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Abstract: Germplasm identification is essential for plant breeding and conservation. In this study,
we developed a new method, DT-PICS, for efficient and cost-effective SNP selection in germplasm
identification. The method, based on the decision tree concept, could efficiently select the most
informative SNPs for germplasm identification by recursively partitioning the dataset based on
their overall high PIC values, instead of considering individual SNP features. This method reduces
redundancy in SNP selection and enhances the efficiency and automation of the selection process.
DT-PICS demonstrated significant advantages in both the training and testing datasets and exhibited
good performance on independent prediction, which validates its effectiveness. Thirteen simplified
SNP sets were extracted from 749,636 SNPs in 1135 Arabidopsis varieties resequencing datasets,
including a total of 769 DT-PICS SNPs, with an average of 59 SNPs per set. Each simplified SNP set
could distinguish between the 1135 Arabidopsis varieties. Simulations demonstrated that using a
combination of two simplified SNP sets for identification can effectively increase the fault tolerance
in independent validation. In the testing dataset, two potentially mislabeled varieties (ICE169 and
Star-8) were identified. For 68 same-named varieties, the identification process achieved 94.97%
accuracy and only 30 shared markers on average; for 12 different-named varieties, the germplasm
to be tested could be effectively distinguished from 1,134 other varieties while grouping extremely
similar varieties (Col-0) together, reflecting their actual genetic relatedness. The results suggest that
the DT-PICS provides an efficient and accurate approach to SNP selection in germplasm identification
and management, offering strong support for future plant breeding and conservation efforts.

Keywords: germplasm identification; Arabidopsis thaliana; SNP; DNA fingerprinting

1. Introduction

Arabidopsis thaliana, as a model plant, has great value in modern genetics [1]. Before
the formal start of research, confirmation of germplasm identity is an essential step [2].
Misidentified, the germplasm resource will most likely result in a significant waste of
human resources and time, limiting the potential for genetic analysis [3]. Moreover,
germplasm confusion is also common in seed stock [4]. Using phenotypic traits is the
simplest and fastest method of germplasm identification. However, it is susceptible to
external environmental influences [5]. Unlike biochemical and morphological markers,
molecular markers are environmentally stable, providing significantly high genetic poly-
morphism while allowing for analysis at any developmental stage [6]. Molecular markers
are now widely used for variety identification in plants such as rice [7], Arabidopsis [2],
cucumber [8], soybean [9], and so on.

Given the stability and effectiveness of germplasm identification methods, the In-
ternational Union for the Protection of New Varieties of Plants (UPOV) has identified
DNA molecular markers as SSR and SNP marker [10,11]. However, SNP has a higher
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potential for application than SSR based on its advantages. In general, SNPs are widely
distributed and highly abundant in the genome, present high genetic stability and good
repeatability, and allow high-throughput automated analysis [8,12]. With the development
of second-generation sequencing technology, SNP has rapidly been applied in various
crops for genetic variation [13] and diversity analysis [14], which is regarded as one of the
most important and promising markers [15].

Using SNPs for the germplasm identification of Arabidopsis has been applied to
some extent. The Arabidopsis germplasm identification tools AraGeno and SNPmatch,
developed by Rahul Pisupati et al. and based on the 1001 Genomes Project, can be used
directly online to identify germplasm to be tested by comparing its whole-genome SNPs
with a reference database of 10.7 million SNPs. However, it is based on whole genome
alignments. Additionally, the identification accuracy is highly dependent on the number
of markers in the germplasm to be tested, which decreases as the number of markers
decreases. It may fail to identify germplasm when the number of markers is less than
10,000 [2]. Relative to Pisupati et al.’s method, Matthieu Simon et al. used only 341 SNPs to
distinguish 1311 Arabidopsis seeds corresponding to 598 varieties and developed a tool
called ANATool. For marker selection, they first integrated markers previously developed
by other researchers, then manually screened markers evenly distributed on chromosomes
with intermediate allele frequencies (the more intermediate the frequency is, the more
discriminating the marker is) [16]. They further screened the markers with locus detection
rates and GenTrain scores to obtain a set of 341 SNPs. However, the marker screening pro-
cess was not automated and was somewhat dependent on the validity of markers selected
by other researchers [3]. Similar to intermediate allele frequencies, the Polymorphism
Information Content (PIC) values were also considered in many other studies [8], since
intermediate allele frequencies tend to be more highly associated with high PIC values [16].
The variety distinction pursuit involves low labor costs and high efficiency, which means
distinguishing all varieties with the minimum number of SNPs [15]. Ideally, approximately
1000 Arabidopsis varieties can be distinguished with a set of 10 binary SNPs. Many previ-
ous studies only selected individual SNPs with high PIC values, without considering their
overall performance, which ignores the redundant information between selected markers.
Thus, there is still room for the further streamlining of existing selected markers.

