-
able on the specificity and efficiency of polyester-degrading enzymes and organisms in
nature [217]. Recent studies investigated whether plastics spread in the environment stim-
ulated the evolution of polyester degradation and assimilation of molecular machineries
in microorganisms [220,221]. The collected evidence is not yet conclusive; the observed
alteration of microbial diversity and genetic content could be an adaptation in response
to the effects of the presence of toxic compounds rather than an adaptation to the use of
plastics as a carbon source [222]. As an example, a PHE produced by a bacterium from hu-
man saliva was recently discovered and shown to be much more active than IsPETase [134],
the latter being a PHE isolated from an organism inhabiting highly plastic-polluted areas
near a WWTP [124]. Moreover, Erickson et al. recently showed that PHEs are spread across
many different taxa and that some enzymes have different catalytic residues and/or the
presence of accessory polymer binding domains compared to traditional PHEs [145]. This
suggests that PHE enzymes are likely promiscuous and that their capacity to efficiently
depolymerize anthropogenic PET polymers under certain conditions is a catalytic side
activity [33,223].

As a consequence, biodiversity could represent a valuable source of pluripotent bio-
catalysts with different specificities and efficiencies on different types of polyesters [85,145],
motivating the search for plastic-degrading enzymes in nature. Possible approaches for this
purpose were recently reviewed by Zhu et al. [41]. Traditional methods rely on collecting
plastic samples from polluted areas or MRFs/RECs to isolate pure microbial cultures able
to degrade model polyesters. Once a polyester degrader microorganism is found, DNA
sequencing of these microorganisms allows for identification of the genetic information for
enzymes active on the plastic of interest. The main bottleneck of this approach (function-
based) is the availability of efficient and fast screening methods, as recently developed for
PET [224–226]. Therefore, novel high-throughput screening methods suitable for enzymes
and microorganisms must be developed for other polyesters, including polyester-based
PURs, as shown by Xu et al. [227].

A different approach called sequence-based screening consists of sequencing environ-
mental DNA and probing only sequences predicted to code for the enzyme(s) responsible
for the degradation of the polyester of interest [228]. The advantage of this approach
is that only a tiny fraction of the genetic information is experimentally probed, saving
time and cost. Moreover, it is noteworthy that this approach can also be applied to DNA
sequences already stored in publicly available databases of genomic [229] and metage-
nomic sequences [230]. Sequence-based screening requires accurate in silico tools with
low computational demands to provide a fast, cost-effective, and reliable high-throughput
screening protocol to predict whether an enzyme, among several thousand candidates,
is able to efficiently degrade the target polyester. An in silico protocol was proposed by
Vasina et al. to predict a “small-but-smart” set of efficient biocatalysts for other classes
of enzymes [231]. A factor that massively affects the predictive accuracy of these tools is
the capacity to disentangle the molecular mechanisms that allow for superior polyester
degradation. To achieve this goal, reliable and comparable data on the performance of
known enzymes in precise experimental conditions are mandatory.

Therefore, the compilation of a unified, reliable, and user-friendly up-to-date database
of the sequence, structure, and functional information of plastic/polyester-degrading
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enzymes and their organisms would be particularly useful. At present, three resources
are available: the Plastics Microbial Biodegradation Database [232], PlasticDB [233], and
PAZy [234]. However, information does not seem to be shared and is not uniformly
reported, although PAZy was indicated to include only functionally verified enzymes [235].
Nevertheless, recently developed machine learning techniques, which have increased the
accuracy of protein structure and function predictions from sequences [236,237], may help
in the development of effective sequence-based approaches.

Once good candidate enzymes able to degrade a polyester of interest have been
experimentally verified, their activity can be increased by protein engineering [41], i.e.,
by the introduction of favorable mutations in their sequence. The most used approaches
are directed evolution [94], site-directed/saturation mutagenesis [95,238], and machine-
learning-based techniques [93,239]. Other common alternatives are the combination of
more enzymes in synergy [89], the formation of chimaeras with other proteins that have
a hydrophobic surface with polymer-binding properties [240], and the immobilization
of enzymes to increase reusability and performance stability over time [241]. Multiple
strategies can be achieved simultaneously [242]. Such efforts could increase the enzymatic
cleavage rate under higher plastic loads, which is one of the best strategies to lower the
environmental impact of enzymatic closed-loop PET recycling (see above).

Engineered enzymes and organisms have also been used to design an open-loop
strategy for the conversion of plastic monomers into high-added-value products (Table 5).
These systems are still under active development, and the setup of bioreactors for their
scale-up has been demonstrated only as a proof of principle; it will be fundamental to
understand whether such systems can reach the industrial-scale in the coming years (see
the work presented by Andler et al. [43] for a description of the most recent attempts).

Overall, while PET enzymatic recycling requires further enzyme discovery or engi-
neering studies to improve the degradation efficiency (to overcome the passivation issue)
under high PET load or for less pretreated materials, new enzyme-based technologies are
needed to allow for the biotechnological recycling of less recalcitrant polyester-type PURs
and other less biodegradable polyesters.

5. Conclusions

The information reported in this review underlines that, at present, enzyme-based
biotechnological approaches are limited to supporting PET waste circularity and could be
potentially extended to other polyester plastics in general, including some less recalcitrant
PURs [243]. The enzyme-based processes available for PET degradation are currently less
competitive than traditional technologies; their widespread application at the industrial
scale will require the design of efficient waste pretreatment processes and PHEs with
superior depolymerization rates, especially on high-load and less pretreated plastics. The
possibility of producing non-plastic products through open-loop recycling of PET degrada-
tion products is very promising, although still under development. For non-PET polyesters,
research is still in its infancy and requires more work to understand the best enzymes and
the molecular determinants of superior degradation performance.

The situation is challenging in the case of plastics made with more recalcitrant poly-
mers (polyether-type PURs, PAs, polyolefins, PS, and PVC), which account for >90% of
unrecycled plastic fractions. Although biotechnology-based degradation approaches exist,
they are still inefficient and cannot yet be considered a practical solution. New promising
chemical depolymerization technologies seem to represent the only viable treatment option
to allow for a subsequent bio-based system for open-loop recycling of degradation products.
However, this chemoenzymatic approach must be evaluated in industrial-scale settings.
Moreover, only ideal thermoset materials (polyester- and polyether-based PUR foams)
have been tested, while the recycling of consumed recalcitrant thermosets remains a main
technical issue, and waste-to-energy is still the employed solution, although it is far from
being considered “circular”. While reaching thermoset circularity requires the development
of new recycling technologies, rejects of collection and sorting systems represent the most
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critical step in the recycling of thermoplastics. These systems should be optimized in paral-
lel with the introduction of new technologies, including those that make use of microbial
enzymes (the focus of this work), for degradation and recycling of difficult-to-separate
materials.

In conclusion, the use of enzymatic microbial biotechnologies for plastic degrada-
tion and valorization requires a rethink of the whole plastic value chain, as well as the
development and marketing of alternative plastic materials (made with non-food biomass
derivatives or aliphatic polyesters that have a biodegradability similar or superior to that
of PET), the redesign of plastic packaging and products, the improvement of collection and
sorting methods, and their tight integration with new, eventually chemo-assisted bio-based
systems of degradation and recycling (competitive from an economical point of view and
with a lower environmental impact compared to available technologies). This, in turn, will
require stronger co-operation between biotechnologists and stakeholders involved with
feedstock resources, material production, and waste management to find novel effective
industrial technologies and regulations for a transition to a circular (bio)economy in plastic
waste management.
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