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Abstract: A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide
3(a–s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs.
The structural elucidation was verified based on spectroscopic data analysis. All the target compounds
were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria,
and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested
bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli
and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed
broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm
activity of compound 3l was measured against different pathogenic microbes isolated from the
urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding
10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa,
and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein
discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which
explains the creation of holes in the cell membrane of E. coli and proves compound 3l’s antibacterial
and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d,
and 3l revealed promising results, indicating the presence of drug-like properties.

Keywords: quinoline; sulfonamide; antimicrobial activity; urinary tract infection; reaction mechanism

1. Introduction

The overuse of antibiotics results in antimicrobial resistance (AMR), a growing global
health concern [1]. This causes the emergence of bacterial strains that are resistant to
antibiotics, causing infections which are more challenging to treat and raising the possibility
of the spread of disease [2]. Thus, the number of multi-drug resistant (MDR) bacterial strains
has grown since the 1960s [3]. Although there are many efficient antimicrobial medications
available in the clinic, spontaneous genetic changes occurring in bacteria can influence
the effectiveness of these drugs. The excessive and inappropriate use of antimicrobial
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medications promotes these genetic changes [4], therefore, antimicrobial drugs can become
less effective in a shorter period of time, causing the rapid development of resistance [5].
However, due to rapidly evolving resistance, infectious diseases continue to pose one of
the greatest risks to public health [6]. In fact, antibiotic resistance to bacterial infectious
diseases is thought to be the cause of a significant number of annual fatalities [7]. Methicillin-
resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and quinolone-resistant
S. aureus (QRSA) strains are just a few examples of the drug-resistant bacteria that are
on the increase globally [8,9]. Additionally, the pathogens known as the ESKAPE set of
multidrug resistant (MDR) strains are regarded as international targets [10].

Urinary tract infection (UTI) is a prevalent condition that can be classified as either
uncomplicated or complicated [11]. Uncomplicated UTIs can affect healthy individuals with
normal urinary tracts and are typically caused by uropathogenic Escherichia coli (UPEC).
Conversely, complicated UTIs can occur in patients with abnormal urinary tracts or those
who are immunocompromised [12]. In the case of complicated UTIs, a broad range of
pathogens can be involved, and treatment with antibiotics may be less effective, leading to
a higher incidence of relapse. The rapid identification of the pathogen’s resistance profile is
crucial in diagnosing and treating UTIs [13,14].

Microbial biofilms have an impact on several diseases, and the characteristics of
these microorganisms that are associated with biofilms can result in significant antibiotic
resistance. The biofilm matrix, which functions as a mechanical barrier, may interfere with
immune response agents and antibiotic therapies [15]. A deficiency in nutrients or a non-
growing, yet hardy, phenotype that enables microbes to endure environmental stressors,
such as exposure to antibiotics, may also cause bacteria to develop high levels of antibiotic
resistance. This issue calls for prompt action and highlights the need to explore innovative
ways to create new, effective, and safe antimicrobial drugs [16].

Certain strains of E. coli are responsible for increased morbidity and mortality, partic-
ularly in immunocompromised patients using various medical devices such as urethral
and intravascular catheters [17]. E. coli-triggered infections are challenging to treat due
to biofilm formation [18]. These biofilms are made of bacterial colonies surrounded by a
matrix of extracellular polymeric substances (EPS) which shields the microbes from adverse
environmental conditions leading to infection. Besides being responsible for recurrent
urinary tract infections, E. coli biofilm is the cause of innate medical device-related infec-
tivity [19]. Biofilm reduces the diffusion of conventional antibiotics and renders the cells
resistant to antibiotics [20]. E. coli can become resistant by altering the target enzymes,
reducing the permeability of the cell to inhibit their entry, or actively pumping the drug
out of the cell [21]. All these resistance mechanisms can play a role in antibiotic resistance;
however, target site mutations appear to be the most important mechanism [22]. Biofilm
is considered an important target in the fight against drug-resistant bacterial infections,
suggesting an urgent need to explore alternative therapeutic agents [23].

Quinolines constitute an important class of compounds due to their resemblance to
ciprofloxacin, which treats various bacterial infections, including bone, joint, and intra-
abdominal infections [24]. Several drugs that fight cancer [25], parasites [26], tuberculo-
sis [27], malaria [28], and viruses such as SARS-CoV-2 [29,30] have a quinoline backbone.
Their high activity and limited toxicity make them better treatment candidates and the
drug of choice in various cases. Many synthetic and naturally occurring quinolines, such
as quinine, ciprofloxacin, and hydroxychloroquine, were reported to have antimicrobial
activity [31,32], as shown in Figure 1. Quinolines are antibacterial candidates involved in
DNA replication, transcription, and recombination in bacterial cells though the inhibition
of topoisomerase II (DNA gyrase) and topoisomerase IV [33,34]. The blockage of these
enzymes is an essential target for discovering and developing new antibacterial drugs [35].
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Figure 1. Quinoline-bearing antimicrobial agents.

Quinolones are widely used to treat urinary tract and respiratory infections [36].
Because of their common use and overuse, several quinolone-resistant bacterial strains
have emerged since the 1990s. Like other antibacterial agents, the increase in quinolone
resistance threatens the clinical utility of this important drug class. The 4-quinolones were
introduced for medical use in 1964 [37]. The quinolone antibiotics are active against a
wide range of Gram-negative bacteria, with minimal inhibitory concentrations (MICs) in
the nanomolar range, and are relatively potent towards many Gram-positive bacteria [38].
Their activity is due to the inhibition of DNA replication though the inhibition of DNA
gyrase and topoisomerase IV activities to varying degrees, depending on the pathogen [39].

On the other hand, sulfonamides were the first agents discovered to be active against
pyogenic bacterial infections [40]. Additionally, the chemotherapeutic action of sulfon-
amides has been the subject of extensive research for many years [41–44]. The antibacterial
activity of sulfonamides was proved to be due to the competitive inhibition of dihy-
dropteroate synthase (DHPS), which is crucial for folate synthesis, as it consequently
inhibits DNA replication [45,46]. Sulfonamides were found to exhibit broad-spectrum ac-
tivity against Gram-positive and Gram-negative bacterial strains. The use of sulfonamides
has lately been reduced, owing to the development of allergic reaction conditions [47,48].
However, they are still used though a hybridization strategy to develop new agents with
higher antibacterial potential [43,49,50].

As a result of the literature review, some new quinoline derivatives that exhibited
excellent antibacterial activity were used to design our target compounds, as shown in
Figure 2. Bazin et al. [51] reported the diethyl ((N-(4-bromophenyl) sulfamoyl) (2-chloro-
8-methylquinolin-3-yl) methyl) phosphonate A to have a very potent activity against E.
coli, with an MIC of 0.125 µg/mL. Moreover, the quinoline benzodioxole derivative B
showed excellent antibacterial activity, with an MIC of 3.125 µg/mL against E. coli and S.
aureus strains [52]. The quinoline-3-carbonitrile derivative C synthesized by Khan et al. [53]
exhibited antibacterial potential against Gram-negative bacteria with the highest activity
towards E. coli, with an MIC of 4 µg/mL.