To achieve a strong overall distinction, it is recommended that markers be complemen-
tary to each other. The decision tree method (DT) is one of the well-known methods for
data classification. The most distinctive markers can be quickly selected by DT for recursive
partitioning and the redundancy between markers can be reduced; thus, the core features
can be quickly filtered out for classification [17]. Although germplasm identification is not a
typical classification problem, large, complicated datasets can be efficiently dealt with using
the DT method without imposing a complicated parametric structure. The concept of the
DT method could be used in the germplasm identification process [18] since the method can
facilitate faster screening and enable automation of the germplasm identification process.

In this study, we developed a DT-PICS (Decision Tree-PIC Selection) method for
Arabidopsis germplasm identification. At first, for 1135 Arabidopsis varieties, the simplified
SNP set with an overall high PIC value was screened out with DT-PICS. Then, multiple
simplified SNP sets were combined to construct the fingerprint map to enhance the fault
tolerance in independent identification. We then compiled all the code into R scripts
for automatic analysis. This method has good portability and can also be used for the
fingerprint construction of other plants.

2. Results
2.1. Characteristics of SNPs in Training Data

The distribution of PIC values for the 736, 195 cSNPs in Train_Data (736, 195 × 1135)
shown in Figure 1A are relatively uniform. Using the DT-PICS method, we obtained
13 simplified SNP sets that contained a minimum of 52 SNPs that could distinguish the
1135 Arabidopsis germplasms, with an average of 59 SNPs per set (Table S1). These 13 sets
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contained a total of 769 DT-PICS SNPs that were evenly distributed across the chromosomes.
Among these 769 SNPs, 170 SNPs (22.11%) had high PIC values (PIC value > 0.45), while
160 SNPs (20.81%) had low PIC values (PIC value < 0.2). (Figure 1B).
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Figure 1. The PIC value of cSNPs in Train_Data and the DT-PICS-selected SNP distribution on
chromosomes. (A) The histogram of PIC values of cSNPs in Train_Data; (B) The chromosome
distribution of 769 SNPs screened out with DT-PICS.

2.2. Fingerprint of 1135 Arabidopsis Varieties Established by DT-PICS

Figure 2A shows that when using a single SNP set to validate the distinguishing
accuracy of marker selection methods at five SNP modification levels, the DT-PICS had a
higher distinguishing accuracy (92.15%) than High PIC-value Selection (HPS, 82.86%) and
Random Selection (RS, 77.77%) on average, indicating the superior identification ability of
DT-PICS. Additionally, the distinguishing accuracy of the 13 simplified SNP sets at different
SNP modification levels is shown in Figure 2B. We observed a decrease in distinguishing
accuracy as the proportion of SNP modifications increased. Among the five SNP combina-
tions, the 13 simplified SNP sets exhibited similar high distinguishing accuracy, with the
11th SNP set (containing 59 SNPs) achieving the highest average distinguishing accuracy
(93.54%) and the best fault tolerance (Table 1).
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Table 1. Comparison of identification simulation analysis using the 11th simplified SNP set.

SNP Combination Distinguishing Accuracy (%)
Mean Accuracy (%)

Raw SNP Modify 5% SNP Modify 10% SNP Modify 15% SNP

59 DT-PICS SNPs 100 96.74 92.78 84.64 93.54

39 DT-PICS + 20 hPIC 94.19 91.28 88.65 85.21 89.83

20 DT-PICS + 39 hPIC 91.28 85.94 84.68 82.67 86.14

59 hPICS SNPs 87.14 82.32 81.71 80.51 82.92

59 random SNPs 86.70 80.42 77.90 68.26 78.32

Table 1 shows a comparison of identification simulation analyses of the 11th SNP set.
The order of average distinguishing accuracy of the three methods was DT-PICS (93.54%)
> HPS (82.92%) > RS (78.32%). The distinguishing accuracy using the 11th SNP set was
96.74%, 92.78%, and 84.64% at 5%, 10%, and 15% SNP modification levels, respectively.
The mean distinguishing accuracy of the SNP set was 91.39% with a standard deviation
of 0.062.

