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Abstract: Recent advances in single-cell sequencing assays for the transposase-accessibility chro-
matin (scATAC-seq) technique have provided cell-specific chromatin accessibility landscapes of
cis-regulatory elements, providing deeper insights into cellular states and dynamics. However, few
research efforts have been dedicated to modeling the relationship between regulatory grammars and
single-cell chromatin accessibility and incorporating different analysis scenarios of scATAC-seq data
into the general framework. To this end, we propose a unified deep learning framework based on
the ProdDep Transformer Encoder, dubbed PROTRAIT, for scATAC-seq data analysis. Specifically
motivated by the deep language model, PROTRAIT leverages the ProdDep Transformer Encoder
to capture the syntax of transcription factor (TF)-DNA binding motifs from scATAC-seq peaks for
predicting single-cell chromatin accessibility and learning single-cell embedding. Based on cell
embedding, PROTRAIT annotates cell types using the Louvain algorithm. Furthermore, according
to the identified likely noises of raw scATAC-seq data, PROTRAIT denoises these values based on
predated chromatin accessibility. In addition, PROTRAIT employs differential accessibility analysis
to infer TF activity at single-cell and single-nucleotide resolution. Extensive experiments based on the
Buenrostro2018 dataset validate the effeteness of PROTRAIT for chromatin accessibility prediction,
cell type annotation, and scATAC-seq data denoising, therein outperforming current approaches
in terms of different evaluation metrics. Besides, we confirm the consistency between the inferred
TF activity and the literature review. We also demonstrate the scalability of PROTRAIT to analyze
datasets containing over one million cells.

Keywords: single-cell ATAC-seq analysis; ProdDep Transformer Encoder; chromatin accessibility
prediction; cell type annotation; scATAC-seq data denoising; TF activity inference

1. Introduction

The single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) re-
veals chromatin accessibility landscapes of cis-regulatory elements at a single-cell resolution [1].
The scATAC-seq assay has been successfully applied to annotate cell types [2], infer the
activity of transcription factors (TFs) [3], and reconstruct cell differentiation trajectories [4].
However, the inherent high dimensionality of accessible cis-regulatory elements [5] and the
sparsity of sequence reads per cell [6,7] present a unique challenge for analyzing scATAC-
seq data. Therefore, developing computational approaches to represent the scATAC-seq
data has become essential in bioinformatics.

In recent years, many algorithms have been designed to cope with high-dimensional
and sparse single-cell sequencing data, especially single-cell RNA-seq (scRNA-seq) data.
To reduce the dimension of scRNA-seq data, many techniques such as principal component
analysis (PCA) [8], t-distributed stochastic neighbor embedding (t-SNE) [9], and uniform
manifold approximation and projection (UMAP) [10] are employed to map raw data
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into a lower dimensional space. To overcome the sparsity of scRNA-seq data caused
by the missing expression values, many imputation techniques are proposed to recover
dropout values. For example, SAVER [11], an expression recovery model for scRNA-seq,
borrows information from similar cells and genes to fill in missing transcripts. MAGIC [12]
recovers undetected gene expressions in scRNA-seq data by the Markov affinity-based
graph imputation. However, direct applications of the aforementioned scRAN-seq analysis
approaches to scATAC-seq data may not be suitable due to the higher dimension and
severer sparsity of the scATAC-seq data.

Recently, several approaches have been specially developed for scATAC-seq data
analysis, which can be broadly categorized into sequence-free and sequence-dependent
methods. From the peak-by-cell matrix, sequence-free approaches represent annotated
peaks as genomic coordinates and characterize individual cells by detecting the biologically
significant covariance. For example, cisTopic [13] and SCALE [14] use Latent Dirichlet
Allocation or a variational autoencoder to capture latent features that characterize the
distributions of scATAC-seq data generated on different platforms with different proto-
cols. However, sequence-free approaches ignore sequence information and rely on post
hoc algorithms to relate to cis-regulatory factors. Sequence-dependent approaches fur-
ther improve the performance of scATAC-seq analysis by considering sequence features,
such as the k-mer content or the occupancy of the TF-DNA binding motif. For instance,
BROCKMAN [15] represents each peak as a set of DNA words (k-mer) and aggregates the
k-mer frequency across peaks to learn cell representations. scBasset [16] is a deep convolu-
tion neural network to predict single-cell chromatin accessibility from the DNA sequence,
which regards the weights of the final layer as the cell representations. Nevertheless, the
sequence-dependent above approaches need to consider more regulatory grammars, such
as the position and long-range dependency of motifs, for improving accuracy and inter-
pretability. In addition, it is a challenge to incorporate various analysis scenarios, such as
chromatin accessibility prediction, cell type annotation, scATAC-seq data denoising, and
TF activity inference, into a general computational framework.