In continuation of our research aimed at discovering new antimicrobial agents with
improved activity [54], we herein describe the design and synthesis of a set of compounds
targeting UTI infections. The current study employed a hybridization strategy to evaluate
the antibiofilm effects of the quinolone scaffold and the sulfonamide moiety by changing
the sulfonamide-privileged pharmacophore, which could increase the compound’s efficacy
(Figure 2). The structures of these target derivatives were confirmed. Consequently, the
antimicrobial effects of all the compounds were screened against various Gram-positive
bacteria, Gram-negative bacteria, and fungi. The antibiofilm potential of the most potent
compound was also investigated.
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compounds.

2. Results and Discussion
2.1. Chemistry

This work aims to design and synthesize a new series of 4-((7-methoxyquinolin-4-yl)
amino)-N-(substituted) benzenesulfonamide 3(a–s) to be evaluated as antimicrobial and
antibiofilm agents against pathogenic microbes.

The reaction of 4-chloro-7-methoxyquinoline 1 with a series of sulfonamides 2(a–s)
in dimethylformamide (DMF) under reflux afforded compounds 3(a–s). The structures of
these compounds were confirmed though spectral and elemental analysis. The IR spectra of
compounds 3(a–s) showed absorption bands for NH, CH aromatic, CH aliphatic, and SO2
at their specified regions. The 1H-NMR spectra of 3(a–s) exhibited a singlet in the range
of 3.78–3.86 ppm corresponding to the OCH3, a singlet at 8.65–11.25 ppm for the SO2NH,
and aromatic hydrogens in the aromatic region. The 13C-NMR spectra of 3(a–s) exhibited
signals in the range of 54.18–56.53 ppm assigned to the OCH3 and 151.17–153.47 ppm for
the CN, respectively. The IR spectrum of 3b indicated the presence of the COCH3 band
at 1678 cm−1. The isoxazole derivative 3f exhibited one CH3 that appeared at 2.51 and
13.21 ppm in 1H-NMR and 13C-NMR, respectively. The 1H-NMR spectrum of 3h showed a
singlet at 2.54 ppm and a signal at 23.81 ppm in 13C-NMR, attributed to the CH3, while the
oxazole derivative 3i exhibited two singlet signals in 1H NMR at 2.11 and 2.28 ppm and
two signals in 13C NMR at 31.20 and 36.23 ppm, corresponding to the 2CH3 groups. The
1H-NMR spectrum of 3j revealed a CH3 singlet at 2.65 ppm and a signal at 16.46 ppm in
13C-NMR. The 1H-NMR spectra of 3k and 3l revealed singlets of 2CH3 at 2.44, 2.61, and
2.40 ppm, while 13C-NMR of 3k and 3l showed signals at 16.35, 16.78 ppm, and 26.52 ppm
for the 2CH3. The 1H-NMR of 3m and 3n demonstrated OCH3 at 3.85 and 3.79 ppm, while
the 13C-NMR of 3m and 3n displayed signals at 56.63 and 55.74 ppm for the OCH3. The
1H-NMR of 3q and 3r displayed 2OCH3 groups at 3.78, 3.75, and 3.86 ppm, respectively,
while the 13C-NMR of 3q and 3r showed two signals at 54.89, 56.17, 55.95, and 56.48 ppm
for the 2OCH3 (Scheme 1).
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2.2. Antimicrobial Activity of the Newly Synthesized Compounds

Recently, quinoline derivatives have been widely used to treat resistant microbes
that produce slim biofilms [55,56]. Therefore, all the prepared compounds were screened
for their antimicrobial potential; among them, compounds 3c, 3d, and 3l exhibited the
highest activity. The antimicrobial activity of compounds 3c, 3d, and 3l against different
bacterial and fungal strains was evaluated, as shown in Table 1 and Figure 3. Overall, all
the designed compounds exhibited promising antimicrobial activity against all the tested
bacterial and fungal strains compared to AMC/Nyst as conventional antimicrobial agents.
Compounds 3c, 3d, and 3l were significantly more active than AMC/Nyst.

Table 1. Antimicrobial activity and MIC of the synthesized compounds against different bacterial
and fungal strains.

Test
Organism

Compound 3c Compound 3d Compound 3l AMC/Nystatin

IZ
(mm)

MIC
µg/mL

IZ
(mm)

MIC
µg/mL

IZ
(mm)

MIC
µg/mL

IZ
(mm)

MIC
µg/mL

E. coli 15.0 ± 0.55 e 62.50 18.8 ± 0.76 e 31.25 21.0 ± 0.58 f 7.812 15.3 ± 0.46 d 250

P. aeruginosa 10.1 ± 0.40 b 250 12.7 ± 0.58 d 125 16.2 ± 1.53 bcd 125 21.0 ± 1.00 c 500

S. aureus 14.2 ± 0.85 d 125 10.4 ± 0.53 d 250 18.0 ± 0.76 de 31.25 29.5 ± 0.50 b 250

B. subtilis 9.0 ± 0.98 bc 500 9.0 ± 0.87 bc 250 16.0 ± 0.50 a 125 26.0 ± 1.00 a 31.25

C. albicans 11.2 ± 0.72 f 125 12.0 ± 0.45 f 125 18.0 ± 0.58 f 31.25 11.3 ± 0.58 f 125

C. neoformans 9.0 ± 0.68 bcd 500 8.0 ± 0.69 c 500 10.0 ± 1.15 cde 500 19.8 ± 0.68 c 250

IZ: inhibition zone; MIC: minimum inhibition concentration; AMC: amoxicillin/clavulanic acid. Values are means
± standard error (n = 3). Data within the groups are analyzed using one-way analysis of variance (ANOVA)
followed by a, b, c, d, e, f Duncan’s multiple range test (DMRT).
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The results revealed that compound 3l, bearing sulfamethazine, has the highest effect
on most of the tested bacterial and fungal strains, when compared to the other sulfaguani-
dine derivative 3c and the sulfapyridine derivative 3d. Table 1 illustrates that compound
3l (0.1 mg/mL) had the highest impact on E. coli among all tested bacterial strains. The
inhibition zone was 21 mm. Additionally, it displayed the most potent activity against
C. albicans among all the tested fungal strains, with an inhibition zone of 18 mm. More-
over, the sulfamethazine derivative 3l at a concentration of 0.1 mg/mL showed promising
antimicrobial activity against E. coli, P. aeruginosa, S. aureus, B. subtilis, C. albicans, and C.
neoformans, with inhibition zones of 21.0, 16.2, 18.0, 16.0, 18.0, and 10.0 mm, respectively.
Furthermore, compounds 3c and 3d showed antimicrobial activity, but this activity was
lower than that of compound 3l; the highest effect was observed against E. coli and C.
albicans, with inhibition zones of 18.8 and 15.0 mm, respectively, for compound 3d and 12.0
and 11.2 mm for compound 3c. This was in agreement with the work of Tailor et al. [57],
which indicates the high antimicrobial activity of sulfamethazine against S. aureus and E.
coli strains. Moreover, Ragab et al. [58] and Chen et al. [59] indicated the promising effect
of sulfaguanidine and sulfapyridine derivatives against E. coli, P. aeruginosa, S. aureus, B.
subtilis, and C. albicans, respectively.

