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Abstract: Isocorydine (ICD) is a type of isoquinoline alkaloid originating from Corydalis edulis, which
has been used to relieve spasm, dilate blood vessels, and treat malaria as well as hypoxia in clinic.
However, its effect on inflammation and underlying mechanisms remains unclear. The aim of our
study was to determine the potential effects and mechanisms of ICD on pro-inflammatory interleukin-
6 (IL-6) expression in bone marrow-derived macrophages (BMDMs) and acute lung injury mouse
model. A mouse model of acute lung injury was established by intraperitoneal injection of LPS and
treated with different doses of ICD. The body weight and food intake of mice were monitored to
determine the toxicity of ICD. The tissue samples of lung, spleen and blood were taken to assess
the pathological symptoms of acute lung injury and the expression levels of IL-6. Further, BMDMs
isolated from C57BL/6 mice were cultured in vitro and treated with granulocyte-macrophage colony-
stimulating factor (GM-CSF), LPS and different doses of ICD. CCK-8 assay and flow cytometry were
performed to assess the viability of BMDMs. The expression of IL-6 was detected by RT-PCR and
ELISA. RNA-seq was carried out to detect the differential expression genes of ICD-treated BMDMs.
Western blotting was used to detect the change in MAPK and NF-κB signaling pathways. Our
findings show that ICD ameliorates IL-6 expression and attenuates phosphorylation of p65 and JNK
in BMDMs, and can protect mice from acute lung injury.
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1. Introduction

Inflammation is a complex physiological response of human tissues against stimu-
lation. The main function of inflammatory response is to eliminate pathogens, necrotic
cells, senescent cells, tumor cells, and start tissue repair [1]. Although inflammation is a
protective response to different injuries in the body, its over-activation will lead immune
cells to attack the surrounding tissues indiscriminately, destroy normal cells, and break
immune homeostasis, resulting in serious organ failure or function loss, and even leading to
individual death [2]; a typical example is acute respiratory distress syndrome (ARDS). After
being infected with pathogens in the lungs, immune cells, mainly alveolar macrophages,
attack the alveolar tissue indiscriminately to wipe out pathogens before specific antibodies
are generated [3]; its damage could lead to respiratory distress and even respiratory failure.

At present, treatments for ARDS are still limited. Steroid hormones are the drug of
choice for inflammation, but long-term steroid treatment could have serious side effects,
including low immunity, metabolic disorders, and induced or aggravated infection [4].
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Therefore, it is urgently needed to screen new drugs targeting key players in ARDS devel-
opment to reduce the inflammatory responses with minimal side effects. The alveoli are
infiltrated by a large number of macrophages, over-activation of which by infection and
subsequent cytokine storm are important causes of ARDS. Therefore, alveolar infiltrating
macrophages are a pivotal target for the treatment of ARDS [5]. Macrophages are essential
components of innate immunity as well as adaptive immunity; the main functions of
macrophages include phagocytosis of pathogens and debris, antigen presentation, cytokine
release and so on [6]. Production of cytokines is a major feature of altered physiological
functions of macrophages. When macrophages are challenged with pathogens, they pro-
duce different inflammatory cytokines such as IL-6, TNF-α, IL-12p40 and IL-1β, which can
kill pathogens directly or indirectly by activating adaptive immune system [7]. However,
overexpression of these cytokines will cause the cytokine storm and lead to autoimmune
diseases and, in severe cases, death [8]. For example, as a master player in the cytokine
network, IL-6 promotes the differentiation of B cells into plasma cells and plays a vital role
in cytokine storm [9–11]. Therefore, it is of great clinical significance to regulate levels of
inflammatory cytokines by rational control or drug intervention.

