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Abstract: Ferulic acid (FA), a prevalent dietary phytochemical, has many pharmacological effects, in-
cluding anti-oxidation and anti-inflammation effects, and has been widely used in the pharmaceutical,
food, and cosmetics industries. Many studies have shown that FA can significantly downregulate the
expression of reactive oxygen species and activate nuclear factor erythroid-2-related factor-2/heme
oxygenase-1 signaling, exerting anti-oxidative effects. The anti-inflammatory effect of FA is mainly
related to the p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways.
FA has demonstrated potential clinical applications in the treatment of pulmonary diseases. The
transforming growth factor-β1/small mothers against decapentaplegic 3 signaling pathway can
be blocked by FA, thereby alleviating pulmonary fibrosis. Moreover, in the context of asthma, the
T helper cell 1/2 imbalance is restored by FA. Furthermore, FA ameliorates acute lung injury by
inhibiting nuclear factor-kappaB and mitogen-activated protein kinase pathways via toll-like receptor
4, consequently decreasing the expression of downstream inflammatory mediators. Additionally,
there is a moderate neuraminidase inhibitory activity showing a tendency to reduce the interleukin-8
level in response to influenza virus infections. Although the application of FA has broad prospects,
more preclinical mechanism-based research should be carried out to test these applications in clinical
settings. This review not only covers the literature on the pharmacological effects and mechanisms of
FA, but also discusses the therapeutic role and toxicology of FA in several pulmonary diseases.
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1. Introduction

Natural products have long been investigated and exploited for the development
of new drugs [1]. Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) belongs to the
phenolic acids commonly found in medical plants (Figure 1). The key physico-chemical
properties of FA are shown in Table 1. FA mainly exists in plant cell walls and contributes
to the structural integrity and rigidity by being covalently linked to polysaccharides, such
as arabinoxylans, which is also a precursor of lignin, a complex polymer that provides
mechanical strength and resistance to biodegradation in plant tissues [2–5]. So far, it has
been proven that FA and its derivatives have a variety of pharmacological effects, especially
anti-oxidative, anti-inflammatory, anti-allergic, anti-cancer, and anti-fibrotic effects [6–11].
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tion in recent years. Accumulating evidence suggests that FA improves lung function and 
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Table 1. Physico-chemical properties of FA.

Property Index

Molecular weight 194.18
Melting point 170.0 ± 2.0 ◦C
Boiling point 372.3 ± 27.0 ◦C

Density 1.316 ± 0.06 g/cm3

Cis isomer Yellow oily substance
Trans isomer Monoclinic crystal

Solubility
Soluble in hot water, ethanol and ethyl acetate,

slightly soluble in diethyl ether, and poorly
soluble in benzene and petroleum ether

FA has been proven to be effective in many disease models through various mecha-
nisms [12–18]. For example, the nuclear factor-kappaB (NF-κB) and nuclear factor erythroid-
2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) signaling pathways are regulated by FA
to resist oxidative damage and restrain inflammatory responses, thereby exerting cardio-
protective effects [19,20]. Chronic pulmonary diseases are the leading causes of morbidity
and mortality worldwide, and the treatment has received increasing attention in recent
years. Accumulating evidence suggests that FA improves lung function and survival in
pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), acute lung injury/acute
respiratory distress syndrome (ALI/ARDS), lung cancer, etc. However, low bioavailability
and the limited number of clinical studies have restricted the use of FA in medicine. This
review summarizes the main pharmacological effects and mechanisms of FA and discusses
its potential role in the treatment of pulmonary diseases.

2. Pharmacological Effects

Many researchers have found that FA possesses distinct pharmacological effects, such
as anti-oxidative, anti-inflammatory, anti-fibrotic, and anti-cancer effects, as well as complex
mechanisms both in vitro and in vivo.

2.1. Anti-Oxidative Effects

FA is considered to be a superior antioxidant, which easily forms resonance-stabilized
phenoxy radicals due to its phenolic nucleus and an extended side chain conjugation, thus
acting as a free radical scavenger [21]. FA can attenuate oxidative stress damage, and the
effect is much stronger than vanillic, coumaric, and cinnamic acid [22]. Studies have shown
that FA can inhibit the production of reactive oxygen species (ROS), scavenge oxidative free
radicals, and participate in various signaling pathways to exert its anti-oxidative effects.

2.1.1. ROS

Oxidative stress arises from impaired endogenous antioxidative defense and/or an
overwhelming presence of ROS, which is an important molecular mechanism in various
organ pathologies [23,24]. FA treatment can inhibit the production and activity of ROS
inducer markers, such as advanced glycation end products and xanthine oxidase [25]. The
content of advanced glycation end products and xanthine oxidase activity are evaluated
by measuring the immunoblotting data and enzymatic oxidation of xanthine, respectively.
In addition, FA can significantly downregulate ROS levels with an ROS-sensitive probe,
inhibiting pathological angiogenesis and reducing cell damage [26,27]. In lung cancer,
pretreatment with FA initially decreases ROS levels and reduces oxidative damage [28].

