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Abstract: Phosphorus (P) is an essential macronutrient for plant growth. The roots are the main
organ for nutrient and water absorption in plants, and they adapt to low-P soils by altering their
architecture for enhancing absorption of inorganic phosphate (Pi). This review summarizes the
physiological and molecular mechanisms underlying the developmental responses of roots to Pi
starvation, including the primary root, lateral root, root hair, and root growth angle, in the dicot
model plant Arabidopsis thaliana and the monocot model plant rice (Oryza sativa). The importance of
different root traits and genes for breeding P-efficient roots in rice varieties for Pi-deficient soils are
also discussed, which we hope will benefit the genetic improvement of Pi uptake, Pi-use efficiency,
and crop yields.
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1. Introduction

Phosphorus (P), an essential macronutrient for plant growth, plays a central role
in a variety of vital processes, including energy generation, photosynthesis, glycolysis,
respiration, and nucleic acid and membrane lipid biosynthesis [1,2]. Inorganic phosphate
(Pi) is the predominant form of P that can be absorbed directly by plants [3]. Due to its low
mobility and high fixation rate, the availability of Pi in soils is very low, although the total
P content in most soils is high. The low-Pi availability in soils and the imminent scarcity of
the non-renewable Pi rock make Pi deficiency a major limitation on crop production [4].
Improving crop Pi uptake and Pi-use efficiency will be an important component of any
comprehensive strategy to achieve sustainable P use. Roots, the primary organ by which
plants sense and explore Pi, have a dominant influence on Pi uptake and plant yield [5,6].
Many papers have reviewed the changes in root architecture in response to Pi limitation in
the dicotyledonous model plant Arabidopsis thaliana; however, few have reviewed the root
architecture response to Pi limitation in monocotyledonous plants. Rice (Oryza sativa) is
one of the most important food crops in the world; developing varieties with Pi-efficient
root system under low P is a valid approach to enhance low Pi tolerance and yield in rice;
thus, understanding the mechanisms of root remodeling under Pi deficiency in this species
is of great importance. Increasing studies indicate that Arabidopsis and rice have different
root architectures and regulatory mechanisms in response to Pi deprivation; however, the
similarities and differences in the phenotype and molecular mechanism of root response
to Pi deficiency between Arabidopsis and rice are still unclear. This review compares the
conserved and divergent aspects of the root response to Pi deprivation in Arabidopsis and
rice with a focus on the integrated physiological and molecular mechanisms, which we
hope will benefit the genetic improvement of crop Pi efficiency.
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2. Root Response to Pi Deficiency in Arabidopsis and Rice
2.1. Root Morphology of Arabidopsis and Rice

Arabidopsis has a taproot system, which consists of a single thick primary root
(PR) and multiple lateral roots (LRs), all of which have surface area-enhancing root hairs
(RHs) [7]. The PR originates from the embryo, while LRs emerge from the PR and other LRs
through LR primordia that initiate from pericycle founder cells [8]. RHs are differentiated,
initiated, and elongated from RH-destined epidermal H-cells located on the PR and LRs
and play roles in absorbing nutrients and water, as well as anchoring the root into the
soil [8,9]. LRs tend to grow from the PR at a specific angle, named the root growth angle
(RGA), allowing the roots to explore the soil nutrients and water more effectively [10]. The
RGA is an important component of the Arabidopsis root system, regulating and optimizing
its radial spread.

In contrast to Arabidopsis, rice bears a fibrous root system consisting of a PR and
multiple crown roots (CRs, or adventitious roots), LRs, and RHs. CRs are shoot-borne roots
that initiate from parenchyma cells at the base of the stem [11]. LRs in rice are generated
on the PR and the CRs. RHs emerge from the PR, CRs, and LRs, accounting for a large
portion of the root surface area [12]. Unlike in Arabidopsis, the rice PR is only important at
the early stage of seedling development, after which its anchoring role is gradually taken
on by the CRs. The RGA is an important component of the root system in rice, just as it is
in Arabidopsis, functioning to ensure roots are properly distributed in the soil to explore
the soil nutrient and water resources [13]. The RGA in rice mainly depends on the angle
between the CRs and the direction of gravity, although the angle between the LRs and the
CRs also contributes to the overall RGA. In Arabidopsis, the RGA mainly depends on the
angle between the LRs and the direction of gravity (or the PR).