Isocorydine is an isoquinoline alkaloid (Figure 1), which is extracted from the meta-
morphosed tuber of the poppy plant Corydalis edulis [12]. It is clinically used to relieve
spasm, dilate blood vessels, and fight malaria, arrhythmia as well as hypoxia. In addition,
its anti-tumor effects have been reported in previous studies [13,14]. There are also studies
suggesting that ICD may be related to inflammation [15]. However, few investigations have
been performed to study its effects on macrophage activities and LPS-induced inflammation
responses. Recent studies demonstrate a key role of immune microenvironment in develop-
ment of different cancers and cardiovascular diseases, which intrigues us whether ICD may
regulate macrophage activities, an essential component of immune microenvironment [16].
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Figure 1. Chemical structure of Isocorydine.

The purpose of our study was to explores the effect of ICD on macrophage IL-6
expression stimulated by LPS, along with the efficacy and safety in vivo. With BMDMs’
activation model and LPS-induced acute lung injury mouse model, we firstly demonstrated
that ICD ameliorates IL-6 expression and suppresses p65 and JNK phosphorylation in
LPS-stimulated macrophages, and protects mice from acute lung injury induced by LPS.

2. Results
2.1. ICD Alleviates LPS-Induced Acute Lung Injury in Mice

To determine the safe dosage of ICD applied in mice, the body weight and food intake
were monitored for 21 days in mice injected with different doses of ICD and dexamethasone
(DEX, 5 mg/kg) for positive control. When mice were intraperitoneally injected with a
low dose of ICD (<45 mg/kg), no significant weight loss and reduced food intake were
observed within 21 days (Figure 2A,B). Low doses of ICD had no obvious toxic effect on
the physiological state of mice.
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A mouse model was established by intraperitoneal injection of 25 mg/kg LPS to
determine the effect of ICD on acute lung injury. The effects of ICD on acute lung injury
were detected by H&E staining. As shown in Figure 2C, LPS+normal saline (NS) group
showed increased inflammatory cells infiltrating the alveoli or alveolar interstitium and
thickened alveolar septum. However, the infiltration of inflammatory cells in alveolar
interstitium of LPS+ICD groups was significantly less than that in LPS+NS group, and the
thickness of alveolar septum was also alleviated in LPS+ICD groups. Inflammation score
analysis of lung tissue showed that ICD had a significant protective effect on LPS-induced
acute lung injury (Figure 2D). The degree of pulmonary edema was expressed as the ratio
of lung tissue wet to dry weight. As shown in Figure 2E, the wet/dry ratios in LPS+ICD
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groups were lower than those in the LPS+NS group, indicating that ICD alleviated LPS-
induced pulmonary edema. Furthermore, the survival time of mice in LPS+ICD groups
was significantly longer than that in LPS+NS group (Figure 2F). Taken together, these data
suggest that ICD alleviate LPS-induced acute lung injury.

2.2. ICD Inhibits IL-6 Expression in LPS-Induced Macrophage Activation and Acute Lung
Injury Model

To evaluate ICD toxicity to macrophages, BMDM cells were seeded into a 12-well
plate and then treated with different concentrations of ICD and DEX (10 µM) for positive
control for 24 h. The toxicity of ICD in BMDMs was measured by CCK-8 assay and Annexin
V-APC/7-AAD apoptosis kit. The apoptotic rates are, respectively, 12.40%, 13.21%, 11.83%
and 12.09% corresponding to 0, 25, 50 and 75 µM of ICD (Figure 3A,B). Similarly, no
significant cytotoxicity was observed by CCK-8 assay when BMDMs were exposed to ICD
with the dose less than 75 µM (Figure 3C). These results showed that the concentration of
ICD below 75 µM did not affect BMDMs cell viability.
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expression in BMDMs stimulated with LPS (100 ng/mL) for 0 and 6 h. Before stimulation with
LPS, BMDMs were pretreated with different doses of ICD (0, 25, 50, 75 µM) and DEX (5 µM) for
1 h. (E,F) The Il6 mRNA expression in lung and spleen tissues of mice with LPS-induced acute lung
injury. (G) The protein levels of IL-6 in supernatants of BMDMs stimulated with LPS (100 ng/mL)
for 24 h. Before stimulation with LPS, BMDMs were pretreated with ICD (0, 25, 50, 75 µM) and DEX
(5 µM) for 1 h. (H) The protein level of IL-6 of blood serum of mice with LPS-induced acute lung
injury. In (E,F,H), the dose of LPS was 25 mg/kg, the doses of ICD were 0, 10, 20, 30 mg/kg and the
dose of DEX was 5 mg/kg. The mean and SD of at least three independent experiments are shown.
* p < 0.05, ** p < 0.01 indicate significant differences between groups, as determined by a two-tailed
paired Student’s t-test.

