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Abstract: The response of wheat (Triticum aestivum L.) plants to the soil drought at the metabolome
level is still not fully explained. In addition, research focuses mainly on single periods of drought,
and there is still a lack of data on the response of plants to short-term cyclical periods of drought. The
key to this research was to find out whether wheat shoots are able to resume metabolism after the
stress subsides and if the reaction to subsequent stress is the same. Gas chromatography coupled with
mass spectrometry (GC-MS) is one of the most valuable and fast methods to discover changes in the
primary metabolism of plants. The targeted GC-MS analyses of whole shoots of wheat plants exposed
(at the juvenile stage of development) to short-term (five days) mild soil drought/rewatering cycles
(until the start of shoot wilting) enabled us to identify 32 polar metabolites. The obtained results
revealed an accumulation of sugars (sucrose, fructose, glucose, and 1-kestose), proline, and malic
acid. During five days of recovery, shoots regained full turgor and continued to grow, and the levels
of accumulated metabolites decreased. Similar changes in metabolic profiles were found during the
second drought/rewatering cycle. However, the concentrations of glucose, proline, and malic acid
were higher after the second drought than after the first one. Additionally, the concentration of total
polar metabolites after each plant rewatering was elevated compared to control samples. Although
our results confirm the participation of proline in wheat responses to drought, they also highlight the
responsiveness of soluble carbohydrate metabolism to stress/recovery.

Keywords: wheat; shoot; drought; carbohydrates; proline; malate

1. Introduction

Wheat (Triticum aestivum L.) is one of the major crops cultivated worldwide and an
important source of energy for the human diet and animal feed [1,2]. The yield of wheat
may be dramatically decreased by drastic environmental and climatic changes, leading to
an increasing frequency of severe drought conditions [3,4]. It is predicted that up to 60% of
the current wheat-growing area will face simultaneous severe water scarcity events by the
end of the twenty-first century [5,6]. Moreover, abiotic stresses, including drought, might
occur individually or sequentially. Drought adversely affects crop growth, development,
and yield via physiological and biochemical disturbances in whole plants. However, the
negative effects are related to the drought intensity (rate of decrease in the water availability
and duration of the water deficit), as well as plant species and developmental stages [7,8].

Water stress leads to weakening and inhibition of plant growth, disturbances in photo-
synthesis and carbon and nitrogen metabolism [9], as well as overproduction of reactive
oxygen species [10]. The limited and decreasing availability of water in the soil, leading to
soil drought, indicates changes in the stomata aperture in leaves to limit transpiration and
water loss from the cells [11]. Water retention in cells is achieved through the accumulation
of various osmolytes in the cytoplasm and vacuole—sugars, amino acids, inorganic ions,
and organic acids—lowering the water potential [12]. However, prolonged water deficits
and minimized gas exchange lead to a decrease in CO2 concentration in the leaf [13,14].
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The decreased ratio of CO2 to O2 in chloroplasts results in the intensification of the pho-
torespiration process [15,16]. It reduces the efficiency of CO2 assimilation and causes losses
of nitrogen and energy. However, it can also be a partial CO2 recirculation pathway [17,18].
Limited water availability and reduced CO2 assimilation (in the Calvin–Benson cycle) lead
to disturbances in the processes of electron transport, energy production, and maintaining
redox balance in chloroplasts. As a result, there is excessive generation of reactive oxygen
species, and the photosynthetic apparatus is damaged [19]. This causes disturbances in the
course of various metabolic pathways and the export of photoassimilates from the leaves
(as sources) to the receiving sink tissues (roots, stem, and generative organs) [20,21].

Apart from osmolytes [22,23], cells can also synthesize osmoprotectants (trehalose,
glycine betaine, and polyols), maintaining membrane integrity and protecting macro-
molecule structure [24]. Accumulation of osmolytes and osmoprotectants affects both
primary and secondary metabolism, as revealed in metabolomic studies of model plants,
e.g., Arabidopsis thaliana [25] and Medicago truncatula [26], as well as major crops, e.g.,
maize [27], wheat [28], rice [29], barley [30], soybean [31], and pea [32–34]. Moreover, some
metabolites accumulated under water deficit could be candidates for metabolic markers of
stress, e.g., proline, found in various plant species [35], sucrose, citric acid, and phosphate
in Medicago truncatula [12], and glutamine/glutamate in rice [36].