Additionally, the MICs of all tested samples (compounds 3c, 3d, and 3l) were deter-
mined, as shown in Table 1. The results showed that among the other microbial strains
examined, compounds 3l, 3d, and 3c exhibited the best MICs, with values between 7.812
and 500 µg/mL, towards the tested bacteria and unicellular fungi. Additionally, E. coli
was found to be the most susceptible of the tested bacteria, with the MICs of compounds
3l, 3d, and 3c of 7.81, 31.25, and 62.50 µg/mL, respectively. However, the MIC of all the
compounds against E. coli, P. aeruginosa, and S. aureus ranged from 125 to 500 µg/mL,
which was lower than that of B. subtilis. Eventually, the designed compounds displayed
good antimicrobial activity against bacteria, as well as unicellular and multicellular fungi
when compared to the activity of traditional antimicrobial agents (AMC/Nyst).

2.3. Structure Activity Relationship (SAR) Study

Regarding the open chain derivatives 3(a–c):

The open chain derivatives 3(a–c) seemed to have lower activity compared to the
aromatic heterocyclic derivatives 3(d–s), except for the guanidino derivative 3c. More-
over, increasing the length of the side chain seems to boost antimicrobial activity. The
sulfanilamide derivative 3a exhibited the least potent activity among all the synthesized
compounds. The introduction of an acetyl group to the sulfanilamide, as in 3b, enhanced
its activity against E. coli and S. aureus. The replacement of the amino group in 3a with a
guanidino group in 3c led to a significant increase in activity against E. coli, with a relative
increase in activity against P. aeruginosa, S. aureus, and C. albicans.

Regarding the heterocyclic aromatic derivatives 3(d–s):

The 6-membered heterocyclic ring derivatives displayed enhanced activity compared
to the 5-membered and fused heterocyclic derivatives.

Regarding the 6-membered heterocyclic derivatives 3d, 3e, 3h, 3k, 3l, 3m, 3n, 3q, and 3r:

Introducing a terminal hydrophobic 6-membered heterocyclic ring was found to
enhance antimicrobial activity. It is apparent from the results that the 2-pyrimidinyl
derivatives are more potent than the 4-pyrimidinyl derivatives.

The 2-pyrimidinyl derivatives 3e, 3h, 3l, and 3m:

The unsubstituted 2-pyrimidinyl 3e displayed moderate activity towards E. coli, S.
aureus, and C. albicans. The introduction of a monomethyl group at the 4-position, as in
3h, resulted in a decline in activity towards C. albicans, while retaining the same activity
towards E. coli and S. aureus. The replacement of the methyl group in 3h with a more
electron-donating methoxy group at the 6-position, as in 3m, diminished the activity
towards S. aureus, while displaying moderate activity towards P. aeruginosa. Additionally,
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the introduction of dimethyl groups in positions 4 and 6 (as in 3l) greatly enhanced the
activity towards all the tested strains, with the highest potency towards E. coli, followed
by S. aureus and C. albicans, while retaining moderate activity towards P. aeruginosa and B.
subtilis. Compound 3l was the most potent in this series, proving that increasing the number
of hydrophobic groups attached to the pyrimidine ring is favorable. The replacement of the
unsubstituted pyrimidine ring (as in 3e) with an unsubstituted pyridine (as in 3d) is also
favorable, as it enhanced the activity against E. coli, P. aeruginosa, B. subtilis, and C. albicans.

The 4-pyrimidinyl derivatives 3k, 3n, and 3q:

The introduction of dimethoxy groups in positions 2 and 6, as in 3q, displayed in-
creased activity compared to that of the monomethoxy group, as in 3n. These dimethoxy
groups increased hydrophobicity and improved the activity towards S. aureus and C. albi-
cans while retaining the same activity towards E. coli. On the other hand, the replacement of
the dimethoxy groups in 3q with the dimethyl groups in 3k diminished the activity. Thus,
di-substitution is more favorable than mono-substitution, and the presence of stronger
activating groups (methoxy) is favorable and enhances the activity towards S. aureus and
C. albicans.

The 5-membered ring derivatives 3f, 3g, 3i, 3j, and 3s:

The 5-methoxazol-3yl derivative 3f showed enhanced activity towards E. coli com-
pared to the 4,5-dimethyloxazol-2-yl derivative 3i. The introduction of dimethyl groups to
the oxazole did not enhance the activity. On the other hand, the replacement of the thiazole
in 3g with thiadiazole, bearing a methyl group at the 5-position (as in 3j), enhanced the
activity against E. coli and C. albicans from poor to moderate. The 1-phenyl-pyrazol-5-yl
derivative 3s showed moderate activity towards E. coli, P. aeruginosa, and C. albicans. Thus,
increasing the number of nitrogen atoms inside a 5-membered heterocyclic ring can enhance
the activity against E. coli and C. albicans, specifically.

Regarding the fused heterocyclic derivatives 3o and 3p:

The introduction of a bulky bicyclic structure consisting of two fused 6-membered
aromatic rings, as in 3p, or a 5-membered ring fused to benzene, as in 3o, can greatly
affect their activity. The indazole derivative 3o showed improved activity compared to
the quinoline derivative 3p against P. aeruginosa, S. aureus, and C. neoformans, proving that
the 5-membered fused ring is more favorable than the 6-membered fused ring derivatives
(Figure 4) (see Supplementary Data File).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 23 
 

 

The 4-pyrimidinyl derivatives 3k, 3n, and 3q: 
The introduction of dimethoxy groups in positions 2 and 6, as in 3q, displayed in-

creased activity compared to that of the monomethoxy group, as in 3n. These dimethoxy 
groups increased hydrophobicity and improved the activity towards S. aureus and C. albi-
cans while retaining the same activity towards E. coli. On the other hand, the replacement 
of the dimethoxy groups in 3q with the dimethyl groups in 3k diminished the activity. 
Thus, di-substitution is more favorable than mono-substitution, and the presence of 
stronger activating groups (methoxy) is favorable and enhances the activity towards S. 
aureus and C. albicans. 
The 5-membered ring derivatives 3f, 3g, 3i, 3j, and 3s: 