IL-6 plays a vital role in infection-induced cytokine storm and acute lung injury, which
is a molecular marker of the severity of acute lung injury [17]. Therefore, we investigated
whether ICD affects IL-6 production in LPS activated macrophages and acute lung injury
mouse model. GM-CSF induced BMDMs were pre-treated with different doses of ICD (0,
25, 50, 75 µM) and DEX (5 µM) for positive control one hour before LPS stimulation. After
stimulation with LPS for 6 h, the burst of Il6 mRNA expression in LPS+ICD group was
significantly inhibited compared to that in the LPS+PBS group, and the inhibitory effect was
dose-dependent (Figure 3D). Moreover, Il6 mRNA level was measured in lung and spleen
tissue samples of acute lung injury mouse model induced by LPS with intraperitoneal
injection of different doses of ICD (0, 10, 20, 30 mg/kg) and DEX (5 mg/kg) for positive
control. Consistently, the Il6 mRNA levels in LPS+ICD groups were significantly lower
than those in the LPS+NS group (Figure 3E,F). These results showed that ICD suppress
LPS-induced Il6 mRNA expression in vitro and in vivo. To further confirm whether ICD
affected IL-6 at the protein level, we performed ELISA assay on supernatants from LPS
induced BMDMs after pretreatment with different doses of ICD and DEX (5 µM) for positive
control. Compared to macrophages stimulated with LPS+PBS, macrophages treated with
LPS and ICD together showed lower IL-6 protein level in 24 h (Figure 3G). Blood serum
samples from acute lung injury mice were also tested with ELISA assay. Similarly, the IL-6
protein levels in LPS+ICD groups were significantly lower than those in the LPS+NS group
(Figure 3H). These results showed that ICD restrain the production of IL-6 in macrophages.

2.3. ICD Suppresses Inflammatory Pathways in LPS-Activated Macrophages

To uncover the mechanisms by which ICD affect inflammation activities in macrophages,
we compared the transcriptomes of control and ICD-pretreated macrophages after stimula-
tion with LPS by high-throughput sequencing of cDNA libraries (RNA-seq). Considering
a |fold change| > 1.5 and FDR < 0.05 as the cutoff value, we found that 67 genes were
downregulated and 263 genes were upregulated in ICD-pretreated macrophages. The
downregulated genes include many pro-inflammatory genes, such as IL-6, IL1a, CCL7,
CCL2, CCR5 and PTGS2 (Figure 4A,B). Then, we performed a GO analysis of the down-
regulated genes and found that these genes were significantly enriched in a variety of
biological processes, such as Inflammatory Response, Immune Response and Cellular
Response to LPS (Figure 4C). Moreover, the KEGG pathway analysis of the downregulated
genes suggests a significant enrichment of inflammatory pathways, such as Toll-like re-
ceptor signaling pathway, Cytokine–cytokine receptor interaction and MAPK signaling
pathway (Figure 4D). Among these DEGs, IL-1α is one of the most prominent mediators of
inflammation resulting in fever and immune activation via binding to IL-1 receptor 1 [18];
CCL2 (MCP-1) is a pro-inflammatory chemokine that can mediate inflammation in multi-
ple organs [19]; PTGS2 is an enzyme that can synthesize the pro-inflammatory mediator
prostaglandins [20]. Therefore, we measured the expression of these three inflammatory
genes to further confirm the RNA-seq analysis (Figure 4E–G). On the other hand, we
also performed GO and KEGG enrichment analysis for upregulated genes and found that
upregulated genes were mainly enriched in Aminoacyl-Trna biosynthesis, Base excision
repair signaling pathways, and Fanconi anemia pathway, which were less associated with
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the inflammatory effects of LPS stimulation (Figure 4H,I). Therefore, these findings fur-
ther support that ICD suppresses the production of key pro-inflammatory cytokines and
contributes to the inhibition of inflammation.
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Figure 4. ICD compromises expression of inflammation pathway-related genes in LPS-activated
macrophages. (A) Scatter plot showing gene expression changes in LPS triggered BMDMs pretreated
ICD, compared to BMDMs treated with LPS alone. Downregulated genes are indicated in blue, while
upregulated genes are indicated in red. (B) Heatmap of differential expressed genes involved in
Inflammatory Response. The expression level is shown in the form of Log2(FPKM). (C) GO (Biological
Process) analysis of the downregulated genes in ICD pretreated BMDMs. (D) KEGG analysis of the
downregulated genes in ICD pretreated BMDMs. (E–G) The mRNA level of Il1a, Ccl2 and Ptgs2
in LPS stimulated macrophages for 6 h, pretreated with ICD or not. (H) KEGG analysis of the
upregulated genes in ICD pretreated BMDMs. (I) GO (Biological Process) analysis of the upregulated
genes in ICD pretreated BMDMs. The mean and SD of at least three independent experiments are
shown. * p < 0.05, ** p < 0.01 indicate significant differences between groups as determined by a
two-tailed paired Student’s t-test.
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2.4. ICD Reduces the MAPK and NF-κB Pathways Activated by LPS in BMDMs