So far, research on wheat’s response to drought at the metabolome level has shown
that limited water availability is associated with changes in osmotic regulation, energy
production, and oxidative damage [37,38]. It has been demonstrated that sugar and nitrogen
metabolism are mostly affected by water deficiency in the leaves of wheat [28,37–39].
Moreover, the drought-tolerant capacity of wheat seedlings was related to the accumulation
of amino acids, organic acids, alkaloids, and flavonoids [40]. The important role of some
metabolites in response to drought has also been revealed by metabolomic analyses carried
out on other plant species (i.e., coffee, ryegrass) subjected to cyclic drought/rehydration
treatment [8,41,42]. In wheat, it has been shown that not only the water deficit itself but
also its frequency affects plant growth and secondary metabolism in flag leaf [43], as well
as that the greatest changes are related to the accumulation of amino acids [11] and soluble
sugars in leaf tissues [44]. Moreover, the drought tolerance of wheat seems to be related to
sucrose metabolism [45,46].

Among various methods used in metabolomic studies [30,31], the gas chromatography-
mass spectrometry (GC-MS) method seems to be valuable in monitoring changes in
metabolic profiles in early response to drought [11,27,33,34]. In the present study, the
GC-MS approach enabled us to compare changes in the polar metabolite profiles of wheat
shoots (Triticum aestivum L.) during the plant’s exposure to repeated short-term (mild) soil
droughts and after recovery from water deficit stress.

2. Results and Discussion
2.1. The Effect of Repeated Short-Term Soil Drought/Rewatering Cycles on Plant Growth
and Development

During 20 days of vegetation (between the 14th and 34th day after sowing, DAS),
well-watered (control) plants reached a height of about 30–35 cm, and shoots started
tillering. The water content (WC) was stable at 6.5–7 g H2O g−1 dry weight (DW), which
corresponded with 86–89% of fresh weight (Figure 1).

The fresh weight (FW) of shoots increased more than fourfold (Figure 2), and the
width of fully expanded leaves was ca. 5–7 mm at mid-length (Figure 1).

The duration of the first and second droughts was relatively short (until visible loss of
turgor and shoot wilting), enabling fast recovery of shoot growth after plants rewatering.
After five days of drought, the WC decreased from 7.96 to 3.33 g H2O g−1 DW, whereas
during rewatering it increased to 6.86 g H2O g−1 DW (as high as in the control). Both
short-term soil droughts caused a strong decrease in shoot FW (twofold, compared with the
control) and inhibited shoot growth (Figure 1). However, after recovery from the second
stress, plants regained turgor, continued to grow, and produced new leaves (Figure 1).
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The FW of the shoot increased more than twofold, but to a level still lower than in the
control plants (Figure 2). Moreover, the shoot tillering was restricted (Figure 1). The above
disturbances in the growth of wheat plants are consistent with previous reports on the
response of plants to drought stress [47–49]. Growth inhibition caused by the soil drought
results from disturbances in photosynthesis, transpiration, photorespiration, transport of
water and mineral/organic compounds, as well as photoassimilated distribution between
source and sink tissues [50,51]. In our work, we focused not on the measurement of changes
in physiological processes but only on rearrangements in the metabolic profiles of shoots in
wheat in response to repeated soil drought/rewatering.
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during 14–19 DAS and 24–29 DAS and subsequent rewatering (19–24 and 29–34 DAS). Control 
plants at 34 DAS are shown on the right. The values in the bottom left side of each picture indicate 
the water content expressed in g H2O on g of dry weight and as % of fresh weight (in parentheses) 
in the shoot. Abbreviations: D1 and D2—first and second soil drought; R1 and R2—rewatering; 
FWC—field water capacity. 