Here, we present PROTRAIT, a unified deep learning framework based on ProdDep
Transformer Encoder for analyzing scATAC-seq data. Our framework comprises four
parts: (i) Chromatin accessibility modeler. It utilizes the ProdDep Transformer Encoder to
capture the occupancy, position, and long-range dependency of motifs from DNA sequence
for predicting single-cell chromatin accessibility and learning a latent embedding of each
cell; (ii) Cell type annotator. Based on the learned cell embedding, it utilizes the Louvain
algorithm to perform clustering for annotating the types of each cell; (iii) scATAC-seq data
denoiser. It uses a statistical model to automatically identify likely noises and perform
denoising on these values by predicted accessibility; and (iv) TF activity analyzer. Feeding
synthetic DNA sequences, it analyzes the activity of the TF in each cell or nucleotide by
measuring changes in predicted accessibility. The overview of PROTRAIT is shown in
Figure 1. Experimental results on scATAC-seq datasets from the Buenrostro2018 study
demonstrate that PROTRAT achieves state-of-the-art performance across various analysis
scenarios, including chromatin accessibility prediction, cell type annotation, scATAC-seq
data denoising, and TF activity inference. Besides, we demonstrate the scalability of
PROTRAIT to analyze datasets containing over one million cells.



Int. J. Mol. Sci. 2023, 24, 4784 3 of 17

Figure 1. The overview of PROTRAIT. (a) Chromatin accessibility modeler. This module comprises
a Uniform Input Representation, a ProbDep Transformer Encoder, and a Chromatin Accessibility
Analyzer. Specifically, Uniform Input Representation encodes each regulatory motif’s occupancy
and position information. ProbDep Transformer Encoder further captures bona fide long-range de-
pendency between different regulatory motifs. Chromatin Accessibility Analyzer integrates learned
regulatory grammars to predict the chromatin accessibility of each cell. The final layer weight of the
Chromatin Accessibility Analyzer can be regarded as cell embedding. (b) Cell type annotator. After
generating cell embedding, this module utilizes the Louvain algorithm to perform single-cell cluster-
ing for cell type annotation. (c) scATAC-seq data denoiser. This module utilizes a statistical model to
discover which zero counts are affected by dropout events. It only performs recovery on discovered
zero counts by predicted chromatic accessibility. (d). TF activity analyzer. This module analyzes the
activity of the TF in each cell or nucleotide by measuring changes in predicted accessibility.

2. Results and Discussion
2.1. PROTRAIT Predicts Single-Cell Chromatin Accessibility on Held-Out DNA Sequences

We first investigate whether PROTRAIT accurately predicts chromatin accessibility
across cells for held-out DNA sequences, guaranteeing that PROTRAIT has learned a mean-
ingful relationship between DNA sequence and chromatin accessibility. For held-out DNA
sequences in Buenrostro 2018 dataset, we compute the area under the receiver operating
characteristic curve (auROC) of PROTRAIT, Basset [17], DeepSEA [18], scBasset [16], and
Basenji [19]. Basset, DeepSEA, scBasset, and Basenji are well-verified chromatin accessi-
bility analyzers based on convolutional neural networks and receive DNA sequences of
600 bp, 1000 bp, 1344 bp, and 131,072 bp as input, respectively. To make a fair comparison,
we utilize DNA sequences of 600 bp, 1000 bp, 1344 bp, and 131,072 bp, respectively, as
input of PROTRAIT. PROTRAIT substantially outperforms all competitors across different
input lengths (Figure 2a) because PROTRAIT can simultaneously learn occupancy, position,
and long-range dependency of TF-DNA binding motifs. However, Basset, DeepSEA, and
Basenji performances are slightly below the 0.75–0.95 range achieved for bulk chromatin
accessibility samples in original publications because of dropouts in the scATAC-seq tech-
nique, causing the sparse and noisy labels. To further assess the influence of the sparse
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and noisy labels, we randomly down-sample 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%,
20% and 10% non-zero entries from original labels as new labels and run the PROTRAIT.
The auROC of PROTRAIT decreases with the decreasing number of non-zero entries.
Still, the performance is acceptable even when the label contains only 10% non-zero en-
tries (Figure 2b). Overall, these results confirm that the PROTRAIT architecture advances
prediction accuracy and robustness for single-cell chromatin accessibility.

Figure 2. Evaluation of chromatin accessibility prediction approaches for scATAC-seq data.
(a) auROC comparison of PROTRAIT and different chromatin accessibility prediction approaches,
including Basset, DeepSEA, scBasset, and Basenji. (b) auROC comparison of PROTRAIT on down-
sampled datasets (non-zero entries of labels are 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% and
10% of original). (c) auROC comparison of the ProbDep Transformer Encoder and its variants (left)
and the fixed absolute position embedding and its variants (right).