RNA-seq analysis showed that down-regulated genes mainly enriched in classic in-
flammatory pathways including Toll-like receptor signaling pathway and the biological
process of Cellular Response. As a member of Toll-like receptors, Toll-like receptor 4
(TLR4) is a pattern recognition receptor on the surface of macrophages associated with
bacterial immunity, and mediated LPS-induced signal transduction in most Gram-negative
bacteria [21]. To study the mechanisms of the functions of ICD we investigated the effect
of ICD on TLR4 signaling pathway. The results showed that ICD significantly inhibit
the phosphorylation levels of p65 (Figure 5A,C), a key post-translational modification, to
promote p65′s translocation from cytoplasm to nucleus and transcriptional activities [22].
Meanwhile, we also examined activation of ERK, JNK, p38 and Akt by Western blot. The
results showed that ICD significantly inhibit the phosphorylation of JNK (Figure 5B,D),
which is an important component of activator protein 1 (AP1) transcription factor com-
plex [23], while the phosphorylation levels of ERK, p38, Akt, TAK, IκB and IKK were not
affected. These results showed that ICD reduces the phosphorylation levels of p65 and JNK
to dampen the NF-kB and MAPK pathways, and eventually affects the transcription profile
of macrophages induced by LPS.
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Figure 5. ICD reduces the activation of LPS-induced inflammation-related signaling pathway in bone
marrow-derived macrophages. (A,B) Western blot analysis activation of NF-kB and MAPK signaling
pathway in macrophages stimulated with LPS at different time points as indicated, pretreated with
ICD or not. The ratios of p-p65/p65 (C) and p-JNK/JNK (D) were quantified with ImageJ software
(v1.53). The mean and SD of at least three independent experiments are shown. * p < 0.05, ** p < 0.01
indicate significant differences between groups, as determined by a two-tailed paired Student’s t-test.

3. Discussion

Although some important progress has been made in the treatment of acute lung
injury in recent years, the therapeutic methods for acute lung injury are still limited [24].
The clinical symptoms of acute lung injury include increased microvascular permeability,
alveolar and interstitial edema, hyaline membrane formation and atelectasis. After the
onset of acute lung injury, immune cells accumulate in the lung, which may exert excessive
immune function and attack alveolar epithelial cells or pulmonary capillary endothelial
cells indiscriminately, leading to respiratory distress in patients. Inflammatory cytokine
storm is an important causes of acute respiratory distress syndrome [3]. The LPS-induced
mouse model of acute lung injury can be used to study a range of potential specific and
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non-specific targets for ARDS drug intervention [25]. Based on this model, we found that
ICD could significantly inhibit acute lung injury with ignorable side effects in vivo.