2.1.2. Free Radical Scavenging

Previous studies have reported that FA is an antioxidant that neutralizes free radicals
such as superoxide, nitric oxide and hydroxyl radicals that may cause oxidative damage to
cell membranes and DNA [22]. Due to its structural properties, FA is a direct scavenger
of free radicals such as hydroxyl radicals, superoxide, hydrogen peroxide, and nitrogen
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dioxide radicals [29]. FA has been tested for the radical scavenging property using the 2,2-
diphenyl 1-picryl hydrazyl scavenging assay [30]. In a concentration-dependent manner,
FA is able to significantly scavenge 2,2-diphenyl 1-picryl hydrazyl free radical with a half-
maximal inhibitory concentration (IC50) of approximately 33 µM [25]. The generation and
detection of hydroxyl radicals are carried out according to a Fenton reaction [31]. Nitric
oxide radical scavenging assay has been performed as described by Sumanont et al. [32],
with minor modifications. Park and co-worker originally described the procedure used
to assess superoxide anion radical production, which was later modified [33]. Catalase
activity has been determined essentially using the method described by Aebi [34,35].
Among several tested polyphenols, including ellagic acid, tannic acid, caffeic acid, and FA,
the latter is able to suppress the formation of superoxide anion radicals induced by tumor
promoters to the greatest extent [36].

The anti-oxidative effect of FA is closely related to the 3-methoxy and 4-hydroxyl
groups on the benzene ring, which can stabilize the resulting phenoxy radical intermediates
and even terminate the radical chain reaction. The carboxylic acid group with adjacent
immature carbon-carbon double bonds can further promote the resonance stabilization of
the phenoxy radical intermediates or provide additional attack sites for the radicals [37].
Through this scavenging effect, FA significantly attenuates peroxyl radical-induced cell
death and reduces both hydroxyl radical-induced proteins and lipid oxidative damage
in hippocampal synaptosomes in vitro [38]. FA efficiently suppresses lipid peroxidation
triggered by peroxyl radicals. Additionally, the activity and function of enzymes responsible
for scavenging free radicals, such as cardiac superoxide dismutase, glutathione peroxidase,
and catalase, are increased by FA [35].

2.1.3. Nrf2/HO-1

Nrf2 is one of the main coordinating factors of the oxidative stress response and plays
a protective role in many different organs, including the lungs [39], kidneys [40], liver [41],
and colon [42]. Nrf2 knockout mice have been reported to be hypersensitive to ALI; their
lungs become severely edematous, and microscopy reveals a loss of alveolar structure
with pulmonary hemorrhage and infiltration [43]. Under stressed conditions, exposure to
toxicants, ROS, genetic mutations, oncogenic signals, or autophagic disruption results in
a temporary or constitutive increase in cellular Nrf2, which disrupts the Kelch-like-ECH-
associated protein 1 (keap1)-Nrf2 complex, causing Nrf2 activation. Then, Nrf2 dissociates
from Keap1 and translocates to the cell nucleus, where it regulates the transcription of target
genes, which encode proteins involved in antioxidants, detoxification, anti-inflammation,
and metabolism [44–46]. FA induces the translocation of Nrf2 from the cytoplasm to
nucleus and promotes the expression of Nrf2 as well as downstream antioxidative proteins
such as HO-1, playing a cytoprotective role (Figure 2A) [47,48].

FA remarkably prevents nephrotoxicity in rats through activating Nrf2/HO-1 sig-
naling, exerting an anti-oxidative effect [49]. It has been confirmed that FA reverses
methotrexate-induced reduction of Nrf2 and HO-1 mRNA in rats with liver injury [50].
Moreover, FA improves alveolar epithelial barrier dysfunction to ameliorate ALI via
Nrf2/HO-1 signaling [51]. Similarly, the activation of Nrf2/HO-1 by FA can also have
therapeutic potential in alleviating ionizing radiation-induced cataracts [52].
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Figure 2. A schematic drawing presenting signaling pathways affected by ferulic acid. (A) Un-
der normal conditions, Nrf2 is sequestered in cytoplasm by keap1. Ferulic acid (FA) induces the
translocation of Nrf2 from the cytoplasm to the nucleus and promotes the expression of Nrf2, which
activates antioxidant response element (ARE) and increases transcription of Nrf2-regulated genes,
such as HO-1. FA activates the Nrf2/HO-1 signaling, exerting an anti-oxidative effect. (B) The
process of activating p38 MAPK and NF-κB signal cascades through TLR4 signaling, leading to
the expression of inflammatory cytokines. NF-κB signaling requires IKK subunits, which regulate
pathway activation through IκB phosphorylation. The JAK/STAT signaling pathway is activated by
cytokines and STATs are dephosphorylated in the nucleus, leading to the activation of downstream
inflammatory cytokines. FA acts as an anti-inflammatory agent by inhibiting the p38 MAPK, NF-κB,
and JAK/STAT pathways. (C) FA can block the activation of TGF-β1/Smads signaling and reverse
the nuclear translocation of Smads to resist fibrosis. Furthermore, FA has the ability to alleviate
ECM by regulating MMPs. (D) FA promotes tumor regression and cell apoptosis by increasing
the expression of p53 and Bax, while inhibiting proliferation by decreasing the expression of ERK
and AKT. AKT: protein kinase B; Bax: Bcl2-associated X protein; ECM: extracellular matrix; ERK:
extracellular signal-regulated kinase; HO-1: heme oxygenase-1; IκB: inhibitor of NF-κB; IKK: IkappaB
kinase; JAK: Janus kinase; Keap1: Kelch-like-ECH-associated protein 1; MAPK: mitogen-activated
protein kinase; MMPs: matrix metalloproteinases; NF-κB: nuclear factor-kappaB; Nrf2: nuclear factor
erythroid-2-related factor-2; Smads: small mothers against decapentaplegics; STAT: signal transducer
and activator of transcription; TGF-β1: transforming growth factor-β1; TLR4: toll-like receptor 4.