The fresh weight (FW) of shoots increased more than fourfold (Figure 2), and the 
width of fully expanded leaves was ca. 5–7 mm at mid-length (Figure 1).  
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plant growth at control conditions (C) or exposed to short-term soil droughts (D, 14–19 and 24–29 
DAS) and rewatering (R, 19–24, and 29–34, respectively). Values are means (n = 4) + SD. The same 
letters above the bars indicate no statistically significant differences (p < 0.05) based on ANOVA and 
the Tukey post-hoc test for control plants (a–c, 14–34 DAS) or plants before and after soil droughts 
and followed by recoveries (A–C). The significant differences in FW between shoots after 5 days of 
drought or followed by rewatering plants and control plants (from the same day after sowing, DAS) 
were marked with an asterisk, based on the Student’s t-test (*, p < 0.05). 

The duration of the first and second droughts was relatively short (until visible loss 
of turgor and shoot wilting), enabling fast recovery of shoot growth after plants rewater-
ing. After five days of drought, the WC decreased from 7.96 to 3.33 g H2O g−1 DW, whereas 
during rewatering it increased to 6.86 g H2O g−1 DW (as high as in the control). Both short-
term soil droughts caused a strong decrease in shoot FW (twofold, compared with the 
control) and inhibited shoot growth (Figure 1). However, after recovery from the second 

Figure 1. Plants of wheat (Triticum aestivum L., cv. Forkida) during repeated short-term soil drought
during 14–19 DAS and 24–29 DAS and subsequent rewatering (19–24 and 29–34 DAS). Control plants
at 34 DAS are shown on the right. The values in the bottom left side of each picture indicate the
water content expressed in g H2O on g of dry weight and as % of fresh weight (in parentheses) in the
shoot. Abbreviations: D1 and D2—first and second soil drought; R1 and R2—rewatering; FWC—field
water capacity.

2.2. Changes in Polar Metabolite Profiles during Control Plant (Well-Watered) Vegetation

The targeted GC-MS-based approach, using original standards as well, enabled us to
identify 32 polar metabolites, classified into soluble carbohydrates, proteinogenic and non-
proteinogenic amino acids, organic acids, and remaining compounds. The same groups as
well as individual polar metabolites have previously been found in wheat leaves, kernels,
or phloem exudate [52–54] as well as in wheat sprouts [55,56] using mass spectrometry.
Changes in the concentrations of polar metabolites during plant vegetation (14–34 DAS)
were reflected by a shift in the distribution of samples, revealed by principal component
analysis (PCA). There were clear differences between the samples collected at the 14th DAS
and those collected later (Figure 3A). The distribution of samples depended mainly on
phosphoric acid, glucose, fructose, and sucrose (Figure 3B).
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Figure 2. Changes in the fresh weight of the wheat (Triticum aestivum L., cv. Forkida) shoot dur-
ing plant growth at control conditions (C) or exposed to short-term soil droughts (D, 14–19 and
24–29 DAS) and rewatering (R, 19–24, and 29–34, respectively). Values are means (n = 4) + SD. The
same letters above the bars indicate no statistically significant differences (p < 0.05) based on ANOVA
and the Tukey post-hoc test for control plants (a–c, 14–34 DAS) or plants before and after soil droughts
and followed by recoveries (A–C). The significant differences in FW between shoots after 5 days of
drought or followed by rewatering plants and control plants (from the same day after sowing, DAS)
were marked with an asterisk, based on the Student’s t-test (*, p < 0.05).

Soluble carbohydrates were the major group of polar metabolites in the control plants,
constituting 36–82% of total identified polar metabolites (TIPMs), whereas total organic
acids (TOAs) shared ca. 6–11% and amino acids (proteinogenic and non-proteinogenic) ca.
7–12% (Table 1).

The trends of changes in the concentration of TIPMs among the vegetation in the wheat
shoots of control plants were determined mainly by changes in soluble carbohydrates.
During intensive shoot growth, between 19 and 34 DAS (Figure 1), the concentrations of
fructose, glucose, and sucrose (the predominant sugars) increased gradually up to 2.45,
10.70, and 7.63 mg g−1 DW, respectively. Additionally, 1-kestose, found in traces at the
19th DAS, increased up to the 34th DAS, but to a much lower level (0.14 mg g−1 DW,
Table 1). This composition of sugars seems to be typical of wheat leaf tissues [57]. Moreover,
1-kestose is one of the major fructans present in monocotyledonous plants in temperate
climates, among them wheat and other cereals [58]. They occur mainly in grains, fruits,
and vegetables and are used as storage carbohydrates for growing seedlings [59].