2.2. Root Response to Pi Deprivation in Arabidopsis and Rice

In most studies in Arabidopsis, Pi deficiency inhibits PR growth and enhances LR and
RH growth to increase the total root surface area [14]. Under Pi deprivation, the reduction
of cell elongation in the PR elongation zone is followed by defects in the stem cells and
the progressive exhaustion of meristematic cells in its meristematic region, resulting in the
growth inhibition of the PR [15]. Further studies indicated that iron (Fe) plays an important
role in the Pi-dependent inhibition of PR growth. The degree of PR inhibition in Ara-
bidopsis was positively correlated with the levels of Fe, and this Fe-dependent inhibition
could be abolished in a Pi-limited medium by adding Fe scavengers [16]. Later, Müller
et al. reported that the Fe3+-dependent accumulation of callose in the apoplast of the stem
cell niche contributed to the loss of stem cells and the resulting meristematic cell exhaus-
tion [17]. Mora-Macías et al. further indicated that malate-dependent Fe accumulation in
the apoplast triggers the Pi-dependent differentiation of meristematic cells in the root apical
meristem [18]. In addition, Zheng et al. reported that blue light is not only required but
also sufficient to inhibit PR growth through a blue-light-mediated photo-Fenton reaction
that converts Fe3+ to Fe2+ under Pi deficiency [19]. Interestingly, a recent study found
that the degree of PR inhibition induced by Pi deficiency is not linked to the level of Fe
accumulated in the root apical meristem or the elongation zone [20]. Taken together, these
findings show that Fe accumulation is a critical checkpoint in the inhibition of PR growth
under Pi deprivation.

By contrast, hormones play irreplaceable roles in altering LR and RH growth and the
RGA in response to Pi starvation [21,22]; for example, the Pi deficiency–induced LR growth
in wild-type Arabidopsis was not observed in strigolactone (SL)-deficient mutants [23]. Low
Pi resulted in larger RGAs for the LRs in Arabidopsis in an auxin-dependent manner [24].
Auxin also promotes RH growth in Pi-limited Arabidopsis roots [25]. In addition, sucrose
also participates in the root development response to Pi starvation [26,27]. Due to limited
space, we will not discuss it here as it has been well documented in the reviews [26,27].

Compared with Arabidopsis, the Pi starvation response in rice is quite diverse and
complicated. In hydroponic systems, rice plants showed either an enhanced or unaffected
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PR growth under Pi-deficient conditions, depending on the genetic background [28]; how-
ever, some studies contrastingly reported that slight Pi deficiency promotes root growth,
while mild and severe Pi deficiency suppresses root growth in this crop [14]. Similarly, an
increase or no change in LR elongation is reported in hydroponic culture among different
rice varieties grown under low P [28,29]. Using a sand culture system, which mimics
realistic soil Pi availability, Vejchasarn et al. showed that low Pi reduced LR density and
length but increased RH length and density in all 15 tested rice varieties [30]. Interestingly,
Nestler et al. reported that rice plants grown in low-Pi soil produced shorter RHs than
those grown in Pi-sufficient soil [31]. In addition, a recent study indicated that Pi deficiency
induced a shallower root system in rice by modifying root gravitropism in the soil [32].

To date, the root morphology and architectural response to Pi deficiency are relatively
clear in Arabidopsis under controlled growth conditions, while it is still ambiguous in
rice. The complex interactions between the growth conditions and genetic variability make
it difficult to study the root architectural response under low-Pi soil conditions. With
the development of modern technology, the precise study of root morphology and the
architectural response to Pi deficiency in the soil should quickly progress.

3. Molecular Mechanisms Underlying the Root Response to Pi Deficiency
3.1. Molecular Mechanisms Underlying PR (and CR in Rice) Growth under Pi Deprivation in
Arabidopsis and Rice
3.1.1. Fe Accumulation Is Responsible for Inhibiting PR Growth under Pi Deficiency

The molecular mechanisms underlying the Pi deprivation-mediated inhibition of
PR growth in Arabidopsis are relatively clear. Fe accumulation is known to impact PR
growth; for example, malate-dependent Fe accumulation contributes to the inhibition of
PR growth under Pi deficiency in Arabidopsis [33]. Based on forward genetics, a series
of genes involved in this process were identified through screening mutants with longer
or shorter roots than the wild type under Pi-deficient conditions. The low phosphate root 1
(lpr1) mutant had a wild-type phenotype under Pi-replete conditions but displayed less
inhibited PR growth and reduced Fe3+ accumulation in the root apoplast under Pi-limited
conditions [34]. Further study indicated that AtLPR1 belongs to a multicopper oxidase
family, possessing ferroxidase activities that convert Fe2+ to Fe3+ in the apoplast [17,34].
AtLPR2, a close paralog of AtLPR1 in Arabidopsis, also functions as a ferroxidase but plays
a less important role in Pi deficiency–induced PR inhibition than AtLPR1 [35]. The phosphate
deficiency response 2 (pdr2) mutant over-accumulated Fe3+ in the root apoplast, causing an
enhanced inhibition of PR growth under low-Pi conditions [36]. AtPDR2 encodes a P5-type
ATPase, which is thought to control AtLPR1 biogenesis or AtLPR1-reactant Fe availability
in the apoplast [36].