The present study investigated a novel application of ICD in treatment for inflam-
matory diseases. ICD is an effective component extracted from Corydalis edulis, which
is a species of plant previously used in traditional Chinese medicine [26]. ICD has been
clinically used to treat heart diseases, spasm and malaria [12]. Recent studies have also
shown that ICD can inhibit the occurrence and progress of some tumors [14]. Our study
demonstrated for the first time that ICD ameliorates IL-6 expression in LPS-induced bone
marrow-derived macrophages activation in vitro and LPS-induced acute lung injury in
mice, and there is no obvious toxicity in vivo.

Interleukin-6 (IL-6) is a dominant player in the cytokine network, which not only
promotes the differentiation of immune cells, but also plays a vital role in cytokine storm,
acute lung injury and tumor immunity [10]. Monoclonal antibodies against IL-6 have been
applied in the treatment of rheumatoid arthritis, indicating its important role in systemic
inflammation or autoimmune diseases [27]. In addition to cytokines, chemokines and
prostaglandins also play vital roles in inflammation [28]. In our study, we preliminar-
ily found that ICD can suppress the LPS-induced upregulation of many cytokines and
chemokines, including IL-6, IL1a, CCL7, CCL2, CCR5 and PTGS2.

It has been reported that the expression of inflammatory cytokines can be regulated by
NF-κB and MAPKs signaling pathway [29–31]. LPS can bind to TLR4, a pattern recognition
receptor on the surface of macrophages, and then activate MAPKs/NF-κB signaling path-
way [21,32]. RNA-seq analysis in our study indicated that Toll-like receptor and MAPKs
signaling pathway were inhibited by treatment of ICD, along with decreased expression of
inflammatory cytokines. In addition, after ICD treatment, the downregulated genes were
highly enriched in the biological processes of LPS-induced inflammatory response, immune
response, and cellular response. Further, inhibition of MAPK and NF-κB pathways was
confirmed by reduced phosphorylation of p65 and JNK in BMDMs pre-treated with ICD.

There were no up-regulated genes significantly associated with LPS-induced inflam-
mation according to the results of RNA-seq. We found that upregulated genes were mainly
enriched in Aminoacyl-Trna biosynthesis, Cell cycle, DNA replication, Base excision repair
signaling pathways and Fanconi anemia pathway, which were tightly associated with
tumor proliferation, cycle and apoptosis, consistent with the previous reports [14]. The GO
and KEGG pathway analysis of upregulated genes also suggest other possible biological
processes such as anti-virus and cellular metabolism, which needs to be further investigated.
However, our study did not identify the direct target of ICD on molecular level, and further
studies are needed to investigate the protein target of ICD, which will provide the basis for
high-efficacy ICD derivatives development.

In summary, we firstly presented that ICD ameliorates IL-6 expression and regu-
lates the phosphorylation levels of p65 and JNK in LPS-induced bone marrow-derived
macrophages activation and protected mice from LPS-induced acute lung injury (Figure 6).
Our study indicate that ICD might have great potential in the treatment of acute lung injury,
and several studies are needed to explore other important physiological effects of ICD
in future.

LPS binds to TLR4 and initiates the downstream cascade. TAK1-IKK-p65 signaling
pathway activates the transcription factor NF-κB. TAK1 can also activate MAPKs, including
ERK, JNK and p38, which further activate the transcription factor AP-1. ICD reduced the
phosphorylation of p65 and JNK and suppressed the NF-κB and AP-1 mediated transcrip-
tional activation of genes like IL-6, IL1a, CCL2 and PTGS2.
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4. Materials and Methods
4.1. Isocorydine

Isocorydine (purity ≥ 98%) used in this study was purchased from Pufei De Biotech-
nology Ltd. (Chengdu, China). It has the chemical formula C20H23NO4 and a molecular
weight of 341.406.