To pinpoint the benefit of the ProbDep Transformer Encoder, we replace it with the
gated recurrent unit (GRU) [20], the canonical Transformer Encoder [21]. The Longformer
Encoder [22], respectively. The GRU and canonical Transformer Encoder capture long-
range dependency between any two motifs in a whole DNA sequence, whereas Longformer
Encoder only focuses on such dependence surrounding each motif. ProbDep Transformer
Encoder consistently outperforms the GRU, the Transformer Encoder, and the Longformer
Encoder (Figure 2c left), demonstrating the utility of learning bona fide long-range depen-
dencies with biological significance, for example, the dependencies between the motifs
of TFs and their cofactors. Then, we assess the effect of position information of regula-
tory motifs on the ProbDep Transformer Encoder. The fixed absolute position embedding
(FAPE) [21] yields better performance than the learnable position embedding (LaPE) [23],
and the rotation position embedding (RoPE) [24] (Figure 2c right), which is because makes
the model easy to converge. The capability to consider position information of regulatory
motifs is indeed crucial because we observe a significant performance drop when using the
model without position embedding (WoPE) (Figure 2c right). These results confirm that
ProbDep Transformer Encoder is suited for chromatin accessibility prediction.
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2.2. PROTRAIT Annotates Cell Types by Clustering on Cell Embedding

We begin by examining the ability of PROTRAIT to generate the cell embedding that
characterizes scATAC-seq data distribution. Specifically, we (i) run PROTRAIT, cisTopic,
SAILER [5], SCALE, MAGIC, and SAVER based on the scATAC-seq data of eight ho-
mogenous cell types in the HSC differentiation lineage, including common lymphoid
progenitor (CLP), common myeloid progenitor (CMP), granulocyte-macrophage progen-
itors (GMP), hematopoietic stem cell (HSC), lymphoid-primed multipotent progenitor
(LMPP), megakaryocyte-erythrocyte progenitor (MEP), multipotent progenitor (MPP), and
plasmacytoid dendritic cell (pDC); and subsequently (ii) visualize the generated cell embed-
dings from approaches above with the UMAP. The cell embeddings of PROTRAIT, cisTopic,
SAILER, and SCALE are better separated between cell types. In contrast, the embeddings
of MAGIC and SAVER overlapped between some cell types (Figure 3a) because approaches
specially designed for scRNA-seq data hardly fit higher dimensional and sparser scATAC-
seq data. Furthermore, PROTRAIT can also reveal the development trajectory of different
cell types in UMAP visualization (Figure 3a). For example, LMPP and CMP cells are close
to MPP cells in the embedding, which is consistent with the differentiation lineage diagram
of the HSC [25]. These results confirm that PROTRAIT can generate the cell embedding
that characterizes scATAC-seq data distribution.

Figure 3. Performance of diverse cell representation approaches compared by cell type annotation.
(a) UMAP representation of the cell embeddings derived from PROTRAIT, cisTopic, SAILER, SCALE,
MAGIC, and SAVER. All approaches are trained on the full dataset. (b) The average v-score, ARI, and
AMI for each cell type are measured after clustering based on the cell embeddings. All approaches
are trained on the datasets where the total number of peaks per cell remains at 20%, 40%, 60%, 80%,
and 100% of the total peaks, respectively. (c) Runtimes for each of the cell-embedding approaches
profiled. All approaches are trained on the full dataset.
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We further assess the correctness of PROTRAIT in annotating cell types. Specifically,
we (i) randomly down-sample 100%, 80%, 60%, 40% and 20% peaks from the original
dataset and run PROTRAIT, cisTopic, SAILER, SCALE, MAGIC, and SAVER based on the
down-sampled data; and subsequently (ii) apply Louvain clustering on the generated cell
embeddings from these approaches and compute the adjusted rand index (ARI), adjusted
mutual information (AMI) and v-measured score (v-score) by comparing clustering results
with ground-truth cell-type labels. PROTRAIT displays the best ARI, AMI, and v-score on
all five different sampling frequencies (Figure 3b), which demonstrates the effectiveness of
PROTRAIT in annotating cell types. Besides, ARI, AMI, and v-score increase under some
sampling frequencies because some peak sequences may be non-functional in cis-regulatory
and cell development. These results confirm that PROTRAIT can accurately annotate cell
types by clustering on its generated cell embedding.

We finally explore the runtime of different cell representation approaches. PROTRAIT,
cisTopic, SAILER, SCALE, MAGIC, and SAVER consumes 64.3, 12.1, 220.6, 151.2, 17.2,
and 83.8 minutes to reach convergence, respectively (Figure 3c). The runtimes for SCALE,
SAILER, and PROTRAIT can be further improved by using a graphics processing unit
with sufficient memory due to the nature of deep learning. Besides, designing lightweight
architectures to replace the original ones for scATAC-seq data analysis is another promising
direction for improving the runtime.