Later, ALUMINUM-ACTIVATED MALATE TRANSPORTER 1 (AtALMT1) was re-
ported to regulate the rapid inhibition of cell elongation in the transition zone in response
to low-Pi availability by exuding malate [33,37]. The zinc-finger transcription factor SEN-
SITIVE TO PROTON RHIZOTOXICITY 1 (AtSTOP1) acts as the master regulator for
the Pi deficiency-mediated inhibition of PR growth by accumulating in the nucleus and
directly upregulating the expression of AtALMT1 under low-Pi conditions [33,38]. ALU-
MINUM SENSIRIVE 3 (AtALS3), encoding the transmembrane domain of a putative ABC
(ABC-binding cassette) transporter, and SENSITIVE TO AL RHIZOTOXICITY 1 (AtSTAR1),
encoding the nucleotide-binding domain of the same ABC transporter, have also been
reported to be involved in PR inhibition under Pi deficiency [39]. The atals3 and atstar1
mutants showed an enhanced accumulation of Fe in the root apoplast, which resulted in
their hypersensitive PR inhibition phenotypes under Pi deficiency [39]. AtALS3 and At-
STAR1 form a typical ABC transporter protein complex. Under Pi-deficient conditions, the
activity of this AtALS3/AtSTAR1 transporter was reduced, promoting the accumulation of
AtSTOP1 in the nucleus and, thereby, increasing the expression of AtALMT1 to inhibit the
growth of the PR [20]. A recent study found that low Pi triggers the uptake of ammonium,
causing the rapid acidification of the root surface. This rhizosphere acidification triggers
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the accumulation of AtSTOP1 in the nucleus, which then triggers the AtALMT1-mediated
excretion of malate to start the root developmental responses [40]. In addition, Fe2+/3+ were
reported to directly increase the accumulation of AtSTOP1 in the nucleus by inhibiting
its proteasomal degradation in a pH-dependent manner [41]. A possible mechanism by
which low Pi inhibits PR growth in Arabidopsis, proposed by Dong Liu [14], is that P
deficiency results in a low pH and the accumulation of Fe, which stimulates AtSTOP1
accumulation in the nucleus and upregulates the expression of AtALMT1. This, in turn,
promotes the excretion of malate into the root apoplast, where the malate–Fe3+ complex
is formed when AtLPR1 is functional. The low-pH environment and blue light together
promote the conversion of malate–Fe3+ into Fe2+ via a photo-Fenton reaction, after which
Fe2+ reacts with H2O2 to produce hydroxyl radicals and Fe3+ via a Fenton reaction. This
Fe redox cycle causes the continual production of hydroxyl radicals, which inhibit PR
growth [14].

Recently, more genes have been found to be involved in this AtSTOP1–AtALMT1
signaling network; for example, AtSIZ1 (SAP and Miz 1), encoding a SUMO E3 ligase,
negatively regulates AtSTOP1 signaling and the expression of AtALMT1 [42,43]. In addition,
the transcription factor AtWRKY33 has been reported to function as a negative regulator for
Pi deficiency-inhibited PR growth by regulating the expression of AtALMT1 and subsequent
Fe3+ accumulation in Arabidopsis root tips [44]. AtWRKY33-deficient mutants were more
sensitive to low Pi, producing a shorter PR than the wild type under Pi-limited conditions.

Unlike Arabidopsis, rice plants exhibit more PR and CR growth when grown in
Pi-deficient conditions, the extent of which depends on their genetic background. This
contrast suggests that rice and Arabidopsis use different mechanisms to control the root
response to Pi limitation. Low Pi increased the expression of the five AtLPR1 homologous
genes in rice [45,46], including OsLPR5, which was previously functionally characterized
as a ferroxidase encoding gene [47]. The overexpression of OsLRP5 increased the Fe3+

concentration in the xylem sap, and the total Fe content in the rice roots and shoots.
OsPDR2, a homolog of Arabidopsis AtPDR2, plays an important role in root development
and Pi homeostasis in rice [48]; however, the mutation of OsLRP5 and OsPDR2 resulted
in shorter PRs and CRs than the wild type, irrespective of the Pi conditions [47,48]. In
addition, OsWRKY74-overexpressing plants produced a longer PR and accumulated more
Fe than the wild-type plants under Pi-limited conditions, whereas the OsWRKY74 RNAi
plants produced a shorter PR [49]. This result indicates that OsWRKY74 is involved in the Pi
and Fe starvation responses and may act as an integrator of these stress response pathways
in rice. It also highlights the important roles of WRKY family members in Pi-dependent PR
growth in Arabidopsis and rice.