Changes in TIPMs in wheat were also influenced by changes in total organic acids
(TOAs) and total proteinogenic amino acids (TPAAs), whose concentrations significantly
decreased with the growth of shoots (Table 1). The dominant proteinogenic amino acids
were asparagine, aspartic acid, and serine, whereas among organic acids, malate and
citrate dominated. However, their content was relatively low (<2.5 mg g−1 DW, Table 1).
Tissues also contained small amounts of hydroxyproline, γ-aminobutyric acid (GABA),
and urea (Table 1). Additionally, tissues at the 14th DAS contained a considerable amount
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of phosphoric acid (13.91 mg g−1 DW), which dramatically (fourfold) decreased during the
next five days and later on remained at a low level (3.65–1.44 mg g−1 DW). The content
of phosphorus (P) in phosphoric acid at the 34th DAS was lower than the content of
inorganic phosphorus (Pi) in a shoot of spelt wheat at the comparable developmental stage,
as documented earlier [60]. Changes in the Pi content in shoots of wheat depend on P
uptake from the soil, and plants’ P demand is higher at early rather than later stages of
vegetation [61]. Results of our previous study, focusing on metabolomic changes in pea
shoots (stems, stipules, tendrils, and shoot tips), revealed a decrease in phosphoric acid in
shoot tips and tendrils, while there was an increase in stems and stipules during vegetative
plant development (between the 35th and 53rd DAS) [33]. However, data on changes in
phosphoric acid in wheat during plant vegetation are not known.
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Table 1. The concentration (in mg g−1 DW) of polar metabolites in wheat shoots (Triticum aestivum L., cv. Forkida) during 20 days of plant vegetation (from the 14th
to the 34th DAS) at optimal soil moisture (control), after 5 days of watering withdrawal from the 14th to the 19th and from the 24th to the 29th DAS (drought, D1
and D2, respectively) and followed by rewatering for 5 days, between the 19th and 24th and between the 29th and 34th DAS (R1 and R2, respectively). Statistical
abbreviation as shown in Figure 2.

Control Drought (D)/Rewatering (R)

DAS 14 19 24 29 34 D1
14–19

R1
19–24

D2
24–29

R2
29–34

Metabolites mg g−1 DW

TIPMs, including: 33.74 aE 11.99 c 14.47 c 14.19 c 26.96 b 84.18 B* 57.56 C* 95.65 A* 48.52 D*

TSCs, including: 12.05 bE 6.12 c 9.75 bc 10.84 b 22.17 a 59.18 B* 33.09 C* 64.12 A* 28.20 D*
fructose 2.50 aB 1.16 b 0.85 b 1.14 b 2.45 a 10.85 A* 4.18 B* 10.09 A* 3.97 B*

galactose 0.00 aB 0.04 a 0.05 a 0.18 a 0.27 a 1.21 A* 0.37 B 0.10 B 0.07 B

glucose 3.92 bD 2.00 b 2.53 b 4.35 b 10.70 a 15.45 B* 8.06 C* 19.76 A* 9.45 C

sucrose 2.43 cD 2.17 c 5.73 b 4.56 b 7.63 a 28.24 A* 17.70 B* 31.22 A* 12.40 C*
galactinol 0.10 aA 0.03 c 0.02 c 0.03 c 0.06 b 0.07 B* 0.08 AB* 0.00 C* 0.00 C*
raffinose 0.53 aBC 0.19 b 0.23 b 0.17 b 0.17 b 0.45 C* 1.11 A* 0.89 AB* 0.52 BC*
1-kestose 0.00 bC 0.02 b 0.04 b 0.02 b 0.14 a 0.78 A* 0.11 BC* 0.27 B* 0.00 C*

myo-inositol 0.40 aA 0.09 bc 0.06 c 0.09 bc 0.15 b 0.32 B* 0.20 C* 0.46 A* 0.29 B*
ribonic acid 0.40 aC 0.11 b 0.17 b 0.20 b 0.39 a 0.66 B* 0.80 A* 0.87 A* 0.91 A*
fructose-6-
phosphate 1.77 aA 0.31 b 0.08 b 0.09 b 0.21 b 1.14 B* 0.49 C* 0.46 C* 0.58 C*