2.3. PROTRAIT Denoises Single-Cell Chromatin Accessibility Profiles

The binary accessible indicator for any given cell and peak comprises many false
zero counts because of the sparsity of scATAC-seq caused by the experimental noise. To
evaluate the ability of PROTRAIT to remove noise on scATAC-seq data, we randomly
sample 200 peaks and 500 cells from the Buenrostro 2018 dataset and directly visualize the
raw peak-by-cell matrix and the denoised matrix. The cells are clustered by sequencing
depth in the raw cell-by-peak matrix (Figure 4a left), showing no biologically significant
patterns. After denoising, cells of the same cell type share similar accessibility profiles
(Figure 4a right). These results confirm that PROTRAIT can estimate the real scATAC-seq
data distribution.

Then, we further corrupt the scATAC-seq data by randomly dropping out peaks at
different rates and compare PROTRAIT with MAGIC, SCALE, scOpen [6] and SAILER. We
measure the denoising performance by label score, which quantifies what percentage of
each cell’s neighbors share the same label in a given neighborhood. In practice, we perform
PCA (50 components) on denoising peak-by-cell matrix and use label score (k = 50, 75, 100)
to measure whether cells of the same label are embedded closer. Across all corruption rates,
PROTRAIT yields better performance than all four state-of-the-art denoising approaches
(Figure 4b), which quantitatively indicates the effeteness of PROTRAIT in denoising single-
cell chromatin accessibility profiles.

Finally, we verify the effectiveness of identifying likely noises before denoising. Specif-
ically, we perform denoising based on PROTRAIT with and without the search of dropout
values and compute the label score. Across most cells, searching for dropout values can
significantly improve the performance of single-cell chromatin accessibility data denois-
ing (Figure 4c). This result suggests that PROTRAIT can reduce technical variation from
scATAC-seq and avoid introducing excess biases during its denoising process.
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Figure 4. Performance evaluation of denoising approaches for scATAC-seq data. (a) The raw and de-
noised peak-by-cell matrix of 800 peaks and 200 cells from the Buenrostro2018 dataset, hierarchically
clustered by cells. (b) The label score (k = 50, 75, 100) comparison of PROTRAIT, MAGIC, SAILER,
SCALE, and scOpen. (c) The label score (k = 50, 75, 100) comparison of PROTRAIT with search of
dropout values (SoDV) and without search of dropout values (WoSoDV).

2.4. PROTRAIT Infers TF Activity at Single-Cell and Single-Nucleotide Resolution

TF-DNA binding is the primary driver of chromatin accessibility [26–28]. As PRO-
TRAIT learns to predict chromatin accessibility from DNA sequences, we expect the frame-
work to capture sequence information predictive of TF-DNA binding. To query the TF
activity at single-cell resolution, we (i) perform motif insertion for 30 available human JAS-
PAR motifs [29]; (ii) feed synthetic DNA sequences with and without a particular TF-DNA
binding motif of interest to an implemented PROTRAIT framework; and (iii) measure the
activity of the motif in each cell based on changes in predicted accessibility. The average
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TF activity score demonstrates valuable meaning to delineate the differentiation process
of HSC (Figure 5a,b). For example, IRF8, a known TF of modulating lineage commitment
decisions by HSCs, shows the highest activity in HSCs [30]. GATA1, a key regulator
of organizing the hematopoietic lineage fate decision to form the earliest hematopoietic
branchpoint, is predicted to be most active in MPPs [31]. BACH1, a master regulator
of controlling erythroid-myeloid and lymphoid–myeloid differentiation, has the highest
anticipated activity in LMPPs [32]. HIC1, a known TF in myeloid differentiation and sur-
vival, shows the most increased activity in CMPs [33]. AHR, a key regulator of regulating
the production of bipotential hematopoietic and megakaryocyte-erythroid progenitor, is
predicted to be most active in MEPs [34]. TCF4, a part of the leukemia initiation signature
in GMPs, has the highest anticipated activity in GMPs [35]. ARNT, a known TF with a
specific inhibitory role in pDC biology, shows the most increased activity in pDCs [36]. The
relationship between FOSL2 and CLPs now awaits experimental validation. Besides, for a
specific cell type, the most active TF shows considerable variation in their activity scores
across different single cells (Figure 5c). These results confirm that PROTRAIT can quantify
TF activity at single-cell resolution.