3.1.2. Plant Hormone Signaling Pathways Are Involved in PR (and CR in Rice) Growth
under Pi Deficiency

Auxin plays fundamental roles in regulating Pi-dependent PR (and CR in rice) growth.
The osaux4 (rice homolog of Arabidopsis auxin resistant 4) mutant, which has an aberrant auxin
content and distribution, is insensitive to Pi starvation, suggesting that OsAUX4 positively
regulates PR and CR elongation in response to low Pi [50]. The auxin efflux transporter
PIN-FORMED 1b (OsPIN1b) affects PR and CR elongation by regulating the root apical
meristem activity under low-Pi conditions [51]. In addition, the loss-of-function mutants of
AUXIN RESPONSE FACTOR 12 (OsARF12) and OsARF25 showed a reduced sensitivity to
Pi deficiency in the PR and CR response [52]. These results suggest that auxin mediates
PR and CR remodeling in response to Pi deficiency in rice. The attenuated sensitivity of Pi
deficiency–inhibited PR growth in mutants of the auxin influx transporter gene AtAUX1
or in triple mutants of the auxin receptor gene TRANSPORT INHIBITOR RESPONSE 1
(AtTIR1) and its closest paralogs, encoding the auxin signaling F-box proteins 2 and 3,
highlights the important role of auxin in this process in Arabidopsis [21,53].

In Arabidopsis, AtSIZ1 regulates PR remodeling under Pi deficiency in an auxin-
dependent way [54,55]. The expression of the auxin-responsive genes was unchanged in
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the atsiz1 mutant, but under Pi-starved conditions it accumulated auxin earlier in its roots
than did the wild-type plants. By contrast, this auxin-dependent root architecture alteration
under Pi deficiency was not observed in the ossiz1 and ossiz2 mutants in rice, the homologs
of Arabidopsis SIZ1 [56,57]. The ossiz1 mutant had shorter PRs and CRs than the wild type,
independent of the Pi status in the environment. Ding et al. investigated the role of auxin
in Pi-dependent root elongation in rice using three varieties [58], revealing that Pi-starved
Tongjing981 (TJ981) and Zhendao99 (ZD99) had a longer PR than they did under normal
Pi, whereas Zhenghan6 (ZH6) produced a shorter PR under Pi starvation than it did under
normal Pi. They further indicated that Pi deficiency increased the indole-3-acetic acid (IAA)
contents in TJ981 and ZD99 but decreased the IAA content in ZH6. This increased IAA
content induced the expression of expansin genes and the activation of expansin proteins,
leading to cell wall relaxation and root elongation in TJ981 and ZD99. By contrast, the
expansin genes were downregulated in Pi-starved ZH6, resulting in its shorter PR. Auxin
is therefore involved in regulating Pi-dependent PR growth in both Arabidopsis and rice.

Ethylene is another important plant hormone regulating PR growth in response to Pi
starvation [59]. HYPERSENSITIVE TO PI STARVATION 4 (AtHPS4), a new allele of SABRE
encoding an important regulator of cell expansion, is known to respond to Pi starvation
by interacting with ethylene signaling [59,60]. The athps4 mutant displayed a shorter PR
than the wild type under high-Pi conditions, but also exhibited a stronger inhibition of
PR growth under low-Pi conditions. Silver ions (Ag+), an inhibitor of ethylene action,
suppressed this response, confirming the important role of ethylene in HPS4-dependent
PR inhibition in response to low Pi. AtHPS7 (a tyrosylprotein sulfotransferase), AtHPS3,
and ETHYLENE OVERPRODUCTION 1 (AtETO1) also regulate Pi-dependent PR growth
through the ethylene signaling pathway [61–63]. The athps7 mutant displayed an ex-
aggerated inhibition of PR growth, accompanied by an elevated expression of ethylene
biosynthesis genes, compared with the wild-type plants under low-Pi conditions. Similarly,
low Pi inhibited the PR growth of the athps3 mutant, which was attributed to the overpro-
duction of ethylene under the regulation of AMINOCYCLOPROPANE-1-CARBOXYLATE
SYNTHASE 4 (AtACS5), the rate-limiting enzyme in ethylene biosynthesis. Recently, the
transcription factor Arabidopsis NAM/ATAF/CUC protein 44 (ANAC044) was illustrated
to alter the PR length in Arabidopsis under Pi starvation conditions by increasing the cell
wall Pi reutilization in an ethylene-dependent manner [64]. The anac044 mutant produced
a longer PR than the wild type under Pi-limited conditions by regulating the expression of
ethylene production genes. The role of ethylene in regulating PR growth in response to Pi
starvation in rice has not been reported yet.