The 5-methoxazol-3yl derivative 3f showed enhanced activity towards E. coli com-
pared to the 4,5-dimethyloxazol-2-yl derivative 3i. The introduction of dimethyl groups 
to the oxazole did not enhance the activity. On the other hand, the replacement of the 
thiazole in 3g with thiadiazole, bearing a methyl group at the 5-position (as in 3j), en-
hanced the activity against E. coli and C. albicans from poor to moderate. The 1-phenyl-
pyrazol-5-yl derivative 3s showed moderate activity towards E. coli, P. aeruginosa, and C. 
albicans. Thus, increasing the number of nitrogen atoms inside a 5-membered heterocyclic 
ring can enhance the activity against E. coli and C. albicans, specifically. 
Regarding the fused heterocyclic derivatives 3o and 3p: 

The introduction of a bulky bicyclic structure consisting of two fused 6-membered 
aromatic rings, as in 3p, or a 5-membered ring fused to benzene, as in 3o, can greatly affect 
their activity. The indazole derivative 3o showed improved activity compared to the quin-
oline derivative 3p against P. aeruginosa, S. aureus, and C. neoformans, proving that the 5-
membered fused ring is more favorable than the 6-membered fused ring derivatives (Fig-
ure 4) (see Supplementary Data File). 

 
Figure 4. SAR of the target compounds. 

2.4. Antibiofilm Potential of Compound 3l 
Exo-polysaccharide can be used to detect the biofilm development of deadly bacteria 

[60]. The antibiofilm behavior of the integrated compound towards various pathogenic 
bacteria and unicellular fungi was defined using the tube design [61]. 

The experimental data pointed to the antibiofilm activity of compound 3l (the most 
potent compound) against E. coli (an example of a sensitive pathogenic bacteria). The com-
plete results are: (I) the regular microbial growth and reproduction of the distinguished 
ring in the absence of the integrated compound 3l and the restraint of the microbial 
growth in the presence of compound 3l, (II) the possibility of staining of the established 
biofilm with Crystal Violet (CV), which is a qualitative measurement system, and (III) the 

Figure 4. SAR of the target compounds.



Int. J. Mol. Sci. 2023, 24, 8933 9 of 22

2.4. Antibiofilm Potential of Compound 3l

Exo-polysaccharide can be used to detect the biofilm development of deadly bacte-
ria [60]. The antibiofilm behavior of the integrated compound towards various pathogenic
bacteria and unicellular fungi was defined using the tube design [61].

The experimental data pointed to the antibiofilm activity of compound 3l (the most
potent compound) against E. coli (an example of a sensitive pathogenic bacteria). The
complete results are: (I) the regular microbial growth and reproduction of the distinguished
ring in the absence of the integrated compound 3l and the restraint of the microbial growth
in the presence of compound 3l, (II) the possibility of staining of the established biofilm
with Crystal Violet (CV), which is a qualitative measurement system, and (III) the removal
and separation of the adhered microbial cells following an ethanol reaction for the semi-
quantitative evaluation of the biofilm interruption percentage (Table 2).

Table 2. Semi-quantitative inhibition% of the biofilm formation for bacterial and fungi pathogens,
non-treated and treated with compound 3l.

Test Organism
O.D. of Crystal Violet Stain at 570.0 nm Inhibition %

Control Treated Compound 3l

B. subtilis 0.808 d ± 0.0080 0.399 c ± 0.0021 62.64

P. aeruginosa 0.950 a ± 0.0062 0.122 e ± 0.0047 91.74

S. aureus 0.945 b ± 0.0070 0.445 b ± 0.0053 55.98

E. coli 0.454 f ± 0.0025 0.259 d ± 0.0062 94.60

C. albicans 0.789 e ± 0.0046 0.478 a ± 0.0036 49.95

C. neoformans 0.845 cd ± 0.0046 0.145 e ± 0.0036 98.03
Values are means ± standard error (n = 3). Data within the groups are analyzed using one-way analysis of
variance (ANOVA) followed by a, b, c, d, e, f Duncan’s multiple range test (DMRT).

The results showed the tube design to determine the antibiofilm potential of compound
3l against E. coli, which created a thick whitish-yellow layer at the air–liquid interface in the
solution of compound 3l. The produced matte layers were fully adhered across the walls
of the designed tubes and developed a blue color following the staining with CV. Next, a
dark blue color was created in the produced solution, subsequently dissolving CV with
absolute ethanol.

Additionally, a remarkable negative impact was noted, as the cells of the tested bacteria
do not produce biofilm layers, and the ring construction was blocked in the tubes containing
the E. coli cells and compound 3l (10 µg/mL). Moreover, the adherent cell color was soft,
and the blue color was faintly developed following the ethanol addition.

A UV-Visible spectrophotometer examined the semi-quantitative measurement of the
repression percentage (%). The optical density (O.D.) was measured at 570 nm following
the termination of the CV-stained biofilms, which was recognized as a result of their
production [61].

Table 2 illustrates the inhibition % after adding 10.0 µg/mL of compound 3l, showing
that the highest percentage of E. coli was 94.60%, the highest percentage of P. aeruginosa
was 91.74%, and the highest percentage of C. neoformans was 98.03%. Note that compound
3l achieved the biofilm extension at its adhesion strength, which is the initial starting level
in the antimicrobial method [62]. The difference in the hindrance percentage may be linked
to several constituents, such as the significant potential of the antimicrobial factors to be
connected to the surface due to the enhanced surface area of the integrated compound 3l
and its particle size, as well as the attack mode and various chemical properties affecting the
association and interaction of compound 3l among biofilm-producing bacteria [61,63,64].
Figure 5 presents a diagram showing the antibiofilm activity of compound 3l (as inhibition
%) towards various pathogenic microbes.
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2.5. Kinetics of E. coli Growth (Growth Curve)

The impact of compound 3l on E. coli growth kinetics was investigated. As shown
in Figure 6, the control sample’s E. coli development rate appears rapid. The O.D. of the
control sample at λ = 600 nm was 2.18. In contrast, the OD600 values of the compound 3l-
treated cells were lower than those of the control sample due to the exceptional antibacterial
action of compound 3l.
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The bacterial growth inhibition rate resulting from compound 3l treatment started
from the first time of observation until the endpoint at 24 h (O.D. 1.01). There was no
notable difference between the influences of compound 3l concentrations at the beginning
of observation. Additionally, compound 3l exerted an extra inhibitory impact compared to
the control, as established by the O.D. results (Figure 6). The effects showed that the E. coli
growth rates without compound 3l were greater than the growth rates with compound 3l.
For a compound to have the antimicrobial potential to kill pathogenic microbes, it must
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adhere to its target locations on the microbial cells and settle in a precise number of critical
areas connected to its concentration within the pathogenic microbes.