2.2. Anti-Inflammatory Effects

Inflammation is the defensive response of the human body when exposed to ex-
ternal stimuli; however, excessive inflammation can result in a variety of diseases [53].
Lipopolysaccharide (LPS) is commonly used in experiments to construct inflammatory
pathological models and can be recognized by toll-like receptor 4 (TLR4), which is expressed
on the cell surface [54]. The bond of LPS and TLR4 triggers signal transduction cascades in
cells, resulting in the activation of NF-κB and mitogen-activated protein kinases (MAPKs),
thereby stimulating secretions of inflammatory mediators such as interleukin (IL)-1β, IL-6,
and tumor necrosis factor-α (TNF-α) (Figure 2B) [55,56]. Meanwhile, pro-inflammatory
cytokines, such as IL-6, IL-11, and IL-13, activate the Janus kinase/signal transducer and
activator of transcription (JAK/STAT) molecular pathway to induce inflammation and
regulate the immune response [57,58]. One of the most extensively researched inflamma-
somes, NOD-like receptor-family pyrin domain-containing 3 (NLRP3), can be regulated
by NF-κB-induced transcription [59]. FA has shown anti-inflammatory activity through
inhibiting these signaling pathways in vitro and in vivo, highlighting its potential as an
anti-inflammatory drug.
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2.2.1. p38 MAPK

MAPKs are major signal molecules in transduction, catalyzing the phosphorylation of
appropriate protein substrates on serine or threonine residues, and playing an important
role in the development and progression of inflammation [60,61]. As a member of the
MAPKs family, activation of p38 MAPK plays a significant role in the production of pro-
inflammatory cytokines such as IL-1β, IL-6, and TNF-α [62,63], and induction of enzymes
like cyclooxygenase-2 to regulate connective tissue remodeling, as well as adherent proteins
and other inflammatory-related molecules [64,65]. Inflammatory stimuli such as LPS, TNF,
platelet activator, and IL can induce p38 activation in endogenous immune cells, such as
monocytes, endothelial cells, and neutrophils [66]. The phosphorylation of p38 followed
by LPS stimulation is restrained by FA, suggesting that FA may exert anti-inflammatory
effects via the inhibition of the p38 MAPK pathway [56,67].

The gene expression of indoleamine 2,3-dioxygenase (IDO) is determined by p38
MAPK, and the activity is induced by cellular immune activation associated with inflam-
matory diseases [68]. LPS induces the expression of IDO, and FA can pass through the
blood-brain barrier to reduce IDO by suppressing the phosphorylation of p38 MAPK,
which may provide new ideas for the prevention and treatment of diseases [69]. More-
over, in testicular toxicity induced by cisplatin, a chemotherapeutic drug, pretreatment
with FA significantly degrades the expression of p38 MAPK in rats, markedly alleviating
cisplatin-induced testicular damage [70].

2.2.2. NF-κB

The NF-κB family of transcription factors contains five members: NF-κB1 (p105/p50),
NF-κB2 (p100/p52), RelA (p65), RelB, and c-Rel, among which p65 is the most exten-
sively studied subunit that contains transcriptional activation domains [71,72]. As the
major receptor for LPS, TLR4 exists in a complex with co-receptor myeloid differentiation
protein-2 [73,74]. Upon binding to LPS, the TLR4-myeloid differentiation protein-2 complex
dimerizes, which leads to the activation of downstream mediators, including NF-κB [75].
Stimulation triggers degradation of the inhibitor of NF-κB (IκB) protein and release of
NF-κB homo- or heterodimers, which subsequently translocate to the nucleus, then bind
to specific DNA sequences and promote the transcription of pro-inflammatory genes [76].
Treatment with FA significantly inhibits the expression of LPS-induced TLR4, degrada-
tion of IκB, and phosphorylation of p65. Docking results have shown that FA targets the
key binding site of TLR4 and disrupts the formation of the TLR4-myeloid differentiation
factor 2 complex, which provides a new strategy for the treatment of inflammation [77].
In addition, researchers have found that FA markedly prevents IκB phosphorylation and
subsequent nuclear translocation of NF-κB [78,79]. FA treatment has the same effect as
TLR4 inhibitor (TSK242) and NF-κB inhibitor (SP600125), giving it the potential to act as an
effective inhibitor of inflammation [77].