Gibberellin (GA) also participates in the Pi deficiency-mediated inhibition of PR
growth [65]. GA stimulates growth by promoting the destruction of DELLA proteins in the
26S proteasome. The DELLA-deficient plants do not exhibit the Pi starvation–induced PR
growth inhibition observed in the wild type [66]. AtMYB62, an R2R3-type transcription
factor that regulates the GA metabolism and signaling in Arabidopsis, affects the PR
growth response to Pi availability [65]. AtMYB62-overexpressing plants have shorter PRs
than wild-type plants under Pi-replete conditions but showed comparable PR lengths
under Pi-limited conditions. In rice, OsMYB1 affects both Pi starvation signaling and GA
biosynthesis, with the osmyb1 mutant producing a longer PR than the wild type under Pi
starvation, independent of GA [67].

Small signaling peptides are also involved in the Pi-dependent inhibition of PR growth.
The small signaling peptide CLAVATA3/EMBRYO SURROUNDING REGION 14 (At-
CLE14) has been proven to play a major role in the exhaustion of the meristematic cells
under Pi-limited conditions [68]. The expression of AtCLE14 in the proximal meristem
region was enhanced via Fe mobilization in the root apical meristem under the control
of AtLPR1/AtLPR2. Low-Pi conditions induced AtCLE14 expression, with the resulting
peptide perceived by the receptors CLAVATA2 (AtCLV2) and PEP1 RECEPTOR 2 (At-
PEPR2), leading to the downregulation of SHORT ROOT/SCARECROW (AtSHR/AtSCR),
WUSCHEL-RELATED HOMEOBOX5 (AtWOX5), and the PIN proteins, which are involved
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in the maintenance of the root stem cell niche. This resulted in root meristem exhaustion
and the inhibition of PR growth.

In addition to the above regulatory mechanisms, CASEIN KINASE 2 (AtCK2) was
recently suggested to trigger Pi starvation-induced stem cell exhaustion and thus inhibit PR
growth by activating the DNA damage–response pathway in Arabidopsis [69]. Whether
OsCK2 and its interactors affect Pi-dependent root exhaustion in rice has yet to be investi-
gated, however. On the other hand, the leaf tip necrosis1 (ltn1) mutant of the putative rice
orthologous gene of PHOSPHATE 2 (PHO2) in Arabidopsis had longer PR and CRs than
the wild type under Pi-limited conditions; however, there was no difference in PR and CR
length between ltn1 and the wild type under Pi-replete conditions [70]. The ltn1 mutant
had a greater Pi content in the shoot but lower Pi content in the root compared with the
wild type, suggesting that this decreased Pi content in the roots of ltn1 may contribute to its
longer PR and CRs under Pi deficiency. However, it has not been determined yet whether
the root of Arabidopsis pho2 responds to Pi deficiency.

In summary, the molecular mechanisms by which low Pi inhibits PR growth are well
studied in Arabidopsis (Figure 1). In rice, low Pi either promotes root growth or does not
affect PR or CR growth, depending on the genetic background.
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Figure 1. A working model of the molecular mechanisms by which Pi starvation inhibits PR growth
in Arabidopsis and rice. (A) The working model for Pi-dependent PR growth (rice homologous genes
are labeled). The model is modified from that of Liu et al. (2021), with updated genes in Arabidopsis
and rice. Arrows with solid lines indicate a promotion, dashed arrows represent unconfirmed events,
and blunt arrows represent negative regulation. (B) Hormone signaling pathway genes known to be
involved in the Pi deficiency-mediated regulation of PR growth in Arabidopsis and rice.
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3.2. The Molecular Mechanisms Underlying the LR Response to Pi Limitation

Auxin acts as the major determinant in the Pi deficiency-induced establishment of
the LR primordium and LR emergence [25]. The auxin receptor AtTIR1 and two auxin
response factors, AtARF7 and AtARF19, are responsible for the increase in LR density un-
der Pi-deficient conditions in Arabidopsis [53,71]. Under low-Pi conditions, the increased
expression of AtTIR1 triggers the degradation of the AUX/IAA proteins, releasing the
ARF transcription factors to regulate the expression of the genes responsible for LR forma-
tion and emergence [53,72,73]. In addition, under low-Pi conditions, AtTIR1 upregulates
AtARF7 and AtARF19 which, in turn, directly regulate the expression of PHOSPHATE
STARVATION RESPONSE 1 (AtPHR1), which encodes the core transcription factor regu-
lating the expression of the P starvation response genes [74,75]. The impaired LR growth
in the arf7 arf19 double mutant under Pi-limited conditions could be partially rescued by
constitutively expressing AtPHR1. Under Pi-limited conditions, the phr1 mutants produced
fewer LRs, while the AtPHR1-overexpressing plants displayed an increased LR number.
These results suggest that the formation of LRs in response to Pi limitation is partially
mediated by AtPHR1 in Arabidopsis.