Figure 5. Performance of PROTRAIT in inferring single-cell TF activity. (a) HSC differentiation
lineage diagram. (b) The normalized average activity scores of 30 TFs in eight cell types. (c) UMAP
represents the single-cell activity scores of the most active TFs in eight cell types.
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To further explore whether PROTRAIT can infer TF activity at both single-cell and
single-nucleotide resolution, we (i) performed in silico saturation mutagenesis (ISM) for a
known enhancer for the β-globin gene that regulates erythroid-specific β-globin expression;
and (ii) mapped the most influential nucleotides into the position weight matrices (PWMs)
by the TF-MoDSW algorithm [37]. The most influential nucleotides corresponded to GATA1
and ZNF354C motifs (Figure 6a), which are known to co-bind to β-globin enhancers [38].
Examining the single-cell ISM scores, we also observed that the GATA1 and ZNF354C
motifs contribute more to accessibility in HSC, MPP, and CLP cell types. In contrast,
the nucleotides of these two motifs have low scores in CMP, MEP, LMPP, pDC, and GMP
(Figure 6b). This result demonstrates that TF GATA1 and ZNF354C may be co-active in HSC
differentiation. In summary, PROTRAIT can learn regulatory grammar at both single-cell
and single-nucleotide resolution and can be used to discover enhancers in individual cells.

Figure 6. Performance of PROTRAIT in inferring single-cell and single-nucleotide TF activity. (a) ISM
scores for sequences that match GATA1 and ZNF354C motifs in eight cell types. (b) Distributions of
single-cell PWM-ISM scores for GATA1 and ZNF354C in eight cell types. The PWM-ISM score is the
dot product of the PWM and ISM measurements of motif matches.
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2.5. PROTRAIT Is Scalable to Large Datasets

To explore whether PROTRAIT can work for large datasets, we applied our approach
to the sci-ATAC human atlas, one of the extensive available scATAC-seq datasets and
comprises 1,114,621 cells and 118,043 peaks [39]. Specifically, we ran PROTRAIT on
the down-sampled sci-ATAC-seq dataset with 10,000, 20,000, 50,000, 100,000, 200,000,
400,000, 600,000, 800,000, one million, and all cells and measure the runtime, peak CPU
memory usage, peak GPU memory usage and parameter (Figure 7). PROTRAIT requires
2084.43 mins on the whole sci-ATAC-seq dataset using an Nvidia GeForce RTX 3080 GPU,
with a peak CPU memory usage of 16,123.21 MB, peak GPU memory usage of 1252.73 MB,
and parameter of 168.58 MB. More importantly, the runtime, peak CPU memory usage,
and peak GPU memory usage only increase slightly with the number of cells. When
we increase the number of cells from 10,000 to 1,114,621 (100×), the runtime goes from
1868.14 mins to 2084.43 mins (1.12×), CPU memory goes from 16,119.78 MB to 16,123.21 MB
(1.01×), and GPU memory goes from 651.61 MB to 1252.73 MB (1.92×). The parameter
goes from 24.49 MB to 168.58 MB (6.88×). These results suggest that PROTRAIT is suitable
for analyzing a sizeable scATAC-seq compendium.

Figure 7. Performance of PROTRAIT in large-scale scATAC-seq analysis. (a–d) The runtime, peak
CPU memory usage, peak GPU memory usage, and parameter of PROTRAIT on sciATAC human
atlas. To remove fluctuations from random sampling, we employ a cross-validation strategy and
repeat the down-sampling 10 times to obtain averages.

3. Materials and Methods
3.1. Datasets

We downloaded the processed h5ad file for Buenrostro 2018 generated by Yuan et al.
at http://storage.googleapis.com/scbasset_tutorial_data/buen_ad_sc.h5ad (accessed date
23 December 2022) [16]. The Buenrostro 2018 dataset comprises 10 fluorescence-activated
cell-storing (FACS) cell populations from CD34+ human bone marrow, namely, CLP, CMP,
GMP, HSC, LMPP, MEP, MPP, pDC, monocytes (mono), and an uncharacterized CD34+,
CD38-, CD45RA+, CD123- cell population. A total of 2034 cells and 31,783 peaks from
six human donors were used for analysis.

http://storage.googleapis.com/scbasset_tutorial_data/buen_ad_sc.h5ad
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3.2. Chromatin Accessibility Modeler Based on ProbDep Transformer Encoder

The chromatin accessibility modeler is a deep language model for predicting single-
cell chromatin accessibility from the DNA sequence, which comprises a Uniform Input
Representation, a ProbDep Transformer Encoder, and a Chromatin Accessibility Analyzer.
Specifically, Uniform Input Representation encodes each regulatory motif’s occupancy and
position information. ProbDep Transformer Encoder further captures bona fide long-range
dependency between different regulatory motifs. The Chromatin Accessibility Analyzer
first integrates learned regulatory grammars to generate explicit embedding of thev DNA
sequence. Then it utilizes a linear layer to transform the sequence embedding for predicting
the chromatin accessibility of each cell. The parameters of the linear layer can be regarded
as the cell embedding, which indicates how much cell-specific chromatin accessibility
depends on each regulatory grammar. In summary, the chromatin accessibility modeler
can serve as a single-cell chromatin accessibility predictor and a representation learning
machine for each cell.