2.2.3. JAK/STAT

Various cytokines and growth factors can bind to their respective receptors on the
cell surface and lead to the phosphorylation and activation of JAK kinases and STATs
sequentially [80]. The latter translocate to the nucleus and regulate the expression of genes
involved in cell proliferation, differentiation, survival, and inflammation (Figure 2B) [81].
Accordingly, the JAK/STAT signaling system may be a useful indicator of a strong immune
response, inhibiting of which could help to reduce hyperinflammatory conditions [82]. FA
has been found to have promising JAK2 inhibition through molecular docking with a score
of −6.7, which is comparable to that of ruxolitinib, a standard JAK2 inhibitor [83].

2.2.4. NLRP3

The NLRP3 inflammasome is a cytosolic protein complex that senses cellular stress
or damage and initiates inflammatory responses, which has been implicated in vari-
ous pulmonary diseases, such as asthma and chronic obstructive pulmonary disease
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(COPD) [84,85]. Therefore, inhibiting the activation of NLRP3 inflammasome is a po-
tential strategy for preventing or treating inflammation-related diseases [86]. Studies have
shown that FA can exhibit anti-inflammatory effects by blocking the activation of NLRP3
and reducing the secretion of TNF-α, IL-1β, and IL-6 [87,88].

2.3. Anti-Fibrotic Effects

Fibrosis is a repair or reactive process characterized primarily by the formation of
fibrous connective tissue, resulting in progressive structural remodeling of almost all tis-
sues and organs [89]. For example, the pathogenesis of pulmonary fibrosis (PF) arises
from repeated damage to the alveolar epithelium or endothelium, triggering the immune
system to recover the tissue structure of the injured tissue. Inflammatory mediators, such
as transforming growth factor-β (TGF-β), are able to activate angiogenesis and myofibrob-
lasts, which promote the generation of extracellular matrix (ECM) constituents [90,91].
Excessive accumulation of ECM and promotion of fibrosis through endogenous and ex-
ogenous stimuli that induce elevation of TGF-β1 exacerbate the imbalance between matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) [92,93].
When ECM is overproduced and deposited in organ tissues, substantial scar formation
and destruction of normal organ architecture occurs [94]. Almost all lung diseases end in
fibrosis, but an effective cure for fibrosis has yet to be found. In some early reports, FA was
found to be helpful in suppressing fibrosis [95,96].

2.3.1. TGF-β/Small Mothers against Decapentaplegic

TGF-β is a multifunctional regulatory cytokine known to regulate various cellular
processes, such as proliferation, differentiation, apoptosis, adhesion, and the pathogenesis
of fibrosis, in which TGF-β1 is a key mediator of fibrosis development, exerting biological
effects through activation of downstream mediators [97]. After the downstream small
mothers against decapentaplegic (Smad)2 and Smad3 are activated, they form a complex
with Smad4 that translocates to the nucleus, binds consensus sequences, and regulates gene
transcription, which induces ECM deposition to promote fibrosis (Figure 2C) [98–100].

FA can block the activation of the Smad2/3 signal, reverse Smad4 nuclear translocation,
inhibit the epithelial–mesenchymal transition process, which is driven by TGF-β1, and
resist the occurrence of fibrosis [101,102]. In addition, it has been found that FA can
decrease Smad3 and Smad4 by inhibiting the expression of TGF-β and its receptor and can
cooperate with astragaloside IV to alleviate fibrosis in rats [103]. Based on an in vitro study,
TGF-β signal transduction can be blocked by FA, which significantly reduces Smad signal
transduction to inhibit the activation of hepatic stellate cells [95].

2.3.2. MMPs/TIMPs

The MMPs/TIMPs system has been reported to be regulated by FA [104]. MMP2
and MMP9 have three fibronectin type II structural domains repeatedly inserted into
the catalytic structural domain, which are closely associated with the development of
fibrosis [105]. MMP1 is involved in the diminution of normal and hypertrophic scars [106].
TIMPs play essential roles in the activation or elimination of MMPs from the extracellular
environment, which determines the effects of ECM on cytokines, chemokines, cell adhesion
molecules, and growth factors [107]. TIMP1 is secreted by most cells and inhibits all types of
MMPs, among which TIMP1 binds particularly strongly to MMP9 [108]. FA has displayed
reductions in MMP2 and MMP9, and an increase in TIMP1 expression [109]. One study
has shown that FA may lead to a significant reduction in MMP2 and MMP9 levels via the
proteasome pathway [110].