2.6. Determination of Protein Leakage from Bacterial Cell Membranes

The quantities of protein discharged in the suspension of the treated E. coli cells
were determined by applying the Bradford method [65]. From Figure 7, it can be seen
that the quantity of cellular protein discharged from E. coli is directly proportional to the
concentration of compound 3l, which is found to be 180.25 µg/mL after the treatment
with 1.0 mg/mL of compound 3l. This result proves the antibacterial characteristics of the
synthesized compound 3l, and explains the creation of holes in the cell membrane of E. coli,
which produced the oozing out of the proteins from the E. coli cytoplasm.
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These test outcomes revealed that compound 3l improved the permeability of E.
coli cell membranes; therefore, it could be assumed that the confusion of membranous
permeability would be a vital portion of the repression of bacterial mass. Related studies,
such as those in [66,67], described comparable outcomes when incorporating ferrites, which
revealed concentration-dependent destabilization in the cell membrane of bacterial cells
and pointed to leakage of their intracellular substance into the extracellular form (bacterial
cell suspension).

Paul et al. [68] proved that the difference in bacterial cell membrane permeability
was shown in the percentage difference in the corresponding electric conductivity. It was
reported that the percentage of relative electric conductivities of tested samples improved
with the increase in the concentration of the treated compounds. The integrity of the
bacterial cell membrane was defined by the analysis of the discharge of cell components of
the bacteria, such as proteins; the leakage developed with time, as there was constant cell
membrane injury that pointed to the leakage of cell components driving cell destruction.

2.7. Reaction Mechanism Determination by SEM

SEM analysis was conducted to demonstrate the possible antimicrobial mechanism
against E. coli, as noted in Figure 8. The SEM study regarding the control bacterial cells in
the absence of compound 3l presented bacterial groups that typically extended and grew
with a regular surface and a normal shape and count, as displayed in Figure 8a.
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Figure 8. Determination of the reaction mechanism of compound 3l using SEM analysis in (a) control
untreated E. coli, and (b) treated E. coli.

Following compound 3l treatment, unusual morphological irregularities were iden-
tified in E. coli (Figure 8b), including the semi-lysis of the outer surface in some bacterial
cells established by deformations of the E. coli cells. On the other hand, the synthesized
compound 3l achieved complete lysis of the bacterial cell, as well as cell malformation,
decreasing the total viable number (Figure 8b), and creating holes on the surface of bacterial
cells. A white layer was formed over the bacterial cells due to the chemisorption attractions
between the lone pairs of electrons found in the active site in compound 3l and the bacterial
cell wall, which was confirmed by the membrane leakage assay.

On the other hand, El-Sayyad et al. [69] discussed the antibacterial reaction mecha-
nism after conducting SEM imaging against E. coli treated with the synthesized Se NPs-
gentamicin (CN) nano-drug and found that the E. coli cells showed morphological mod-
ifications after the treatment with Se NPs-CN. A noticeable elevation in the hardness of
the bacterial cell surface and bacterial cell malformation suggested that it was suppressed
and regulated by Se NPs-CN. They were also reduced to a viable count, and the biofilm
was hindered.

2.8. In Silico ADME Study

The success of a compound for therapeutic usage depends on many factors, including
absorption, distribution, metabolism, and excretion (ADME). The bioavailability of drugs
is highly influenced by physicochemical factors. One of the most crucial aspects of drug
development is the prediction of those features before experimental studies. The optimiza-
tion of the pharmacokinetics for new drugs involves the investigation of ADME features in
a dynamic way. The SwissADME online tool [70] was used to assess the physicochemical
properties of the most active compounds, 3c, 3d, and 3l. Topological polar surface area
(TPSA) shows how easily compounds can cross the blood–brain barrier and be absorbed
in the intestine. The drug must have a TPSA value of less than 90 in order to cross the
blood–brain barrier. The number of flexible bonds also has a significant impact on how
molecules interact with one another and attach to the binding sites, with the majority of
synthetic compounds having a high number of flexible bonds. HBD and HDA effectively
demonstrated the suitability of the novel target compounds as possible therapies, according
to the Lipinski rule of five (RO5) [71]. The results of the ADME predictions in Table 3
demonstrated molecular weight (Mol. Wt.), the logarithm of the partition coefficient (log
P), gastrointestinal (GI) absorption, the CYP1A2/CYP3A4 substrate, and Lipinski’s rule
of five. A drug must have a high rate of gastrointestinal absorption to be orally active,
and compound 3d demonstrated a high rate of GI absorption. The most important factor
influencing absorption is bioavailability, which measures the amount of the drug in the
bloodstream. It is interesting to note that compounds 3c, 3d, and 3l have high bioavailabil-
ity scores. The target compounds were discovered to be skin permeable. Additionally, none



Int. J. Mol. Sci. 2023, 24, 8933 13 of 22

of the compounds that were synthesized violated the Lipinski rule of 5. Last but not least,
they showed no PAINS (pan-assay interference compounds) alerts. The results of ADME
demonstrated that the most active compounds, 3c, 3d, and 3l, possess drug-like properties.

Table 3. Physicochemical and pharmacokinetic parameters of compounds 3c, 3d, and 3l.

Parameters Compound 3c Compound 3d Compound 3l

TSPA (A2) 141.07 101.59 114.48

n-ROTB 5 6 6

Mol. Wt. 371.41 406.46 435.50

Molar Vol. 99.97 112.69 120.41

Log P 1.76 2.12 3.08

n-HB donor 3 2 2

n-HB acceptor 5 5 6

Lipinski’s violation 0 0 0

GI absorption Low High Low

CYP1A2 inhibitor Yes Yes Yes

CYP3A4 inhibitor No Yes Yes

Log Kp (skin permeation) −6.89 cm/s −5.87 cm/s −5.94 cm/s

Bioavailability score 0.55 0.55 0.55

PAINS 0 alert 0 alert 0 alert

Synthetic accessibility 2.91 3.17 3.20

3. Materials and Methods

Thin layer chromatography was performed on pre-coated silica gel plates (Kiesel
gel 0.25 mm, 60 G F 254, Merck, Munich, Germany), and the solvent system used was
chloroform/methanol (7:3). The spots were detected under ultraviolet light. The melting
points were measured (uncorrected) using a melting point apparatus (Sanyo Gallen Kamp,
Cambridge, UK). IR spectra were obtained using an FT-IR spectrophotometer (Perkin
Elmer, Massachusetts, USA). NMR spectra were acquired in DMSO-d6 using an NMR
spectrophotometer (Bruker AXS Inc., Zurich, Switzerland) operating at 500 MHz for 1H
and 125.76 MHz for 13CNMR. The chemical shifts were reported in δ values (ppm) rel-
ative to tetramethylsilane as the internal standard. Mass spectra were run on the direct
inlet part of the mass analyzer in Thermo Scientific GCMS model ISQ LT (Massachusetts,
USA). The elemental analyses were conducted on a model 2400 CHNSO analyzer (Perkin
Elmer, Massachusetts, USA). The starting material, 4-chloro-7-methoxyquinoline 1, and the
sulfonamide derivatives were obtained from Sigma-Aldrich.