When combining multiple simplified SNP sets, a significant increase in distinguishing
accuracy was observed according to SNP modification levels (Figure 2C), indicating that
combined multiple simplified SNP sets could enhance the markers’ fault tolerance and
stability in practical application effectively. Additionally, the degree of inconsistency in SNP
changes may vary depending on the sequencing platform and sample used. SNP changes
were not significant with advancements in sequencing technology [8]; thus, using a level of
5% SNP modification may better reflect practical scenarios. Although the distinguishing
accuracy increased with the use of more simplified SNP sets, the accuracy did not increase
much from two sets (99.05%) to five sets (99.98%) at a 5% SNP modification level (Figure 2C,
Table S2). Therefore, to save costs while ensuring high accuracy, two simplified SNP sets
were chosen for joint identification in this study.

We performed simulation experiments by combining the 13 simplified SNP sets in all
possible pairwise combinations for joint identification, resulting in 78 combinations, and
the DT-PICS method showed the best performance in both the original and modified SNP
datasets (Table S3). Among these combinations, the combination of the seventh and eighth
simplified SNP sets containing 109 SNPs showed the highest distinguishing accuracy. The
distinguishing accuracy of this combination was 99.44%, 97.94%, and 95.64% at 5%, 10%,
and 15% SNP modification levels, respectively. The distinguishing accuracy of HPS and RS
methods were similar, both being less than 90%. With several DT-PICS SNPs instead of a
portion of hPIC SNPs (PIC value > 0.45), the distinguishing accuracy significantly increased
(Table 2). This further highlights the superiority of the DT-PICS method.

Table 2. Comparison of identification simulation analysis using the 7th and 8th combination sets.

SNP Combination Distinguishing Accuracy (%)
Mean Accuracy (%)

Raw SNP Modify 5% SNP Modify 10% SNP Modify 15% SNP

109 DT-PIC SNPs 100 99.44 97.94 95.64 98.26

73 DT-PIC + 36 hPIC 99.56 97.28 94.82 92.56 96.06

36 DT-PIC + 73 hPIC 95.51 92.02 90.19 88.58 91.58

109 hPIC SNPs 87.93 83.86 83.57 83.14 84.63

109 random SNPs 87.58 83.10 82.57 81.59 83.71
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2.3. Fingerprint of the Identification Power of Same-Named and Different-Named Varieties in
Test Datasets

In independent predictions, for 68 same-named varieties, the variety with the highest
similarity was recorded as the identification result. The DT-PICS method showed the
highest identification accuracy, with an average of 94.97%, and only 30 shared markers
between training and test datasets on average (Figure 3A, Table S4). In contrast, the HPS
and RS methods exhibited almost zero identification accuracy. Comparing the similarities
of the 68 same-named varieties in the training and test datasets showed that the similarity
with DT-PICS SNPs (80.95~100%) reached a level comparable to that with the whole
genome SNPs (83.76~100%), indicating that the SNPs selected by the DT-PICS method
could effectively represent the genetic diversity of these germplasms (Figure 3C). Two
varieties, ICE169 and Star-8, were separately incorrectly identified as ICE173 and Uk-3
with DT-PICS SNPs. A comparison of the whole genetic similarity between these varieties
demonstrated that ICE169 and Star-8 in Test_Data separately had a genetic similarity of
98.50% and 99.34% with their same-named varieties in Train_Data and of 99.08% and 99.35%
with the incorrectly identified varieties in Train_Data. The identified varieties in Test_Data
had a higher genetic similarity with other varieties rather than their corresponding same-
named varieties, possibly indicating sample confusion or mislabeling, which requires
further investigation.
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(B) Gradient experiment using a random selection of markers from the 769 SNPs to distinguish the
varieties in Test_Data. (C) The similarity between the 68 same-named varieties using DT-PICS SNPs
and whole-genome SNPs.

Furthermore, all 12 different-named varieties were able to be distinguished from each
other using DT-PICS SNPs. However, when each of these varieties was individually added
to the Train_Data, they could be distinguished from the other 1134 varieties, but were
always classified as the same variety as col-0. Further investigation into their genetic
similarity with Col-0 at the whole-genome level revealed an average similarity of 99.99%. It
is suggested that these 12 different-named varieties could be regarded as derivatives of Col-
0 rather than independent new varieties. The DT-PICS method can effectively distinguish
between the germplasm to be tested and other varieties while grouping extremely similar
varieties together, reflecting their actual genetic relatedness. In contrast, the HPS and
RS methods may sometimes classify a single germplasm into multiple different varieties,
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which results in increased uncertainty in the classification process. These results further
demonstrate the superiority of DT-PICS for germplasm identification.