2.4. Anti-Cancer Effects

Cancer is a serious disease that causes deaths all over the world, and the incidence
and mortality rates are increasing rapidly [111]. Evading apoptosis has been established
as one of the key characteristic features of cancer cells [112]. Cancer proliferation can be
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inhibited by FA in a variety of ways, including by altering the cancer cell cycle, inducing
apoptosis, and regulating protein production [113].

FA prevents migration in breast cancer cells and so suppresses breast cancer cell
proliferation and induces apoptosis [114]. In addition, many studies have shown that FA
has anti-cancer effects against cervical cancer [115], colon cancer [116], liver cancer [28],
and lung cancer [117]. ElKhazendar et al., have studied the therapeutic effect of FA on
liver cancer and found that FA (100 and 200 µg/mL) has cytotoxic effects on HepG2 cells
with IC50 values of 150.7, 81.38, and 210.4 µg/mL at 24, 48, and 72 h, respectively [118].
They have reported similar findings after analyzing the anti-cancer potential of FA (100 and
200 µg/mL) on MCF-7 breast cancer cells in vitro and found IC50 values of cell proliferation
for MCF-7 cells of 143.8, 75.4, and 85.6 µg/mL at 24, 48, and 72 h, respectively [118]. It is
reported that FA can take on an anti-cancer role by mediating different targets.

2.4.1. p53

Genes involved in cancer development can be divided into oncogenes and tumor
suppressor genes [119]. As one of the most important tumor suppressor genes involved
in cell cycle control and induction of apoptosis following DNA damage and oncogene
activation, p53 is activated, stabilized, and accumulated by post-translational modifications
in the cell, which reduces the risk of tumorigenesis [120]. Many different cell biological
responses are induced by p53, such as G1 arrest, senescence, and apoptosis [121]. p53 has
been shown to promote apoptosis, whereas overexpression of cyclin D1 leads to a shorter
duration of the G1 phase and accelerates cancer progression [122]. The protein level of
cyclin D1 is decreased and p53 is upregulated after FA treatment, indicating that FA arrests
the G0/G1 phase in human cervical cancer cells [115,123]. Additionally, FA can ameliorate
placental apoptosis in a preeclampsia rat model by facilitating B cell lymphoma-2 (an anti-
apoptotic protein) expression and decreasing the expression of Bcl2-associated X protein
(Bax), which is a pro-apoptotic effector (Figure 2D) [124]. FA derivatives also inhibit cell
proliferation, and also induce cell cycle changes and apoptosis. Hexyl ferulate acts mainly
through a mitochondrial pathway involving p53 and Bax, resulting in increased cell death
and restrained development of cancer [125].

2.4.2. Extracellular Signal-Regulated Kinase

Extracellular signal-regulated kinase (ERK) targets different molecules to stimulate
cell proliferation and plays a crucial role in regulating physiological processes such as cell
growth, proliferation, and apoptosis. The inactivation of ERK can upregulate or down-
regulate expression of pro-apoptotic proteins and survival proteins, respectively [119,126].
Sustained activation of ERK can promote proliferation and migration of tumor cells. FA is
capable of inhibiting the overexpression of p-ERK1/2 and ERK1/2 proteins, thus exerting
a proliferation-inhibiting effect (Figure 2D) [127].

FA inactivates ERK1/2 and c-Jun N-terminal kinase (JNK), so as to inhibit angiotensin
II-induced proliferation of vascular smooth muscle cells, thereby reducing the expression
of cell cyclin D1 and regulating the process of cells from the G1 to S phase [128,129].
Furthermore, a FA derivative activates the JNK signaling pathway, while inhibiting the
ERK signaling pathway, and induces apoptosis in lung cancer cells [130].

2.4.3. Protein Kinase B

Protein kinase B (AKT) is a serine threonine kinase that mediates various biologi-
cal functions such as cell proliferation, survival, glucose metabolism, protein synthesis,
genome stabilization, and inhibition of apoptosis in response to different growth factors
and extracellular stimuli. Many studies have shown that one of the corporate molecular
features of human malignancies is excessive activation of AKT, leading to tumor aggres-
siveness and drug resistance [131,132]. Treatment with FA inhibits the proliferation of
osteosarcoma cells (IC50 = 59.88 µM) and promotes the apoptosis by downregulating the
expression and activation of AKT (Figure 2D) [133,134]. Additionally, inhibitory effects of
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FA on angiogenesis and cell proliferation have been demonstrated in vitro and in vivo, with
significant inhibition of FGFR1-mediated AKT phosphorylation by FA [135,136]. FGFR1
kinase activity has been directly inhibited by FA in a dose-dependent manner with an IC50
of approximately 3.78 µM.