TPAAs, including: 2.18 aC 0.42 c 0.56 c 0.60 c 1.05 b 4.27 B* 2.78 C* 13.40 A* 3.33 BC*
alanine 0.05 aB 0.02 a 0.02 a 0.04 a 0.03 a 0.13 B* 0.12 B* 0.26 A* 0.11 B*

asparagine 0.68 aA 0.10 b 0.13 b 0.10 b 0.14 b 0.11 C 0.67 A* 0.25 BC* 0.33 B*
aspartic acid 0.29 aC 0.05 c 0.10 bc 0.09 bc 0.13 b 0.31 C* 0.58 A* 0.30 C* 0.44 B*

glutamine 0.05 aA 0.01 c 0.02 c 0.01 c 0.03 b 0.10 A* 0.08 A* 0.09 A* 0.08 A*
glycine 0.24 aB 0.06 c 0.07 c 0.06 c 0.11 b 0.24 B* 0.30 A* 0.24 B* 0.24 B*

isoleucine 0.20 aB 0.04 c 0.05 c 0.08 c 0.15 b 0.21 B* 0.21 B* 0.78 A* 0.22 B*
leucine 0.12 aB 0.02 b 0.03 b 0.03 b 0.04 b 0.22 B* 0.14 B* 0.50 A* 0.17 B*

phenylalanine 0.03 aC 0.01 b 0.01 b 0.01 b 0.01 b 0.16 B* 0.03 C* 0.53 A* 0.07 C*
proline 0.04 aD 0.02 b 0.01 b 0.01 b 0.01 b 2.17 B* 0.09 D* 8.50 A* 1.02 C*
serine 0.43 aB 0.09 b 0.10 b 0.14 b 0.33 a 0.34 B* 0.48 B* 0.93 A* 0.52 B*
valine 0.05 abC 0.01 c 0.01 c 0.04 bc 0.07 a 0.27 B* 0.08 C* 1.01 A* 0.15 C*
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Table 1. Cont.

Control Drought (D)/Rewatering (R)

DAS 14 19 24 29 34 D1
14–19

R1
19–24

D2
24–29

R2
29–34

Metabolites mg g−1 DW

NTPAAs, including: 1.61 aAB 0.32 b 0.34 b 0.35 b 0.47 b 0.98 C* 2.02 A* 1.27 BC* 1.14 BC*
hydroxyproline 1.39 aAB 0.27 b 0.31 b 0.32 b 0.43 b 0.70 C* 1.69 A* 0.99 BC* 1.04 BC*

GABA 0.22 aB 0.05 b 0.04 b 0.03 b 0.04 b 0.27 AB* 0.34 A* 0.28 AB* 0.10 C*

TOAs, including: 3.96 aB 1.47 bc 1.60 bc 1.26 c 1.82 b 8.10 A* 7.66 A* 8.43 A* 7.62 A*
citric acid 0.96 aB 0.33 b 0.28 b 0.23 b 0.29 b 2.18 A* 2.06 A* 1.55 AB* 1.77 AB*

fumaric acid 0.07 aC 0.04 b 0.04 b 0.03 b 0.04 b 0.05 C* 0.14 AB* 0.11 B* 0.15 A*
malic acid 2.26 aC 0.93 c 1.13 bc 0.92 c 1.36 b 5.39 B* 4.77 B* 6.53 A* 5.22 B*
oxalic acid 0.06 aB 0.02 b 0.01 c 0.01 c 0.02 b 0.13 A* 0.06 B* 0.06 B* 0.07 B*
lactic acid 0.13 aAB 0.03 b 0.02 b 0.02 b 0.03 b 0.09 ABC* 0.14 A* 0.05 C* 0.08 BC*

propanoic acid 0.23 aA 0.06 b 0.04 bc 0.02 c 0.04 bc 0.15 B* 0.16 B* 0.10 C* 0.14 BC*
shikimic acid 0.24 aB 0.07 b 0.09 b 0.03 c 0.05 c 0.11 C 0.34 A* 0.03 D 0.19 B*