To demonstrate the flexibility of DT-PICS SNP selection, a gradient approach was
used by randomly selecting a certain number of markers from all 769 DT-PICS SNPs to
distinguish the 80 varieties in Test_Data. The distinguishing accuracy gradually increased
with increases in the number of selected SNPs, reaching stability at 70 SNPs. Additionally,
identification accuracy did not show any significant difference with same-size randomly
selected DT-PIC SNPs, indicating that marker selection could be based on practical needs
in practical applications, rather than being limited to specific marker sets (Figure 3B). These
findings can help optimize SNP selection strategies to better meet practical application
requirements and highlight the practicality of the DT-PICS method.

2.4. Generation of QR Codes

QR codes for 1135 Arabidopsis varieties were created. Each code contained the
variety’s name and its DT-PICS SNP from two simplified SNP sets (Figure 4).
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3. Discussion

Germplasm identification is crucial for managing genetic diversity in germplasm
resources [5]. However, with the rapid growth of germplasm resources [19], germplasm
confusion is common in stock centers [2,3,6]. Confirmation of germplasm identity before
formal experimentation is essential, as errors due to mixing or mislabeling can occur over
time [14]. While the variety discrimination pursuit involves low labor costs and high
efficiency, there is still room for the further streamlining of existing markers. Our research
aims to make the process of germplasm identification more efficient and cost-effective.

In this study, with the strategy of the DT method concept for “divide and conquer”
and “greedy” based on PIC values, a DT-PICS germplasm identification method based on
the SNPs of the whole genomes of 1135 Arabidopsis varieties was developed. In contrast
to most existing marker selection methods that focus solely on individual SNP’s high PIC
values [20–22], our study considered overall high PIC values (PICsum) that take into account
both the overall performance of the SNP dataset and the unique characteristics of each
marker. This approach allowed us to avoid selecting redundant SNPs with high PIC values
that do not provide additional discriminatory power and to identify low-PIC-value SNPs
that contain novel information and are valuable for germplasm identification. Additionally,
the DT method could efficiently select the most informative SNPs for germplasm identifica-
tion by recursively partitioning the dataset based on their overall high PIC values, which
can reduce the cost and time required for genotyping large numbers of varieties [17,18].

Remarkably, when markers are selected using DT-PICS, the greedy algorithm may
result in an uneven distribution of markers across sets, altering the population structure
within the sample. This can increase the genetic distance between initially similar vari-
eties and decrease it between more distinct varieties, rendering the set of markers less
suitable for assessing variety similarity. Therefore, DT-PICS SNP is only applicable for
germplasm identification but not suitable for comparing similarities between varieties or
cluster analyses. Thus, DT-PICS SNP has a better distinguishing ability for similar varieties.

Using the DT-PICS method, 13 simplified SNP sets containing a total of 769 DT-PICS
SNPs were generated, with an average of 59 SNPs per set, which were capable of distin-
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guishing all 1135 Arabidopsis germplasms. Our results show that the DT-PICS method
performed well in both Train_Data and Test_Data, indicating its superior identification
ability for both same-named and different-named germplasms compared to the HPS and RS
marker selection methods. Additionally, we observed a significant increase in distinguish-
ing accuracy when using a portion of DT-PICS SNPs instead of hPIC SNPs. The gradient
experiment demonstrated that a randomly selected set of DT-PICS SNPs (approximately
70 SNPs) achieved high distinguishing accuracy, which further highlights the flexibility and
practicality of the DT-PICS method. Furthermore, we identified two potentially mislabeled
varieties (ICE169 and Star-8), suggesting the importance of further investigation to ensure
the accurate identification of germplasms.