2.4.4. Programmed Cell Death

Programmed cell death (PCD) is a process that regulates the elimination of unwanted
or damaged cells in a controlled manner, which can be classified into apoptosis, necrosis,
autophagy, and ferroptosis, etc. [137,138]. PCD plays an important role in maintaining
tissue homeostasis and preventing tumorigenesis, but nonetheless results in various patho-
logical conditions [139,140]. One of the PCD types associated with pulmonary diseases
is ferroptosis, which is caused by an increase in iron-dependent ROS due to intracellular
iron overload, leading to lipid peroxidation and cell membrane damage [141]. Ferroptosis
has been shown to be involved in the pathogenesis and progression of ALI/ARDS, lung
cancer, PF, and asthma [142–145]. FA has been shown to inhibit ferroptosis by modulating
several key factors involved in this process, such as glutathione peroxidase 4, Nrf2, and
adenosine monophosphate-activated protein kinase [146]. Another type of PCD related to
pulmonary diseases is apoptosis mediated by programmed cell death 4 (PDCD4), which
encodes a tumor suppressor protein that inhibits translation initiation and promotes apop-
tosis [147,148]. PDCD4 is frequently downregulated in lung cancer, and the expression is
associated with tumor progression and prognosis [149]. FA may inhibit the degradation of
PDCD4 protein by preventing its phosphorylation through the mechanistic targeting of
rapamycin/ribosomal protein S6 kinase 1 [150,151].

3. Therapeutic Effects on Pulmonary Diseases

Pulmonary diseases, including IPF, asthma, lung cancer, ALI/ARDS, influenza, etc.,
rank amongst the most common causes of death globally [152]. Both the incidence and
mortality rate of lung cancer are at the top of the list among all malignant tumors [153].
The prevalence of IPF and asthma is increasing, constituting a significant threat to pub-
lic health. Available therapeutic approaches for pulmonary diseases focus on relieving
symptom severity and enhancing quality of life; existing treatments are unable to achieve
complete recovery of lung function [154]. As a possible treatment for end-stage pulmonary
diseases, lung transplantation has a high mortality rate; thus, novel therapies are urgently
needed [155–157]. In recent years, there has been an increasing number of studies on the
therapeutic effects of FA in pulmonary diseases (Figure 3).
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ECM: extracellular matrix; HO-1: heme oxygenase-1; IL-8: interleukin-8; IPF: idiopathic pulmonary fi-
brosis; MAPK: mitogen-activated protein kinase; MMPs: matrix metalloproteinases; MyD88: myeloid
differentiation primary response 88; NA: neuraminidase; NF-κB: nuclear factor-kappaB; Nrf2: nuclear
factor erythroid-2-related factor-2; ROS: reactive oxygen species; Smads: small mothers against
decapentaplegics; TGF-β1: transforming growth factor-β1; TLR7/9: toll-like receptor 7/9.

3.1. IPF

As a fatal and incurable lung disease with increasing incidence, IPF can be restricted
by FA, which reduces the migration of inflammatory cells, deposition of excessive ECM
components, and secretion of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-
α [96,101,158].

Several fibrotic proteins are known to exacerbate PF, among which TGF-β enhances
ECM deposition, promotes epithelial–mesenchymal transition, and induces fibroblast differ-
entiation [159–161]. FA can inhibit the TGF-β1/Smad3 signaling pathway by downregulat-
ing the phosphorylation of Smad2/Smad3 and can block the TGF-β mediated downstream
regulation of epithelial marker E-cadherin, so as to alleviate PF [96,162]. Of note, FA alle-
viates TGF-β induced ECM production through the Smad3-dependent/non-dependent
pathway, i.e., MMPs (Figure 4) [163,164]. As a component of the Yangfei Huoxue Decoc-
tion, FA restrains vascularized vascular endothelial growth factor and IL-1β expression,
indicating a possible protective effect in PF treatment [165,166].
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Figure 4. Proposed signaling pathway for the effect of ferulic acid against pulmonary fibrosis. In
pulmonary fibrosis, transforming growth factor-β (TGF-β) triggers small mothers against decapenta-
plegic (Smad) 2/3, of which the phosphorylated form compounds with Smad4, and then enters into
the nucleus to regulate gene transcription by binding to cofactors or DNA sequences. In addition,
TGF-β inhibits the deposition of ECM by suppressing MMPs. Ferulic acid inhibits the TGF-β sig-
naling pathway to alleviate pulmonary fibrosis. ECM: excessive extracellular matrix; MMPs: matrix
metalloproteinases.
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3.2. Asthma

Asthma is a chronic inflammatory disorder of the respiratory tract, characterized
by mucus hypersecretion, airflow limitation, bronchial hyperresponsiveness, and air-
way inflammation [167,168]. FA can relieve several allergic complications by exerting
immunomodulatory effects, such as cutaneous anaphylaxis in an allergic mouse model,
suggesting that FA is a promising candidate for the effective control of asthma [8,169]. It has
also been demonstrated that FA decreases the expression of P-selectin on the platelet surface
and reduces airway inflammation, which can inhibit endothelial cell adhesion and improve
lung function in asthma [166,170]. FA can reduce immunoglobulin E and activate dendritic
cells via enhancing the expression of CD40, then restoring the T helper cell (Th)1/Th2
imbalance [8,171]. Recently, in order to better exert the anti-asthma effect, FA is packaged
into chitosan-based nanocarriers to ensure drug delivery to epithelial cells [172].