3.1. Chemistry
3.1.1. General Procedure for the Synthesis of Compounds 3(a–s)

A mixture of 4-chloro-7-methoxyquinoline 1 (1.93 g, 0.01 mol) and sulfonamide deriva-
tives 2(a–s) (0.01 mol) was refluxed in dimethylformamide (20 mL) for 24 h. The obtained
solid was crystallized from ethanol to give 3(a–s).

3.1.2. 4-((7-Methoxyquinolin-4-yl)amino)benzenesulfonamide (3a)

Yield 54%, m.p. 240–242 ◦C. IR: 3387, 3321, 3265 (NH, NH2), 3011 (arom.), 2951, 2868
(aliph.), 1632 (CN), 1376, 1148 (SO2). 1H-NMR δ: 3.15 (s, 2H, NH2), 3.85 (s, 3H, OCH3),
7.09 (d, 1H, J = 8 Hz), 7.20 (s, 1H), 7.33–7.40 (m, 3H), 7.76 (d, 2H, J = 9 Hz, AB), 8.15 (d,
1H, J = 6 Hz), 8.57 (d, 1H, J = 8 Hz), 9.20 (s, 1H, NH). 13C NMR δ: 55.85, 103.25, 107.94,
117.73 (2), 120.06 (2), 124.25, 127.73 (2), 137.73, 144.98, 146.73, 151.17(2), 160.71. MS (m/z, RI
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%): 329.52 (M+) (51.12), 330.86 (M + 1) (41.90), 44.20 (100). Anal. Calcd. for C16H15N3O3S
(329.08): C, 58.34; H, 4.59; N, 12.76. Found: C, 57.98; H, 4.45; N, 12.38.

3.1.3. N-((4-((7-Methoxyquinolin-4-yl)amino)phenyl)sulfonyl)acetamide (3b)

Yield 76%, m.p. >300 ◦C. IR: 3364, 3236 (2NH), 3068 (arom.), 2979, 2870 (aliph.), 1678
(CO), 1626 (CN), 1343, 1160 (SO2). 1H-NMR δ: 2.00 (s, 3H, COCH3), 3.86 (s, 3H, OCH3),
6.98 (d, 1H, J = 7 Hz), 7.30–7.46 (m, 4H), 7.79 (d, 2H, J = 7.5 Hz, AB), 8.05 (d, 1H, J = 6.5 Hz),
8.40 (d, 1H, J = 7.5 Hz), 8.90 (s, 1H, NH), 11.25 (s, 1H, SO2NH). 13C NMR δ: 23.77, 56.53,
100.27, 100.68, 112.68 (2), 116.32, 117.31, 119.08, 126.47, 129.77 (2), 143.01, 148.30, 149.40 (2),
153.97, 169.47. Anal. Calcd. for C18H17N3O4S (371.09): C, 58.21; H, 4.61; N, 11.31. Found:
C, 58.55; H, 4.91; N, 11.70.

3.1.4. N-(Diaminomethylene)-4-((7-methoxyquinolin-4-yl)amino)benzenesulfonamide (3c)

Yield 80%, m.p. > 300 ◦C. IR: 3380, 3342, 3265 (NH, NH2), 3058 (arom.), 2958, 2810
(aliph.), 1621 (CN), 1335, 1162 (SO2). 1H-NMR δ: 3.85 (s, 3H, OCH3), 6.52 (d, 1H, J = 8.5 Hz),
7.55 (d, 1H, J = 2 Hz), 7.55–7.63 (m, 5H), 7.90 (d, 1H, J = 8 Hz), 8.65–8.70 (m, 2H), 11.50 (s,
4H, 2 NH2). 13C NMR δ: 55.83, 107.64, 110.62, 112.69 (2), 116.38, 117.35, 122.51, 129.16 (2),
131.18, 146.72, 148.30, 149.46, 150.97, 152.16, 158.52. Anal. Calcd. for C17H17N5O3S (371.11):
C, 54.97; H, 4.61; N, 18.86. Found: C, 55.36; H, 5.00; N, 19.11.

3.1.5. 4-((7-Methoxyquinolin-4-yl)amino)-N-(pyridin-2-yl)benzenesulfonamide (3d)

Yield 71%, m.p. 231–233 ◦C. IR: 3383, 3279 (2NH), 3078 (arom.), 2945, 2881 (aliph.),
1631 (CN), 1340, 1167 (SO2). 1H-NMR δ: 3.82 (s, 3H, OCH3), 6.50 (t, 1H, J = 5 Hz), 6.72 (d,
1H, J = 7 Hz), 7.15 (t, 1H, J = 5 Hz), 7.30–7.45 (m, 4H), 7.60 (d, 2H, J = 8 Hz), 7.78 (t, 1H,
J = 7 Hz), 7.93 (d, 1H, J = 6 Hz), 8.07 (t, 1H, J = 7 Hz), 8.41 (d, 1H, J = 7 Hz), 8.56 (s, 1H, NH),
10.30 (s, 1H, SO2NH). 13C NMR δ: 56.21, 101.98, 104.05, 133.89, 114.30 (2), 115.86, 118.54
(2), 122.43, 125.02, 128.76 (2), 137.69, 141.12, 143.27, 143.49, 145.83, 147.02, 150.43, 153.73.
Anal. Calcd. for C21H18N4O3S (406.11): C, 62.05; H, 4.46; N, 13.78. Found: C, 61.92; H, 4.15;
N, 13.40.

3.1.6. 4-((7-Methoxyquinolin-4-yl)amino)-N-(pyrimidin-2-yl)benzenesulfonamide (3e)

Yield 66%, m.p. 188–190 ◦C. IR: 3325, 3232 (2NH), 3105 (arom.), 2950, 2923 (aliph.),
1630 (CN), 1357, 1132 (SO2). 1H-NMR δ: 3.86 (s, 3H, OCH3), 6.78 (d, 1H, J = 7 Hz), 6.93 (dd,
1H, J = 6 Hz), 7.20–7.30 (m, 4H), 7.79 (d, 2H, J = 7.5 Hz, AB), 7.95 (d, 1H, J = 8 Hz), 8.55–8.62
(m, 3H), 8.70 (s, 1H, NH), 10.72 (s, 1H, SO2NH). 13C NMR δ: 55.94, 105.46, 106.76, 112.61
(2), 115.96, 116.29, 119.28, 125.26, 126.26, 130.32 (2), 149.05, 149.80, 151.89 (2), 153.52, 158.72
(2), 160.40. Anal. Calcd. for C20H17N5O3S (407.11): C, 58.96; H, 4.21; N, 17.19. Found: C,
59.34; H, 4.52; N, 17.49.