Although the DT-PICS method has demonstrated its scientific validity and practicality,
there are still some aspects that can be further improved. On the one hand, in Test_Data
for the same-named varieties, the one with the highest similarity was selected as the
identification result. However, for some cases where the same-named varieties’ similarity
was not very high (Figure 3C), such as ICE107, the similarity of DT-PICS (80.95%) was
significantly lower than that of the whole genome (98.99%); thus, further checks of the
germplasm using other methods such as phenotype analysis may be necessary. On the other
hand, although the 7th and 8th simplified SNP sets were chosen to construct the QR codes
in this study, the flexibility in marker selection allowed for the use of alternative marker
combinations. However, due to the lack of established standards for marker selection, the
marker combinations used in this study may require further validation and optimization
to improve the accuracy and reliability of germplasm identification. Therefore, future
research can explore more standardized and stable marker combinations to better achieve
germplasm identification and management.

4. Materials and Methods
4.1. Genotype Dataset of Materials

There were two Arabidopsis SNP genotype datasets involved in this study: one
training dataset and one test dataset (Figure 5). The training dataset was downloaded from
the 1001 Genomes Project (https://1001genomes.org, accessed on 4 April 2022) [23,24],
including more than 119 million SNPs of 1135 Arabidopsis germplasms worldwide. The
SNPs that passed quality control were maintained by removing SNPs with >20% missing
calls and MAF < 5% and using a two-step linkage disequilibrium pruning procedure with
PLINK (version 1.9) [25]. Then, SNP genotype imputation was performed with beagle
software (version 5.1) [26], and 1,158,135 SNPs remained.
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SNPs include coding-region SNPs (cSNPs), intergenic SNPs (iSNPs), and perigenic
SNPs (pSNPs). The variation rate of cSNPs within exons is only 20% of that of other sur-
rounding sequences. Although the number of them is relatively small, they are important in
the study of biological breeding and genetic diseases. Therefore, in this study, we screened
cSNPs located in the coding region of genes for further Arabidopsis germplasm identifica-

https://1001genomes.org
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tion. Arabidopsis gene annotation information was obtained from the genome database
of NCBI GenBank (http://www.ncbi.nlm.nih.gov/, accessed on 14 April 2022). Then,
749,636 cSNPs located in the gene’s coding region were extracted and used for following
Arabidopsis fingerprint mapping modeling. SNPs that were genotypically identical in all
samples were removed. The training dataset contained 1135 varieties with 736, 195 cSNPs,
denoted as Train_Data (736, 195 × 1135).

The test dataset contained 80 Arabidopsis varieties downloaded from the MPICao2010
of 1001 Genomes Project (https://1001genomes.org, accessed on 5 May 2022), including
68 same-named and 12 different-named varieties as those in Train_Data [27]. Then, quality
control and cSNPs extraction were conducted, as with the training dataset. The test dataset
contained 80 varieties with 119,411 cSNPs, denoted as Test_Data (119, 411 × 80). For
same-named and different-named varieties, two accuracy metrics, Identification Accuracy
and Distinguishing Accuracy, were used to evaluate the identification ability of the method.

Identi f ication Accuracy =
Number o f varieties identi f ied correctly

Total number o f tested varieties
× 100%

Distinguishing Accuracy =
Number o f varieties distinguished

Total number o f tested varieties
× 100%

4.2. Marker Polymorphism Analysis

The PIC of each cSNP in Train_Data was calculated with the software R language. The
calculation formula is as follows:

PIC = 1 − ∑ f2
i (1)

where f is the genotype frequency of the ith SNP [28].

4.3. Selecting SNPs from the Training Dataset to Construct a Fingerprint Map

The flowchart of the DT-PICS method is shown in Figure 6. To explain the concept of
the DT-PICS method clearly, the dataset with eight varieties (V1~V8) and seven SNPs was
taken as an example, shown in a schematic diagram (Figure 7).

Stage 1: preliminary screening of SNP markers. First, the SNPs in Train_Data were
sorted with the PIC values in descending order. One SNP was randomly selected from the
top 10% of SNPs. According to the genotype of the SNP, Train_Data was split into two
datasets, split_1 and split_2, and two leaf nodes were obtained. As shown in Figure 7, the
SNP1 was selected and the original dataset was split into two datasets.

The PIC values of the remaining SNPs were recalculated in each split dataset (split_1,
split_2. . . split_l), and the PIC values of all SNPs in each split dataset were summed to
obtain PICsum. PICsum = ∑l

j=1 ∑2
i=1

(
1 − P2

ij

)
, where l is the number of datasets to be

split and Pij is the genotype frequency of the ith marker (i = 1~m, m is the total number
of markers) of the jth split dataset (j = 1~l). The remaining SNPs were sorted with the
values of PICsum in descending order. Then, another SNP was randomly selected from the
top 10% of the remaining SNPs. The previously split datasets were further split into new
sub-datasets according to the genotype of the new selected SNP.