3.3. Lung Cancer

Globally, lung cancer is the most common cancer and the leading cause of cancer
deaths, of which approximately 80% are non-small cell lung cancer (NSCLC) [111,173]. FA
has been used to enhance the sensitivity of cancer cells to radiation, with low systemic
toxicity [174,175]. FA treatment given along with radiation is able to arrest the cell cycle,
increase the expression of the pro-apoptotic proteins p53 and Bax, and inhibit the anti-
apoptotic capacity of A549 and NCI-H460 cells [28,176]. FA derivatives can limit the
proliferation and metastasis of lung cancer by reducing the phosphorylated expression of
ERK, AKT, and MAPK kinases, which have been shown to be involved in cell invasion
and are associated with reduced survival rates in a variety of human malignancies [130].
Trans-FA inhibits the proliferation of H1299 lung cancer cells and induces a moderate
increase in the apoptotic population by promoting phosphorylation of β-catenin at residues
Thr41 and Ser45 and causing proteasomal degradation [117,177]. Intriguingly, FA is capable
of inhibiting the proliferation and migration of lung cancer cells by eliminating intracellular
ROS production in tumor cells and of slowing tumor progression by suppressing the
adhesion and migration of A549 lung cancer cells [117,178].

3.4. ALI/ARDS

ALI and ARDS are successive lung changes arising from multifarious lung injuries
with significant morbidity and mortality, which are characterized by bursts of inflam-
mation and damaged alveolar-capillary structures [179,180]. FA can ameliorate ALI by
inhibiting the NF-κB and MAPK pathways via TLR4 and consequently decreasing the
expression of downstream inflammatory mediators, including TNF-α, IL-1β, IL-6, and IL-8
(Figure 5) [77,181,182]. FA also downregulates the activity of myeloperoxidase, an indicator
of neutrophil infiltration [181]. As a derivative of FA, ethyl ferulate inhibits the production
of inflammatory mediators in LPS-stimulated macrophages, which also block the translo-
cation of NF-κB p65 to the nucleus and significantly reduce intracellular ROS levels [183].
The activity of superoxidase dismutase, which is an anti-oxidative enzyme that scavenges
superoxide radicals, is significantly enhanced in the treatment of sodium ferulate [184].
Furthermore, FA has been found to prevent ARDS by inhibiting the expression of MAPK
signaling pathway-related proteins, including p-p38, p-ERK1/2, and p-JNK (Figure 5) [185].
Growing evidence indicates that lung inflammation and injury are regulated by adenosine
monophosphate-activated protein kinase [186], which can be activated by ethyl ferulate in
a Nrf2/HO-1 dependent manner [183,187].
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Figure 5. Insights into the multi-target actions of ferulic acid in acute lung injury/acute respira-
tory distress syndrome. Ferulic acid (FA) can directly target TLR4 and inhibit the TLR4/NF-κB
pathway, decreasing the expression of phospho-NF-κB and downstream inflammatory mediators.
Moreover, FA inhibits the expression of MAPK signaling pathway-related proteins. Additionally,
ethyl ferulate improves acute lung injury/acute respiratory distress syndrome (ALI/ARDS) in an
AMPK/Nrf2-dependent manner. AMPK: adenosine monophosphate-activated protein kinase; HO-1:
heme oxygenase-1; MAPK: mitogen-activated protein kinase; Nrf2: nuclear factor erythroid-2-related
factor-2; TLR4: toll-like receptor4.

3.5. Influenza

Influenza is an acute viral respiratory infection with a high morbidity rate [188].
Current strategies for treating influenza focus on inhibiting the function of neuraminidase
(NA), one of the surface proteins of the virion, which supports the release of progeny
virions from the host cells and their movement to target cells [189]. FA has moderate NA
inhibitory activity and shows a tendency to reduce the downstream IL-8 level in response to
influenza virus infections [190]. The ring structure of FA is similar to that of the NA inhibitor
oseltamivir, such as in the C1 and C5 positions [190,191]. In contrast, at the C3 position,
there is no semblable amino group in FA. Therefore, slight structural modifications of FA,
such as the introduction of an amino substituent into the guanidine group, could improve
FA activity, which would eventually increase NA inhibition in vitro. A virus inhibition
experiment shows that the FA derivative MY15 has good activity, with a median effective
concentration of about 0.95 µM [190]. Beyond that, the protective immune response to
influenza is controlled by the TLR7/TLR9-myeloid differentiation primary response 88
pathway, which is enhanced by sodium ferulate in mice [192].