TRCs, including: 13.94 aA 3.65 b 2.21 c 1.14 d 1.45 cd 11.65 A* 12.00 A* 8.43 B* 8.23 B*
phosphoric acid 13.93 aA 3.65 b 2.21 c 1.13 d 1.44 cd 11.65 A* 12.00 A* 8.40 B* 8.21 B*

urea 0.01 aB 0.00 a 0.00 a 0.01 a 0.00 a 0.00 C 0.00 C* 0.02 A 0.02 A*

Abbreviations: DAS—day after sowing; TIPMs—total identified polar metabolites; TPAAS—total proteinogenic amino acids; TNAAs—total non-proteinogenic amino acids; TOAs—total
organic acids; TRCs—total remaining compounds.
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2.3. Changes in Polar Metabolite Profiles under Short-Term Soil Drought and Followed
by Rewatering

The applied experimental conditions enabled us to characterize the metabolic adjust-
ment of wheat to the short-term periodic water deficit manifested by the plants wilting.
Results from the PCA score plots indicate a clear separation of control from droughted
plants (Figure 4A). There was also a clear separation of samples from the first and sec-
ond drought stresses, as well as a much lower separation of the control samples (by PC2,
Figure 4A). The loading plots revealed that the discrimination of samples by PC1 was
mainly due to sucrose, fructose, glucose, and malic acid, whereas phosphoric acid and
proline contributed to the separation of samples by PC2.
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The ability of plants to survive drought stress depends on maintaining turgor (ob-
served in our study during recovery, Figure 2) and is possible, e.g., by closing the stomata,
limiting transpiration [11], and accumulating various osmolytes in the cytoplasm and
vacuoles—sugars, amino acids, but also inorganic ions and organic acids that lower the wa-
ter potential of cells [12]. Indeed, the reaction of the shoots of wheat to the first and second
soil droughts was an increase in the concentration of TIPMs (Table 1) to levels significantly
(p < 0.05) higher after both the first and second droughts than before the drought or after
rewatering. Moreover, the concentration of TIPMs was significantly (p < 0.05) higher after
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the second soil drought than after the first one (Table 1). It was a result of the accumulation
of soluble carbohydrates, increasing from 12.05 to 59.18 and 64.12 mg g−1 DW (Table 1),
mainly sucrose, glucose, fructose, and to a lesser extent 1-kestose (Figure 5A–D).
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as in Figure 2.

Those sugars, as osmolytes, participate in maintaining cell water homeostasis [62].
However, in the same type of experiment but performed on pea shoots [34], such changes
were not observed. Moreover, different reactions to drought in terms of sucrose accumula-
tion were also described in other species; e.g., the level of sucrose in the leaves of lentils
decreased [63], while it increased in the leaves of maize [64], soybean [31], and wheat [39].
The accumulation of sucrose may also be influenced by the genetically determined resis-
tance of plants to stress—in drought-resistant varieties, the level of sucrose increases, as
was documented in soybean [65], chickpeas [66], barley [30], several species of Lotus [67],
and Triticeae [68]. In our study, an accumulation of sucrose and 1-kestose (Figure 5A,D) in
shoots of wheat under drought was accompanied by an increase in glucose and fructose
(Figure 5B,C)—products of sucrose hydrolysis by invertases [69]. So far, a significant effect
of the accumulation of sucrose and fructans on the increased resistance of plants to soil
drought has been demonstrated in chicory [70] and ryegrass [71].