The above steps were repeated until the number of leaf nodes and the number of split
datasets equaled the total number of samples n. As shown in Figure 7, SNP1 and SNP3
were separately selected in the first and second rounds, and the datasets were split into
four leaves. After four rounds, the raw dataset was split into eight leaves according to the
genotypes of the four selected SNPs (Figure 7), which meant that the set of these SNPs (M)
could distinguish all varieties.

Stage 2: Redundant SNP deletion. One SNP in the M set was randomly shielded at a
time. If the remaining selected SNPs could still distinguish all varieties, this indicated that
the shielded SNP was redundant and should be filtered out. Otherwise, the SNP remained
in the M set. We repeated this step several times until all the markers in the M set had been

http://www.ncbi.nlm.nih.gov/
https://1001genomes.org
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checked. As shown in Figure 7, SNP 2 was a redundant SNP. The genotype combinations
of SNP1, SNP3, and SNP4 could still distinguish all eight varieties, forming a simplified
SNP set.
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4.4. Variety Identification in the Training Set Using the DT-PICS Method

To evaluate the effectiveness of germplasm identification with the above simplified
SNP sets, markers selected from three methods, DT-PICS, HPS (High PIC selection), and RS
(Random Selection), were separately performed for germplasm identification in simulation
analyses. The HPS method selected SNPs with PIC values > 0.45 (hPIC) in Train_data as
high PIC SNPs; the RS method selected SNPs randomly from Train_Data for identification.
Five experimental levels, with all DT SNPs, 2/3 DT SNPs + 1/3 hPIC SNPs, 1/3 DT SNPs +
2/3 hPIC SNPs, all hPIC SNPs, and all RS SNPs, were set up with five repeats at each level.
The number of markers at each level equaled the average value of all simplified SNP sets
selected by DT-PICS mentioned above. To compare the distinguishing accuracy of the three
methods, we separately modified 5%, 10%, and 15% SNPs of the germplasm to simulate the
inconsistency of SNP genotypes among different samples of the same germplasm that can
be caused by mutations, deletions, differences in sequencing platforms, and other factors
in practical applications.

For some selected markers that may not have been detected in the tested germplasm
during the SNP calling in different sequencing platforms, the accuracy of independent
prediction was reduced due to insufficient core markers. As a result, multiple simplified
SNP sets should be combined for independent prediction to improve the stability and fault
tolerance of the DT-PICS. The combination of multiple simplified sets should contain a
relatively small size of markers and can well distinguish germplasms from each other in
practical applications. To save identification costs as much as possible, it is necessary to
determine the optimal number of simplified SNP sets. Similar to the analysis method using
a single simplified SNP set mentioned above, 5%, 10%, or 15% SNP genotypes of tested
germplasm were randomly modified, then combined with several simplified SNP sets to
determine the optimal combination for independent germplasm identification.

4.5. Independent Testing of Variety Identification

Three methods (DT-PICS, RS, and HPS) were used to identify 68 same-named and
12 different-named varieties in Test_Data, as in Train_Data. The prediction accuracy
was evaluated based on the identification accuracy and the distinguishing accuracy men-
tioned above.



Int. J. Mol. Sci. 2023, 24, 8742 11 of 12

4.6. Generation of QR Codes

QR codes were generated for the varieties used in this study using two combinations
of simplified SNP sets that had shown the best performance in the training set. The codes
were generated using an online tool available at www.barcode-generator.org (accessed on
13 March 2023) [11]. Each variety’s name and its DT-PICS SNP from two simplified SNP sets
were used as input to generate corresponding QR codes. Once the code had been generated,
it was scanned for the confirmation of information used for germplasm identification.

5. Conclusions

This study presents a novel DT-PICS method for quickly and accurately identifying
varieties, which offers several advantages over existing methods. The approach is flexible
and practical, with no need for manual selection and a low number of markers. Moreover,
an Rscript (Document S1) was compiled to make the marker screening process more
manageable and applicable, enabling the automatic construction of fingerprint maps for the
germplasm identification of other plants. SNP-based germplasm identification technology
has great potential for identifying new and existing varieties, and our method can provide
technical support for constructing relevant germplasm fingerprint maps. This research has
significant implications for developing future marker screening methods in this field.
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