3.1.7. 4-((7-Methoxyquinolin-4-yl)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide (3f)

Yield 70%, m.p. 92–94 ◦C. IR: 3302, 3234 (2NH), 3100 (arom.), 2959, 2868 (aliph.), 1618
(CN), 1378, 1147 (SO2). 1H-NMR δ: 2.51 (s, 3H, CH3), 3.87 (s, 3H, OCH3), 6.31 (s, 1H), 6.68
(d, 1H, J = 8.5 Hz), 7.23 (d, 2H, J = 8.5 Hz, AB), 7.34–7.42 (m, 2H), 7.69 (d, 2H, J = 8.5 Hz,
AB), 8.05 (d, 1H, J = 6 Hz), 8.70–8.81 (m, 2H), 10.70 (s, 1H, SO2 NH). 13C NMR δ: 13.21,
56.14, 95.14, 108.22 (2), 119.83 (2), 120.93 (2), 121.17, 125.31 (3), 141.33 (2), 150.92 (2), 151.24
(2), 161.35. Anal. Calcd. for C20H18N4O4S (410.10): C, 58.53; H, 4.42; N, 13.65. Found: C,
58.86; H, 4.71; N, 13.97.

3.1.8. 4-((7-Methoxyquinolin-4-yl)amino)-N-(thiazol-2-yl)benzenesulfonamide (3g)

Yield 71%, m.p. >300 ◦C. IR: 3346, 3360 (2NH), 3100 (arom.), 2920, 2846 (aliph.), 1617
(CN), 1360, 1136 (SO2). 1H-NMR δ: 3.79 (s, 3H, OCH3), 6.58 (d, 1H, J = 8.5 Hz), 6.81 (d, 1H,
J = 9 Hz), 7.30–7.48 (m, 5H), 7.56 (d, 2H, J = 7 Hz, AB), 8.10 (d, 1H, J = 8.5 Hz), 8.55 (d, 1H,
J = 8 Hz), 8.76 (s, 1H, NH), 10.30 (s, 1H, SO2NH). 13C NMR δ: 54.89, 103.07, 108.23, 112.94,
116.63 (2), 119.89, 121.22, 124.63, 129.01, 129.80 (2), 141.44, 142.16, 143.73, 151.29 (2), 153.79,
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172.09. Anal. Calcd. for C19H16N4O3S2 (412.07): C, 55.32; H, 3.91; N, 13.58. Found: C, 55.68;
H, 4.22; N, 13.89.

3.1.9. 4-((7-Methoxyquinolin-4-yl)amino)-N-(4-methylpyrimidin-2-yl)benzenesulfonamide (3h)

Yield 73%, m.p. 200–202 ◦C. IR: 3346, 3310 (2NH), 3112 (arom.), 2925, 2856 (aliph.),
1619 (CN), 1366, 1146 (SO2). 1H-NMR δ: 2.34 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 6.88 (d, 1H,
J = 8.5 Hz), 6.90–7.03 (m, 4H), 7.75 (d, 2H, J = 8 Hz, AB), 8.15 (d, 1H, J = 6 Hz), 8.25–8.32
(m, 3H), 8.80 (s, 1H, NH), 10.76 (s, 1H, SO2NH). 13C NMR δ: 23.81, 56.50, 107.65, 112.46
(2), 114.06, 115.23, 118.88, 119.23, 125.26, 129.67, 130.53 (2), 142.17, 143.86, 153.47 (2), 157.35,
158.09 (2), 168.43. Anal. Calcd. for C21H19N5O3S (421.12): C, 59.84; H, 4.54; N, 16.62. Found:
C, 60.13; H, 4.83; N, 16.99.

3.1.10. N-(4,5-Dimethyloxazol-2-yl)-4-((7-methoxyquinolin-4-yl)amino)benzenesulfonamide (3i)

Yield 68%, m.p. 238–240 ◦C. IR: 3376, 3239 (2NH), 3096 (arom.), 2942, 2871 (aliph.),
1621 (CN), 1358, 1124 (SO2). 1H-NMR δ: 2.61 (s, 3H, CH3), 2.78 (s, 3H, CH3), 3.85 (s, 3H,
OCH3), 6.70 (d, 1H, J = 7.5 Hz), 7.20–7.34 (m, 4H), 7.78 (d, 2H, J = 8 Hz, AB), 7.98 (d, 1H,
J = 6.5 Hz), 8.39 (d, 1H, J = 7 Hz), 8.55 (d, 1H, J = 7 Hz), 9.49 (s, 1H, NH), 10.70 (s, 1H,
SO2NH). 13C-NMR δ: 31.20, 36.23, 55.84, 105.31, 106.45, 112.65 (2), 116.90, 119.10, 125.60,
126.24, 129.35, 130.13 (2), 144.94, 145.05, 148.65, 149.48, 151.82, 153.38. Anal. Calcd. for
C21H20N4O4S (424.12): C, 59.42; H, 4.75; N, 13.20. Found: C, 59.11; H, 4.41; N, 12.88.

3.1.11. 4-((7-Methoxyquinolin-4-yl)amino)-N-(5-methyl-1,3,4-thiadiazol-2-
yl)benzenesulfonamide (3j)

Yield 69%, m.p. 160–162 ◦C. IR: 3372, 3217 (2NH), 3100 (arom.), 2923, 2894 (aliph.),
1632 (CN), 1348, 1131 (SO2). 1H-NMR δ: 2.65 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 6.60 (d, 1H,
J = 8.5 Hz), 7.32–7.53 (m, 4H), 7.79 (d, 2H, J = 9 Hz, AB), 8.11 (d, 1H, J = 6 Hz), 8.32 (d, 1H,
J = 9 Hz), 9.00 (s, 1H, NH), 10.70 (s, 1H, SO2NH). 13C-NMR δ: 16.46, 56.14, 106.54, 108.10,
113.07 (2), 114.79, 118.19, 120.99, 128.16 (2), 134.89, 142.08, 143.45, 145.38, 148.36, 149.37,
151.76, 168.67. Anal. Calcd. for C19H17N5O3S (427.08): C, 53.38; H, 4.01; N, 16.38. Found:
C, 52.99; H, 3.69; N, 15.98.

3.1.12. N-(2,6-Dimethylpyrimidin-4-yl)-4-((7-methoxyquinolin-4-yl)am-
ino)benzenesulfonamide (3k)

Yield 66%, m.p. semisolid. IR: 3373, 3267, 3232 (NH, NH2), 3078 (arom.), 2956, 2870
(aliph.), 1653 (2C=O), 1365, 1199 (SO2). 1H-NMR δ: 2.44 (s, 3H, CH3), 2.61 (s, 3H, CH3), 3.93
(s, 3H, OCH3), 6.58 (d, 1H, J = 7 Hz), 6.77 (s, 1H), 7.24–7.33 (m, 4H), 7.77 (d, 2H, J = 6.5 Hz,
AB), 8.05 (d, 1H, J = 8 Hz), 8.53 (d, 1H, J = 8 Hz), 8.99 (s, 1H, NH), 10.67 (s, 1H, SO2NH).
13C-NMR δ: 16.35, 16.78, 56.16, 102.37, 105.34, 108.10, 114.79 (2), 118.35, 120.57, 121.73,
127.49, 128.16 (2), 145.38, 148.36, 149.37, 150.12, 152.90, 155.83, 161.76, 165.32. Anal. Calcd.
for C22H21N5O3S (435.14): C, 60.67; H, 4.86; N, 16.08. Found: C, 61.03; H, 5.22; N, 16.41.