3.6. Other Pulmonary Diseases

COPD is a progressive lung disorder characterized by oxidative stress, inflammation,
endothelial dysfunction, fibrosis, and apoptosis [193,194]. As one of the bioactive compo-
nents of Bu-Zhong-Yi-Qi-Tang, FA has been shown to reduce the levels of TNF-α and IL-6,
as well as prevent neutrophil and macrophage infiltration by downregulating cell-adhesion
molecules, such as P-selectin, which may help to relieve the symptoms of COPD [195].

Pneumoconiosis is a group of serious occupational diseases which are associated with
the inhalation of mine dust and the corresponding reaction of the lung tissue [196,197].
Sodium ferulate can inhibit the activation of the TGF-β1/neutrophilic alkaline phosphatase
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3/α-smooth muscle actin pathway, which provides a potential therapeutic strategy for
silicosis-associated PF [197].

As one of the major components of Rhodiola algida, which prevents high latitude
sickness clinically, FA is effective in hypoxia-induced pulmonary arterial hypertension
animals [198]. Similarly, sodium ferulate has been used clinically in the treatment of
pulmonary hypertension with satisfactory results [199].

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused the out-
break of coronavirus disease 2019, against which the therapeutic target is the SARS-CoV-2
main protease [200]. Some FA derivatives, such as FA rutinoside and raffinose ferulate,
show comparable or better binding affinities for the main protease of SARS-CoV-2 as con-
firmed inhibitors, and might have antiviral potential against coronavirus disease 2019 [201].

4. Toxicological Effects

At a dose of 300 µg/mL, FA has no effect on the cell count and viability of platelets,
leukocytes, and erythrocytes. There is hardly any toxicity of FA to NIH-3T3 and 3T3-L1 cells
at the concentration of 500 µg/mL [202]. Nevertheless, studies have demonstrated the renal-
damaging effect of FA when used for the 28-week cure of chronic kidney diseases [203].
Intriguingly, the toxicity of FA is seasonally dependent, being more toxic in May, June, and
September, which may be related to abiotic factors, including carbon dioxide, temperature,
and pH [204].

5. Conclusions and Future Directions

FA and its derivatives are currently being used with breakthrough results in various
fields. Modern pharmacological studies have proven that FA has a variety of effects, such
as anti-oxidative, anti-inflammatory, anti-fibrotic and anti-cancer effects. Firstly, as a free
radical scavenger, FA significantly downregulates ROS expression and activates Nrf2/HO-1
signaling, exerting anti-oxidative effects. Secondly, FA acts as an anti-inflammatory agent
by inhibiting the p38 MAPK, NF-κB, and JAK/STAT pathways. The TGF-β/Smad signaling
pathway can be blocked by FA, which plays an anti-fibrotic role. The MMPs/TIMPs system
can be regulated by FA to inhibit the expression of MMP2 and MMP9, thereby enhancing
the anti-fibrotic effect. Ultimately, the anti-cancer effect of FA is closely connected with p53
upregulation, Bax downregulation, and inactivation of ERK and AKT.

In addition to providing a summary of the pharmacological mechanisms of FA, we
also consider the therapeutic advances in pulmonary diseases. FA has shown significant
promise in the field of lung disease treatment. Initially, by blocking the TGF-β1/Smad3
signaling pathway and inhibiting MMPs expression, FA plays a role in improving IPF.
Furthermore, FA reduces the expression of P-selectin and restores the Th1/Th2 imbalance,
exerting an anti-asthma effect. With regards to lung cancer, the expression of p53 and ROS
production are regulated by FA. Thirdly, FA has prevented ARDS through inhibiting the
expression of MAPK signaling pathway-related proteins, including p-p38, p-ERK1/2, and
p-JNK. Additionally, FA has a moderate NA inhibitory activity, which shows a tendency to
reduce downstream IL-8 levels in response to influenza virus infections.

One of the main limitations of the clinical application of FA to date has been low
bioavailability, and most of the technological strategies used to improve the oral bioavail-
ability of FA are based on lipid delivery systems [205]. Both nanostructured lipid carriers
and solid lipid nanoparticles can enhance the oral bioavailability of FA [206]. In addition,
a major issue in the drug-discovery process is toxicity. Thus, FA, with its low toxicity
properties, is a very valuable natural compound with potential for the treatment of pul-
monary diseases.

This review discusses the pharmacological effects, applications in pulmonary diseases,
and toxicology of FA to heighten our understanding of existing research. More in-depth
research is needed to explore the molecular mechanisms of FA, in order to provide an
efficient scientific basis for enlarging the scope of clinical treatment and exploiting the
potential of FA in drug applications.
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