Among proteinogenic amino acids, there was an increase in the content of proline
(Figure 5E), to a level fourfold higher during the second drought (8 mg g−1 DW) than during
the first one. The level of proline dramatically decreased after each plant’s rewatering.
The results of our research are consistent with those previously obtained in metabolomic
studies of leaves of wheat [11] and leaves, stems, stipules, tendrils, and shoot tips of
pea [32–34] and confirm the well-documented accumulation of proline in the response of
plant vegetative tissues to abiotic stresses [72,73]. Proline increases the resistance of plants
to drought, which was demonstrated, for example, in wheat [11,28], some model species,
like Arabidopsis thaliana [25] and Medicago truncatula [74], and in transgenic wheat [75] and
soybean [76]. The protective properties of proline result from its participation in osmotic
regulation, stabilization of cellular structures (i.e., membranes and proteins), scavenging
free oxygen radicals [77], and maintaining the intracellular redox potential by regulating
the correct ratio of NADP+/NADPH in the cytosol, as well as the ability of proline to bind
1O2 [72,73].
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Additionally, a significant increase in the content of leucine, isoleucine, and valine
(branched-chain amino acids—BCAAs), but to a level much lower than that of proline, was
found after the second soil drought (Table 1). The increase in those amino acids in wheat
leaves was revealed earlier in both drought-tolerant and susceptible wheat cultivars [11,28].

Among the remaining polar metabolites, the content of malic acid also increased in
the tissues under drought and decreased after rewatering. However, after rewatering,
its concentration was still at a much higher level than in the control (Figure 5F). The
accumulation of malate in response to drought was found earlier in the leaves of six wheat
genotypes [39], as well as in shoots [33] and leaves of pea [32]. Malate participates in the
osmotic regulation of guard cells, maintains the pH of the cytoplasm, and provides NADH
for nitrate reduction [78].

The comparison of metabolite profiles of samples after drought stress and followed by
recovery revealed the separation of samples according to the PC1 sharing 84.5% of variance
(Figure 6A).
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Samples of drought-stressed plants (D1 and D2) were grouped on the right side of
the PC1, whereas samples after recovery (R1 and R2) appeared on the left side (Figure 6A).
The alteration in metabolic profiles was also observed following exposure to each drought
stress treatment due to PC2. Moreover, the PC2 separated each recovery (Figure 6A). Such
a distribution of samples resulted from the changes in the content of sucrose, fructose,
glucose, proline, and phosphoric acid in particular (Figure 6B). Moreover, HCA separated
samples into several clusters (Figure 6C). Apart from the clear separation of droughted and
rewatered samples revealed by PCA, there were also control samples in one cluster shown
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by HCA. Additionally, rewatered samples were more closely related to the initial samples
(in one cluster with samples from the 14th DAS) than to appropriate controls (in the 24th
and 34th DAS).

The ability of plants to restore metabolism after the stress has subsided and to modify
their behavior in response to a subsequent stress seems crucial due to the increasing
intensity of environmental disturbances, including the predicted further global warming,
which may be associated with an increased risk of periodic drought [79]. Our study revealed
that the concentration of polar metabolites in samples after each recovery to optimal
hydration, in relation to control samples (at the 24th and 34th DAS), was significantly
higher. This was mainly due to the persistently elevated levels of fructose, glucose, sucrose,
malic acid, and phosphoric acid after the first rewatering cycle and sucrose, malic acid, and
phosphoric acid after the second cycle (Table 1).

3. Materials and Methods
3.1. Material

Kernels of wheat (Triticum aestivum L. cv. Forkida, winter cultivar) were purchased
from a domestic seed company—DANKO Plant Breeding. The experiment was performed
as previously published on peas [34]. Briefly, kernels (after surface decontamination) were
sown in plastic seedling trays (32 × 32 × 5 cm), three kernels per each of 25 cells, filled with
70 cm3 of garden soil (substral osmocote). The soil moisture was kept at 70–75% field water
capacity (FWC), measured using a soil moisture meter (Theta Probe ML3, Delta-T, UK).
Plants were cultivated in a greenhouse laboratory in April and May 2017. Soil drought
was caused by the cessation of watering at the early stage of vegetative growth (from the
14th DAS)—at the stage when three leaves formed. After five days, the FWC decreased
to 20–25%, and then watering resumed for 5 days. The watering cessation followed by
rewatering (for 5 days each period) was repeated. Control plants grew at optimal FWC
(70–75%) until the 34th DAS.