3.2.1. Uniform Input Representation

Uniform Input Representation comprises Motif Embedding and a Position Embedding.
Motif Embedding and Position Embedding represent the occupancy and position of each
regulatory motif, respectively.

Motif Embedding. Given an L-bp DNA sequence, we mapped it into a latent space
by using one-hot embedding. Suppose L is less than a manually set threshold. In that case,
we transformed the one-hot embedding into the motif embedding by a convolutional layer
to represent the occupancy of the regulatory motif. Suppose L is more significant than
a manually set threshold. In that case, we used sequential alternating convolution and
pooling layers to generate the motif embedding to reduce the dimension of the embedding.

Position Embedding. To make use of the position information of each regulatory
motif, we used fixed absolute position embedding:

PE(pos,2i) = sin(
pos

L
2i
d
) (1)

PE(pos,2i+1) = cos(
pos

L
2i
d
) (2)

where pos indicates the position of the regulatory motif and i denotes the dimension of the
position embedding.

After obtaining the motif embedding and the position embedding, we directly summed
them to generate the uniform input representation X(0):

X(0) = αu + PE(,) (3)

where u indicates the motif embedding and α denotes the factor balancing the magnitude
between the motif embedding and the position embedding.

3.2.2. ProbDep Transformer Encoder

The transformer Encoder can utilize the self-attention mechanism to compute a
weighted sum across the representations of all regulatory motifs for learning each motif’s
high-order features. The attention weight between any two regulatory motifs depends on
their representations and distances, which allows the model to capture possible long-range
dependency. However, long-range dependency only occurs between a small fraction of
regulatory motif pairs, such as motifs of a TF and its cofactor. This leads to the sparse
distribution of the self-attention mechanism, that is, a few query–key pairs contribute to
the major attention, and others generate minor attention. Hence, we developed a Prob-
Dep Transformer Encoder to capture the bona fide long-range dependency, that is, the
query–key pair contributing to the major attention, for improving robustness and computa-
tional efficiency. The ProbDep Transformer Encoder comprises the long-range dependency
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measurement, the ProbDep self-attention, and the self-attention pooling. To further dis-
cuss the ProbDep Transformer Encoder, let qi, ki, vi stand for the i-th row in Q, K, V,
respectively, where Q indicates the query, K denotes the key and V refers to the value.

Long-range dependency measurement. The attention of the i-th query on all the
keys is defined as a probability p(km|qi). The output is its composition with vi, where a
query–key pair qikT

m indicates possible long-range dependency between two regulatory
motifs. A long-range dependency measurement aims to discover bona fide dependency by
finding dominant query–key pairs which encourage the attention probability distribution
of the corresponding query away from the uniform distribution. If p(km|qi) is close to
a uniform distribution q(km|qi) = 1/Lk, the self-attention mechanism becomes a mean-
ingless sum of V. We used Kullback–Leibler divergence between p(km|qi) and q(km|qi)
to determine the dominant queries for finding the dominate query–key pairs. Dropping
constants, the long-range dependency measurement of the i-th query is defined as:

M(qi, K) = In
Lk

∑
m=1

e
qikT

m√
d − 1

LK

LK

∑
m=1

qikT
m√

d
(4)

The first item indicates the Log-Sum-Exp of qi on all the keys, and the second item
denotes the arithmetic mean on them. If the i-th query gains a largerM(qi, K), its attention
probability p(km|qi) is more diverse and has a high possibility of containing the dominant
query–key pairs. To further improve the efficiency, we used an empirical approximation
for the computation of the long-range dependency measurement:

M̄(qi, K) = max
m

qikT
m√

d
− 1

LK

LK

∑
m=1

qikT
m√

d
(5)

In practice, we randomly sampled LKInLQ query–key pairs to compute M̄(qi, K), that
is, filling other pairs with zero, and chose Top-u from them as Q̄. Controlled by a constant
sampling factor c, we set u = c · InLQ.

ProbDep self-attention. Based on the long-range dependency measurement, we have
the ProbDep self-attention by allowing each key to only attend to the u dominant queries:

A(Q, K, V) = Softmax(
Q̄KT
√

d
)V (6)

where Q̄ indicates a sparse matrix of the same size as Q, and it only contains the Top-u
queries under the long-range dependency measurement.

Self-attention pooling. To reduce the redundant combinations of vi and make a fo-
cused self-attention feature map in the next layer, we developed self-attention pooling. The
procedure of self-attention pooling from the k-th layer into the (k+1)-th layer is defined as:

X (k+1) = MaxPool(Conv1d([X (k)]AB)) (7)

where [·]AB defines the operation of the ProbDep Transformer Encoder layer. Like the
Transformer Encoder, the ProbDep Transformer Encoder also adds residual connections
and a position-wise feed-forward layer.