4.2. Animals

C57BL/6 mice (5 weeks old) were purchased from SLAC Laboratory Animal Ltd.
(Shanghai, China). The mice were raised less than five/cage with standard chow and water
under suitable temperature and humidity, the dark-lighting cycle was carried out for 12 h.

4.3. Cell Preparation and Culture

We prepared and cultured bone marrow-derived macrophages [33]. BMDMs were
generated in RPMI-1640 medium (Gibco, Waltham, MA, USA) containing 10 ng/mL re-
combinant mouse GM-CSF (PeproTech, Rocky Hill, CT, USA), 10% fetal calf serum (Gibco,
Waltham, MA, USA), and 100 U/mL penicillin-streptomycin (Gibco, Waltham, MA, USA)
for 6 days with replacement of the culture medium every 2 days.

4.4. Drug Preparation

ICD and DEX (MCE, Monmouth Junction, NJ, USA) were dissolved in dimethyl
sulfoxide (Sangon Biotech, Shanghai, China). Before stimulation with 100 ng/mL LPS
(Sigma-Aldrich, St. Louis, MO, USA) dissolved in phosphate buffered saline (Gibco,
Waltham, USA), ICD was added to the culture medium and incubated for 1 h. Before
intraperitoneal injection, ICD, DEX and LPS solution were dissolved in normal saline
(Sangon Biotech, Shanghai, China).
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4.5. Cell Viability Assay

BMDMs were seeded in 96-well plates (Corning, New York, NY, USA) at 2 × 105 cells/mL.
The cells were treated with ICD at different doses (0–200 µM) for 24 h. Then 20 µL of CCK-8
(Beyotime, Shanghai, China) was added to each well after treatment for 24 h, and the
samples were detected with a microplate reader (BioTek, New York, NY, USA) at 450 nm
after incubation for 2 h at 37 ◦C.

4.6. Cell Apoptosis Assay

Annexin V-APC/7-AAD apoptosis kit (Beyotime, Shanghai, China) was used in the
study. Cells obtained from macrophages were stained for 20 min at room temperature
with Annexin V-APC and 7-AAD, and then analyzed with a flow cytometer (ACEA, San
Diego, CA, USA, Biosciences). The flow cytometry data were analyzed with NovoExpress
software (v1.5.0).

4.7. Establishment of Mouse Acute Lung Injury Model

We established mouse acute lung injury model by intraperitoneal injection of LPS
(25 mg/kg). After being intraperitoneally injected with different doses of ICD for 1 h, body
weight, food intake and survival time of mice were monitored. Blood serum, lung and
spleen were taken from the mice to test IL-6 and assess acute lung injury.

4.8. H&E Staining of Lung Tissues

The lobes of lung were taken and fixed with 4% paraformaldehyde solution (Beyotime,
Shanghai, China) for 24 h. Then, the lobes of lung were prepared into paraffin sections
and stained with H&E staining kit (Solarbio, Beijing, China). The thickness of lung tissue
sections was 10 µm. The pathological changes in the lung were observed under a light mi-
croscope. Lung injury scores were assessed by different researchers in blinded manner [34].
According to the Smith score system, the severity of lung injury was scored according to five
indexes including pulmonary edema, alveolar and interstitial inflammatory cell infiltration,
alveolar and interstitial hemorrhage, atelectasis, and hyaline membrane formation [35].

4.9. Lung Wet/Dry Ratios

The whole lungs of mice were taken to measure the wet weight, dried and dehydrated
in an oven at 60 ◦C for 48 h, and then weighed again to calculate the wet/dry ratios of
whole lung tissues.