Similarly, in rice, auxin plays an important role in LR remodeling under Pi starvation.
The LRs of the osarf16 mutant showed less of a response to Pi deficiency than those of
the wild type, suggesting that OsARF16 positively regulates the LR response to Pi defi-
ciency [76]. Under Pi-deficient conditions, the LR number and density underwent a greater
increase in the osarf12 mutants than in the wild type, suggesting that OsARF12 negatively
regulates the LR response to Pi deficiency [77]. In addition, the phosphate transporter
OsPHT1;8 affects Pi-dependent root growth, probably by regulating the distribution or
polar transport of auxin [78]. This likely involved a feedback loop, as OsPHT1;8 expression
was in turn induced by IAA. Plants overexpressing OsPHT1;8 produced more LRs than
the wild type under Pi-replete conditions, but not under Pi-limited conditions. The OsPIN
genes were upregulated in the OsPHT1;8-overexpressing plants under Pi-sufficient con-
ditions, but not under Pi-limited conditions, further highlighting the interplay between
auxin signaling and Pi signaling.

The SLs are also involved in regulating LR formation under low-Pi conditions in a
MORE AXILLIARY BRANCHING 2 (AtMAX2)-dependent manner [23,79,80]. AtMAX2
encodes an F-box protein, which is a part of the Skp-Cullin-F-box (SCF) E3 ligase complex.
Mutants of AtMAX2 (SL signaling) or AtMAX4 (SL biosynthesis) showed a reduced LR
response to low-Pi conditions in comparison with the wild type, suggesting that SLs play a
role in Pi-dependent LR formation [79,80].

In rice, the SL biosynthesis genes D10 and D27 and the SL signaling gene D3 (a ho-
mologous gene of AtMAX2) are responsible for regulating Pi-dependent LR formation [22].
Compared with the wild type, the d10, d27, or d3 mutants showed a loss of sensitivity in the
LR response to Pi deficiency. It was suggested that D3 regulates the transport of auxin from
shoot to root by modifying the expression level of the PIN family genes [22]. Although SLs
play an important role in Pi-dependent LR growth in rice, the detailed molecular mecha-
nism underlying SL signaling in this process requires further investigation. In addition,
a recent study found that Pi deficiency inhibits LR growth in mutants of OsACS1, which
catalyzes the rate-limiting step in ethylene biosynthesis in rice, suggesting that ethylene is
also involved in low-Pi-mediated LR growth [81].

Taken together, the above knowledge demonstrates that although the LR response to
Pi limitation differs between rice and Arabidopsis, the underlying molecular mechanisms
seem to be conserved between them (Figure 2).
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Figure 2. A working model of the molecular mechanisms underlying Pi starvation-induced LR
growth in Arabidopsis and rice. Arrows with solid lines indicate a promotion, dashed arrows
represent unconfirmed events, and blunt arrows represent negative regulation. Names in bold
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3.3. The Molecular Mechanisms Underlying the RH Response to Pi Limitation

Auxin is essential for RH growth in Pi-limited Arabidopsis [25]. Knocking out TRYP-
TOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (AtTAA1), an auxin biosynthesis
gene, disrupted the promotion of RH by low-Pi conditions [25]. The RHs in the ataux1
and atpin2 mutants are not responsive to low-Pi conditions, suggesting that AtAUX1- and
AtPIN2-mediated auxin distribution is essential for RH growth when Pi is limited [82].
Similarly, the RHs of osaux1 were insensitive to the external Pi concentration, suggesting
that the auxin transport pathway required for the RH response to Pi starvation is conserved
in rice and Arabidopsis [83]. ROOT HAIR DEFECTIVE 6-LIKE 2 (AtRSL2) and AtRSL4
are basic helix-loop-helix (bHLH) family transcription factors, which play crucial roles
in RH morphogenesis during the RH elongation stage [84,85]. This suggests that, under
low-Pi conditions, auxin levels are upregulated at the root tip, increasing the AtARF19,
AtRSL2, and AtRSL4 expression levels to trigger RH elongation through the regulation of
the various RH-related genes [25].