3.2.3. Chromatin Accessibility Analyzer

The Chromatin Accessibility Analyzer comprises a Sequence Embedder and an Acces-
sibility Predictor. Specifically, the Sequence Embedder generates a low-dimension sequence
representation by integrating the regulatory grammars, including occupancy, position,
and long-range dependency of the regulatory motif, from ProbDep Transformer Encoder.
The Accessibility Predictor aims to infer cell-specific chromatin accessibility by a linear
transformation of sequence representation. The linear transformation’s weight matrix and
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intercept vector can be regarded as the low-dimension representation and the sequencing
depth of cells, respectively.

Sequence Embedder. The ProbDep Transformer Encoder’s output X (k+1) can be
regarded as a high-order embedding of the DNA sequence, which has redundant regulatory
grammar. To generate a low-redundant sequence embedding Z , Sequence Embedder map
X (k+1) into a low-dimension space by a convolutional layer and a feed-forward layer:

Z = ELU(W f (ELU(Conv1d(X (k+1)))) + b f ) (8)

where W f and b f indicate the weight matrix and the intercept vector of Sequence
Embedder, respectively.

Accessibility Predictor. Based on the sequence embedding Z , the Accessibility Pre-
dictor determines the accessibility probability in each cell by a linear layer:

y = σ(ZWp + bp) (9)

where Wp and bp indicate the weight matrix and the intercept vector of Accessibility
Predictor, respectively.

Loss function. Given the model prediction y = [y1, ..., yN ] and the binary label
ŷ = [ŷ1, ..., ŷN ], we chose the binary cross-entropy function as the loss function. The loss is
propagated back from the Predictor’s output across the entire model:

L(y, ŷ) =
1
N

N

∑
n=1

ynlogŷn + (1− yn)log(1− ŷn) (10)

where N indicates the number of cells.

3.2.4. Training and Implementation

We monitored the validation loss after every training epoch. Training is stopped
early when the validation loss is not decreased in five epochs. This stopping criterion
leads to training for around 40 epochs. We used the Adam optimizer to update the model
parameters. We randomly searched for hyper-parameters, including mini-batch size and
learning rate. The best performance was achieved with a mini-batch size of 16 and a
learning rate of 0.001. The chromatin accessibility modeler was implemented based on
PyTorch 1.6. All the procedures can be highly efficient vector operations and maintain
logarithmic total memory usage.

3.3. Cell Type Annotator Based on Cell Embedding

To annotate the cell type of each cell, we performed clustering on the cell embedding.
Based on the generated cell embedding, we first created a k-nearest neighbor (KNN) graph
with neighbors of 15 (implemented by the scanpy in Python), where each cell is represented
as a node and edges are drawn between cells within nearest neighbors defined by Euclidean
distance. Then, we applied the Louvain algorithm (implemented by the scanpy package
in Python), a community discovery algorithm, to detect the communities in the created
KNN graph. The communities indicate the groups of cells sharing similar embeddings,
possibly originating from the same cell type. Finally, we compare the clustering results
to the ground-truth cell type labels through ARI, AMI, and v-Score (implemented by the
scikit-learn package in Python). To display the results directly, we used UMAP (imple-
mented by the UMAP-learn package in Python) to visualize the cell embedding in the
two-dimensional space.

3.4. scATAC-Seq Data Denoiser Based on Predicted Chromatin Accessibility

To correct the false zero counts caused by dropout events in scATAC-seq data, we
developed a denoising approach that comprises a search and a recovery of dropout values.
Specifically, the search for dropout values utilizes a statistical model to discover which zero
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counts are affected by dropout events. The recovery of dropout values performs recovery
on discovered zero counts by using predicted chromatic accessibility.

Search of dropout values. Given a peak-by-cell matrix, we employ a probabilistic
mixture model to search which peaks are affected by the dropouts in which cells. This
model comprises a Gamma distribution and a normal distribution. The Gamma distribution
accounts for the dropouts, and the normal distribution indicates the bona fide counts of
the scATAC-seq peaks. We separately build probabilistic mixture models for different cell
clusters because the proportions of the Gamma distribution and the normal distribution for
each peak are different in various cell types.