4.10. Real-Time Quantitative Polymerase Chain Reaction

We isolated total RNA of lungs, spleens and macrophages using RNAfast200 kit (Fasta-
gen Biotech, Shanghai, China) according to the manufacturer’s instructions. PrimeScriptTM

RT Reagent Kit (TAKARA, Shiga, Japan) was used in cDNA synthesis. IL-6, IL1a, CCL2
and PTGS2 gene expressions were quantified by quantitative real-time PCR (LC480, Roche,
Basel, Switzerland) using SYBR Green (TAKARA, Shiga, Japan), and normalized to Gapdh
mRNA. Primers were as follows:

Gapdh-RTF, CTGAGTATGTCGTGGAGTCT;
Gapdh-RTR, GTGGATGCAGGGATGATGTT;
Il6-RTF, AGTTGCCTTCTTGGGACTGA;
Il6-RTR, TCCACGATTTCCCAGAGAAC;
Il1a-RTF, GTTCTGCCATTGACCATCTC;
Il1a-RTR, CAGAATCTTCCCGTTGCTTG;
Ccl2-RTF, GTGTCCCAAAGAAGCTGTAG;
Ccl2-RTR, CACATTCAAAGGTGCTGAAGA;
Ptgs2-RTF, GCGACATACTCAAGCAGGAGCA;
Ptgs2-RTR, AGTGGTAACCGCTCAGGTGTTG.
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4.11. Enzyme-Linked Immunosorbent Assay

We collected cellular supernatants from BMDMs and blood serum from acute lung
injury mouse after treatment with different doses of ICD, and measured the IL-6 cytokine
levels in supernatants by ELISA using a cytokine-specific assay kit (Thermo Fisher, Waltham,
MA, USA) following the manufacturer’s instructions.

4.12. RNA-Seq and Bioinformatics Analysis

Total RNA was extracted from BMDMs with TRIzol reagent (Thermo Fisher, Waltham,
MA, USA). Library construction and mRNA sequencing were carried out by the BGI Tech-
nology Company (Wuhan, China). The sequencing data were filtered with SOAPnuke
(v1.5.2) [36]. Reference genome alignment was executed by HISAT2 (v2.0.4) [37]. Sequenc-
ing reads were successfully aligned to the reference coding gene set by Bowtie2 (v2.2.5) [38].
RSEM (v1.2.12) was applied to calculate gene expression levels [39]. Gene filtering and
summing over technical replicates were done with edgeR. Differential expression analysis
was carried out by edgeR to identify DEGs. The cutoff for identifying DEGs was set as the
FDR < 0.01 and |log2-fold change| ≥ 2. The most significant differentially expressed genes
were scaled for heatmap visualization, with mitochondrial genes and undefined genes
removed. To investigate the possible mechanisms of the effects of ICD on LPS-induced
macrophage inflammation, we performed GO and KEGG enrichment analysis on DEGs
using clusterProfiler [40]. The cutoff for terms from enrichment analysis was FDR < 0.05.

4.13. Western Blot

Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) was used to extract total protein
from BMDMs. BCA protein assay kit (Thermo Fisher, Waltham, MA, USA) was used to
detect concentration protein. Equal amounts (30 µg) of protein were separated by 10% SDS-
PAGE and transferred to NC membranes. The membranes with protein were incubated
with 5% milk in tris-buffered saline (TBS) containing 0.1% Tween 20 (1 × TBST) for 1 h at
room temperature. For immunodetection, NC membranes were incubated with primary
antibody overnight at 4 ◦C. After washing with 1 × TBST buffer, the membranes were
incubated with anti-mouse or anti-rabbit IgG HRP-labeled secondary antibody (HuBio,
Hangzhou, China) for 1 h at room temperature. Protein bands were detected by enhanced
chemiluminescence (Thermo Fisher, Waltham, MA, USA) using a chemiluminescence
detection system (Azure biosystems, Dublin, OH, USA) and. The Western blot results
analysis was performed using ImageJ software (v1.53).

4.14. Statistical Analysis

The mean and SD of at least three independent experiments were shown, except where
otherwise indicated, and comparisons were performed by a two-tailed paired Student’s
t-test. Statistical analysis was performed using GraphPad Prism (v7.0.0) software. Sig-
nificance levels (p values) are presented in the figures, where p < 0.05 was considered
statistically significant.
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