Recently, KARRIKIN INSENSITIVE 2 (AtKAI2) was reported to regulate the Pi
starvation-promoted RH density and elongation through the ethylene signaling path-
way [86]. AtKAI2 is an alpha/beta-hydrolase required for the plant response to karrikins,
which are smoke-derived compounds mimicking endogenous signaling molecules [87].
AtKAI2 interacts with AtMAX2 to mediate the degradation of the target regulator SUP-
PRESSOR of MAX2 (AtSMAX2) in a proteasome-mediated manner [88]. Low-Pi availability
increases the expression of AtKAI2 and AtMAX2 and then represses the expression of
AtACS7, an ethylene precursor, subsequently triggering ethylene biosynthesis and sig-
naling in the root via the degradation of AtSMAX1 and SMAX1-LIKE 2 (AtSMXL2) [86].
Subsequently, ethylene enhances AtAUX1 accumulation in the LR cap and epidermis, and
AtPIN2 accumulation in the meristematic and elongation zones, resulting in RH elonga-
tion [86]. ETHYLENE INSENSITIVE 3 (AtEIN3), the master transcription factor in ethylene
signaling, functions antagonistically with AtMYB30, a R2R3-MYB family transcription
factor, in promoting RH growth under Pi deficiency [89,90]. The atmyb30 mutant displayed
longer RHs, while AtMYB30-overexpressing plants had shorter RHs than those of the wild
type under Pi-limited conditions. By contrast, the RHs in atein3-1 were shorter than those
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of the wild type under Pi deficiency. Furthermore, the RHs of atmyb30-1 atein3-1 were
shorter than those of atmyb30-1 but longer than the atein3-1 RHs under Pi-limited condi-
tions, demonstrating the antagonistic relationship between AtMYB30 and AtEIN3. Another
study indicated that AtMYB30 and AtEIN3 antagonistically regulate the transcription level
of AtRSL4 and other RH genes [90].

Cytokinins also play a vital role in Pi deficiency-induced RH growth [91,92]. The
phosphoribohydrolase LONELY GUY 4 (AtLOG4) and its close homolog AtLOG3, which
are rate-limiting enzymes in converting cytokinin into its bioactive form, function to-
gether to regulate Pi-dependent RH growth. AtLOG3 and AtLOG4 can be upregulated by
the heterodimer transcription factor complex MONOPTEROS 5–LONESOME HIGHWAY
(AtTMO5–LHW). Wendrich et al. further proposed that low Pi increases auxin signaling,
which then induces localized cytokinin biosynthesis through the enhanced AtTMO5–LHW
pathway. The biosynthesized cytokinin might then diffuse from the vasculature to the
epidermal cells to modify their length and cell fate, contributing to RH growth [91].

SL regulates Pi starvation-promoted RH elongation through the same signaling path-
way as LR growth in an AtMAX2-dependent manner [79,80]. In addition, the homeodomain
protein ALFIN-LIKE 6 (AtAL6) is another key regulator of the RH response to Pi starva-
tion [93]; the atal6 mutant has shorter RHs than those of the wild type under Pi-limited
conditions. Chandrika et al. suggested that AtAL6 might control RH elongation under
Pi-limited conditions by regulating the expression of ENHANCER OF TRY AND CPC1
(AtETC1), which functions in promoting the RH cell fate [93,94].

Taken together, Pi limitation affects RH growth through a completed regulatory net-
work in Arabidopsis, which is summarized in Figure 3; however, the molecular mechanisms
underlying Pi-dependent RH growth in rice have yet to be investigated.
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3.4. Response of the RGA to Pi Limitation

A topsoil foraging root system containing shallower roots (greater RGA) is assumed
to improve Pi acquisition efficiency in crops [95]. Pi deficiency promotes a greater RGA
in an auxin-dependent manner in Arabidopsis [53,96]. This effect was not observed in
the attir1 atafb3 double mutant, however, indicating that the AtTIR1/AtAFB-mediated
auxin signaling pathway plays an important role in RGA remodeling under Pi-deficient
conditions [96]. Similarly in rice, Pi deficiency induces shallower root growth (bigger
angles between the CRs and the direction of gravity). The rice actin-binding protein
RICE MORPHOLOGY DETERMINANT 1 (OsRMD1) has been found to play a key role in
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regulating the CR growth angles in response to Pi [32]. OsRMD1 is localized on the statolith
surface of the columella cells, controlling statolith sedimentation in response to gravitropic
stimuli in the root tip by binding actin filaments and statoliths. The loss-of-function mutant
osrmd1 produced smaller RGAs caused by the faster movement of statoliths, making the
mutant unresponsive to low Pi [32].

Greater RGAs contribute to improving the root surface area for Pi exploring; however,
the molecular mechanisms underlying low-Pi-mediated RGA remodeling have yet to be
investigated.

4. Hints for Improving Pi-Efficient Root Architecture in Crops

Improving crop Pi-use efficiency is urgently needed in modern agriculture due to the
depletion of Pi ores, low P-use efficiency in crops, and increasing ecological concerns about
excessive P use. Roots are the organ by which plants take up water and nutrients critical
for growth and crop yields. The gramineous crops have a fibrous root system composed of
PR, CRs, LRs, and RHs. Recently, Kuppe et al. revealed that, with hairs on the respective
root types, the CRs were responsible for 48.8% of the total P uptake, while large LRs and
small LRs (<1 cm length and <80 µm diameter) took up 20.6% and 30.6% of the total P
uptake, respectively [97], suggesting that genotypes with more and longer CRs and LRs
would be better for adapting to low-Pi soils. One example is the OsPSTOL1-overexpressing
plants harbor larger root systems with more CRs and a higher root dry weight, which
enables them to take up not only more Pi but also other nutrients, such as nitrogen and
potassium, providing more nutrients for growth and yield [98,99]. Another example is
DJ123, a variety with a much larger root system and high root vigor, which shows a better
adaptation to low-Pi conditions and better responsiveness to fertilizer applications, with a
relatively high grain yield in low-P African soils than Nerica4 (a popular rice variety in
Africa) [100,101]. DJ123 contains twice the number of CRs, longer and denser RHs than the
other nine tested modern rice varieties, which contributed to its superior Pi uptake under
Pi-deficient conditions [100,102–104].