3.2. Methods

Shoots from control wheat plants and those of two cycles of soil drought/rewatering
were collected at the 14th, 19th, 24th, 29th, and 34th DAS, always between 9 and 10 a.m.
(in 4 replicates), weighed, and frozen in liquid nitrogen. The time elapsed between the
shoot harvesting and tissue freezing was no longer than 10 min. Samples were stored in an
ultra-refrigerator (for 7 days at −76 ◦C) and freeze-dried for 48 h (shelf freeze-dryer, Alpha
1–2 LD, Martin Christ, Osterode am Harz, Germany). The WC was expressed in g of water
per g of dry weight and calculated as WC (g g−1 DW) = (FW – DW)/DW [80].

3.2.1. Analysis of Polar Metabolites

The extraction of polar metabolites was carried out according to the method described
earlier [33,81]. The polar metabolites were extracted from 40 mg of dry (freeze-dried)
tissues of wheat shoots (from 4 biological replicates) with a mixture of methanol:water.
Homogenates were centrifuged, and aliquots of the clear supernatant were mixed with cold
chloroform to remove non-polar compounds. The polar fraction was concentrated to dry-
ness in a speed vacuum rotary evaporator (JW Electronic, Warsaw, Poland). The metabolites
were derivatized with O-methoxamine hydrochloride and a mixture of MSTFA (N-methyl-
N-trimethylsilyl-trifluoroacetamide) with pyridine. The mixtures of TMS (trimethylsilyl)
derivatives were separated on a ZEBRON ZB-5MSi Guardian capillary column (Phe-
nomenex, Torrance, CA, USA). Metabolic profiling of tissues was performed with the
gas chromatography (GC) technique coupled with mass spectrometry (GC-MS), using a
QP-GC-2010 apparatus (Shimadzu, Tokyo, Japan). Polar metabolites were identified and
characterized by comparison of their retention time (RT), retention indices (RI, determined
according to the saturated hydrocarbons), and mass spectra of original standards derived
from Sigma-Aldrich (Sigma-Aldrich, Merck, Rahway, NJ, USA), and from the NIST library
(National Institute of Standards and Technology).



Int. J. Mol. Sci. 2023, 24, 8429 12 of 16

3.2.2. Statistics

The results were subjected to a one-way ANOVA with a post-hoc test (Tukey) or
Student’s t-test using Statistica software (version 12.0). Graphs were prepared using
GraphPad Prism (version 3.0). Principal Component Analysis (PCA) and hierarchical
cluster analysis (HCA) were performed in the COVAIN program [82], using the MAT-
LAB software (version 2013a, Math Works), in order to compare the metabolic profiles
of wheat during vegetative growth as well as under soil drought and two cycles of soil
drought/rewatering. In addition, we also performed a pathway analysis of differen-
tially accumulated polar metabolites after wheat plants exposure to drought in com-
parison to controls. It was performed using the MetaboAnalyst 5.0 platform (https:
//www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml, accessed on 1 March 2023).
Although the p-value from the enrichment analysis was less than 0.05 for several pathways,
there was a very low match status of metabolites for each of the pathways (Figure S1,
Table S1).

4. Conclusions

Results of the present study revealed dynamic changes in primary polar metabolites
during the plants exposure to repeated short-term soil drought and rewatering. Soluble
carbohydrates (sucrose, glucose, fructose, and 1-kestose), proline, and malate participate in
this process due to their increasing concentration in response to drought and decreasing
after rewatering. It was confirmed by repeated drought/rewatering cycles. However,
the possible changes in the pattern of sugar (and other photoassimilates) translocation
between shoots and roots under drought need further studies. The research also shows that
GC-MS is an appropriate approach for fast screening of metabolic disturbances in primary
metabolism in plants exposed to water deficit stress. However, for a deeper explanation of
wheat adaptation to drought, further research focusing on prolonged periodic droughts as
well as examining root tissues is needed.
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