For each peak i in cell type k, its count can be modeled as a random variable X(k)
i with

the dense function:

f
X(k)

i
(x) = λ

(k)
i Gamma(x; α

(k)
i , β

(k)
i ) + (1− λ

(k)
i )Normal(x; µ

(k)
i , σ

(k)
i ) (11)

where λ
(k)
i indicates the overall dropout rate of peak i in cell type k, α

(k)
i and β

(k)
i denote

the shape and rate parameters of the Gamma distribution, µ
(k)
i and σ

(k)
i refer to the mean

and the standard deviation of the normal distribution. The parameters in the probabilistic
mixture model are estimated by the Expectation–Maximization algorithm. Thus, the
dropout probability of peak i in cell m, which belongs to k, can be inferred as:

dim =
λ̂
(k)
i Gamma(Xim; α̂

(k)
i , β̂

(k)
i )

λ̂
(k)
i Gamma(Xim; α̂

(k)
i , β̂

(k)
i ) + (1− λ̂

(k)
i )Normal(Xim; µ̂

(k)
i , σ̂

(k)
i )

(12)

where dim indicates the dropout probability of peak i in cell m. λ̂
(k)
i , α̂

(k)
i , β̂

(k)
i , µ̂

(k)
i and σ̂

(k)
i

denote the inferred values of λ
(k)
i , α

(k)
i , β

(k)
i , µ

(k)
i and σ

(k)
i , respectively.

Recovery of dropout peaks. For each cell m, we first chose peak sets Am = {i : dim ≥
T} and Bm = {i : dim < T} based on the dropout probabilities of peaks in cell m, where T
indicates a threshold on the dropout probabilities. Am is a set that needs recovery, and Bm
is a set with an accurate peak count and does not require recovery. Then, for each peak i, we
gained candidate denoised counts in all cells by predicted chromatic accessibility. Finally,
let ri,m stand for the candidate denoised count of peak i in cell m, and we only recovered
the count of peaks in set Am:

x̂i,m =

{
xi,m, if i ∈ Bm

ri,m, if i ∈ Am
(13)

where xi,m and x̂i,m indicate the raw and recovered counts of peak i in cell m.

3.5. TF Activity Analyzer Based on Differential Accessibility Analysis

We developed the TF activity analyzer to study whether a TF is active at per-cell or
per-nucleotide resolution. Specifically, the TF activity analyzer comprises two functions:
single-cell TF activity inference and single-nucleotide TF activity.

Single-cell TF activity inference based on motif insertion. To compute a TF activity
score for each TF for each cell, we performed motif insertion on PROTRAIT. Specifically, we
first performed dinucleotide shuffling of randomly sampled scATAC-seq peaks to generate
genomic background sequences. For each TF, we downloaded the motif sequences from the
JASPAR database and inserted them into the center of each background sequence. Then,
we predicted normalized accessibility across all cells for both motif-inserted sequences
and background sequences by PROTRAIT. Finally, we took the difference in predicted
accessibility between motif-inserted sequences and background sequences as the motif
influence score for each sequence. For each cell, the averaged influence score across all
sequences can be regarded as a cell-level prediction of TF activity.
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Single-nucleotide TF activity inference based on ISM. To further compute a TF activ-
ity score at per-cell per-nucleotide resolution, we performed ISM for all single nucleotides
of a DNA sequence. We first calculated the change in accessibility in every cell after mu-
tating each position to its three alternative nucleotides. Then, we normalized the changed
accessibility for the four nucleotides at each position such that they sum to zero. For a
motif sequence, the normalized score at the reference nucleotide can be regarded as a
nucleotide-level prediction of TF activity.

4. Conclusions

In this paper, we developed a deep learning framework based on the ProdDep Trans-
former Encoder, called PROTRAIT, for scATAC-seq analysis. Compared to previous ap-
proaches for single-cell data analysis, PROTRAIT has three distinct characteristics: (i) it
utilizes the ProdDep Transformer Encoder to capture occupancy, position, and long-range
dependency of TF-DNA binding motifs from scATAC-seq peaks; (ii) it incorporates chro-
matin accessibility prediction, cell type annotation, scATAC-seq data denoising, and TF
activity inference into a unified framework; and (iii) it is easily scalable to large-scale
single-cell data analysis accelerated using GPU parallelism.

We applied PROTRAIT to scATAC-seq datasets from the Buenrostro study and com-
prehensively compare its performance with state-of-the-art analysis pipelines. Our ex-
perimental results demonstrate that PROTRAIT outperforms state-of-the-art channels in
chromatin accessibility prediction, cell type annotation, and scATAC-seq data denoising.
Furthermore, we designed in silico experiments and validated that PROTRAIT can query
for TF motif activity in single cells and single nucleotides. Finally, we confirmed the
scalability of PROTTAIT to million-cell datasets.

Several directions are foreseen to improve further and expand our approach. First, we
only used DNA sequences from the reference genome; however, many sequences may have
structural variations, such as insertions, deletions, and inversions, leading our approach
astray. Thus, employing single-cell chromatin accessibility and structural variation data
simultaneously to train our system may lead to better performance. Second, integrating
multiple molecular features from various modalities, such as chromatin accessibility, gene
expression, and protein abundance, is another promising research direction.
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