Pi largely accumulates in the topsoil in the field; therefore, plants with a large RGA are
Pi uptake-efficient. The quantitative trait locus for SOIL SURFACE ROOTING 1 (OsqSOR1)
and DEEP ROOTING 1 (OsDRO1) QTLs were found to be associated with the RGA via
QTL mapping [105–107]. Oo et al. (2021) compared the growth of the near-isogenic lines
(NILs) qsor1-NIL, Dro1-NIL, and IR64, which produced shallow, deep, and intermediate
RGAs, respectively, in soils in which Pi accumulated in the surface layer. The qsor1-NIL
plants with shallow root growth had the greatest biomass and Pi uptake, suggesting that a
shallow root system is beneficial for rice Pi uptake [108].

Identifying the genes underlying the ideal root traits is important for breeding nutrient-
efficient and high-yielding rice varieties; thus, it is important to identify the genotypic
variations underlying changes in the numbers, lengths, and densities of the CRs, LRs, and
RHs (known candidate genes are summarized in Table 1). Modern molecular breeding
technologies can facilitate genome-wide elite allele selection, which in combination with
gene editing and transgene techniques will greatly speed up the breeding of ideal root ar-
chitectures to produce nutrient-efficient, high-yielding, and widely adaptable rice varieties.
On the other hand, breeding a smart rice that can adjust its root system according to the
soil nutrient levels could optimize the uptake and use efficiency of Pi or other nutrients.
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Table 1. List of known root-related genes affecting the adaptation to low Pi in rice.

Gene Phenotype Compared with the Wild Type Function
Category Reference

OsWRKY74
Longer PRs in OsWRKY74-overexpressing

plants, shorter PRs in OsWRKY74 RNAi plants
under Pi deficiency

WRKY
transcription

factor
[49]

OsAUX4 osaux4 produced a shorter PR under Pi-replete
conditions but was insensitive to Pi deficiency

Auxin influx
carrier [50]

OsAUX1 osaux1 produced shorter RHs under Pi-replete
conditions but was insensitive to Pi deficiency

Auxin influx
carrier [83]

OsPIN1b
ospin1b produced shorter PRs and CRs under
Pi-replete conditions but was insensitive to Pi

deficiency

Auxin efflux
transporter [51]

OsARF12
osarf12 produced more CRs, an increased

number and density of LRs, and longer RHs
under Pi-limited conditions

Auxin response
factor [52]

OsARF16 osarf16 produced fewer LRs and shorter RHs
under Pi-limited conditions

Auxin response
factor [76]

OsMYB1 osmyb1 produced a longer PR under Pi-limited
conditions

MYB transcription
factor [67]

LTN1 ltn1 produced longer PRs and CRs under
Pi-limited conditions

A ubiquitin-
conjugase [70]

OsPHT1;8

OsPHT1;8-overexpressing plants produced
shorter PRs and CRs, but more LRs and RHs

under Pi-replete conditions, but were
insensitive to Pi deficiency

Phosphate
transporter [78]

D10/D27
d10, d27 mutants produced shorter PRs and CRs
and more LRs under Pi-replete conditions but

were less sensitive to Pi deficiency

SL biosynthesis
genes [22]

D3
d3 produced shorter PRs and CRs and more LRs
under Pi-sufficiency but was less sensitive to Pi

deficiency
SL signaling gene [22]

OsACS1 osacs1 produced fewer LRs under Pi-replete
conditions but was less sensitive to Pi deficiency

Ethylene
biosynthesis gene [81]

OsRMD1 osrmd1 had a smaller RGA An actin-binding
protein [32]

OsPSTOL1

PSTOL1-overexpressing plants produced a
larger root system with more CRs and a higher
root dry weight, as well as an enhanced grain

yield in the IR64 and Nipponbare backgrounds
in Pi-deficient soils

Protein kinase [98,99]

OsqSOR1

Plants containing the elite allele at this QTL
produced shallow roots with a greater biomass

and Pi uptake than the other two lines,
Dro1-NIL and IR64, which had deep and

intermediate RGAs, respectively

A homolog of
DRO1 that
functions

downstream of
the auxin
signaling
pathway

[108]
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