3.1.13. N-(4,6-Dimethylpyrimidin-2-yl)-4-((7-methoxyquinolin-4-yl)amino)benze-
nesulfonamide (3l)

Yield 74%, m.p. 170–172 ◦C. IR: 3371, 3230 (2NH), 3095 (arom.), 2954, 2870 (aliph.),
1625 (CO), 1618 (CN), 1328, 1159 (SO2). 1H-NMR δ: 2.40 (s, 6H, 2CH3), 3.85 (s, 3H, OCH3),
6.36 (d, 1H, J = 7.5 Hz), 6.54 (s, 1H), 7.28 (d, 2H, J = 7 Hz, AB), 7.46–7.52 (m, 2H), 7.62 (d, 2H,
J = 7 Hz, AB), 8.01 (d, 1H, J = 6 Hz), 8.62–8.65 (m, 2H), 11.20 (s, 1H, SO2NH). 13C NMR δ:
26.52 (2), 56.17, 107.86, 108.25 (2), 112.90 (2), 119.87, 120.96, 121.24, 125.38, 129.85 (2), 141.38,
150.94, 151.29 (2), 153.84, 164.84 (2), 172.05. MS (m/z, RI %): 435.16 (M+) (100). Anal. Calcd.
for C22H21N5O3S (435.14): C, 60.67; H, 4.86; N, 16.08. Found: C, 60.91; H, 5.11; N, 16.38.
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3.1.14. N-(5-Methoxypyrimidin-2-yl)-4-((7-methoxyquinolin-4-yl)amino)benz-
enesulfonamide (3m)

Yield 72%, m.p. >300 ◦C. IR: 3362, 3267 (2NH), 3078 (arom.), 2962, 2868 (aliph.), 1618
(CN), 1363, 1134 (SO2). 1H-NMR δ: 3.85 (s, 6H, 2OCH3), 6.67 (d, 1H, J = 6.5 Hz), 7.30–7.55
(m, 4H), 7.70 (d, 2H, J = 3 Hz), 7.95 (d, 2H, J = 7 Hz, AB), 8.32–8.36 (m, 3H), 10.82 (s, 1H,
SO2NH). 13C NMR δ: 55.84, 56.63, 105.31, 106.45, 112.65 (2), 116.90, 119.10, 125.60, 129.35,
130.13 (2), 144.94 (2), 145.05, 148.65, 149.48, 149.78, 151.82, 153.38, 162.79. Anal. Calcd. for
C21H19N5O4S (437.12): C, 57.66; H, 4.38; N, 16.01. Found: C, 58.00; H, 4.62; N, 16.33.

3.1.15. N-(6-Methoxypyrimidin-4-yl)-4-((7-methoxyquinolin-4-yl)amino)benzen-
esulfonamide (3n)

Yield 62%, m.p. >300 ◦C. IR: 3356, 3253 (2NH), 3104 (arom.), 2928, 2890 (aliph.), 1621
(CN), 1338, 1142 (SO2). 1H-NMR δ: 3.79 (s, 6H, 2OCH3), 5.98 (s, 1H), 6.68 (d, 1H, J = 6 Hz),
7.40–7.55 (m, 4H), 7.68 (d, 2H, J = 7 Hz, AB), 7.98 (d, 1H, J = 6 Hz), 8.30–8.65 (m, 3H), 10.73
(s, 1H, SO2NH). 13C NMR δ: 54.20, 55.74, 91.08, 107.31, 110.45, 112.93 (2), 116.34, 119.30,
125.50, 129.48 (3), 144.72, 147.35, 149.18 (2), 153.40, 157.84, 167.39, 170.08. Anal. Calcd. for
C21H19N5O4S (437.12): C, 57.66; H, 4.38; N, 16.01. Found: C, 57.32; H, 3.99; N, 15.86.

3.1.16. N-(1H-Indazol-6-yl)-4-((7-methoxyquinolin-4-yl)amino)benzenesulfonamide (3o)

Yield 69%, m.p. 240–242 ◦C. IR: 3375, 3216 (2NH), 3095 (arom.), 2958, 2871 (aliph.),
1616 (CN), 1351, 1136 (SO2). 1H-NMR δ: 3.86 (s, 3H, OCH3), 6.45–6.55 (m, 2H), 6.80 (s, 1H),
7.32 (d, 1H, J = 3 Hz), 7.42–7.50 (m, 3H), 7.61–7.78 (m, 3H), 7.90 (d, 1H, J = 8 Hz), 8.30 (s,
1H), 8.55 (d, 1H, J = 7 Hz), 9.89 (s, 1H, NH), 10.73 (s, 1H, SO2NH). 13C NMR δ: 56.51, 90.21,
103.75, 110.68 (2), 112.28, 112.90 (2), 116.30, 117.42, 118.03, 122.08, 128.96, 129.70 (2), 134.52,
143.01, 144.72, 148.30 (2), 149.40 (2), 152.97. Anal. Calcd. for C23H19N5O3S (445.12): C,
62.01; H, 4.30; N, 15.72. Found: C, 62.40; H, 4.64; N, 15.99.

3.1.17. 4-((7-Methoxyquinolin-4-yl)amino)-N-(quinoxalin-2-yl)benzenesulfonamide (3p)

Yield 78%, m.p. 220–222 ◦C. IR: 3381, 3244 (2NH), 3108 (arom.), 2987, 2875 (aliph.),
1627 (CN), 1347, 1125 (SO2). 1H-NMR δ: 3.84 (s, 3H, OCH3), 6.70 (d, 1H, J = 6 Hz), 7.20–7.25
(m, 3H), 7.32 (d, 1H, J = 2.5 Hz), 7.67 (t, 2H, J = 9 Hz), 7.75 (t, 2H, J = 9 Hz), 7.80 (d, 2H,
J = 8 Hz, AB), 7.96 (d, 1H, J = 6.5 Hz), 8.50–8.61 (m, 3H), 10.70 (s, 1H, SO2NH). 13C NMR δ:
55.93, 108.28, 112.71 (3), 119.25, 121.64, 124.45, 126.21, 127.54, 129.14 (2), 130.60, 131.13 (2),
138.36, 139.08, 139.78, 146.73, 150.15, 151.85, 152.44, 153.87, 160.45. MS (m/z, RI %): 457.72
(M+) (51.00), 459.68 (M + 2) (42.50), 217.50 (100). Anal. Calcd. for C24H19N5O3S (457.12): C,
63.01; H, 4.19; N, 15.31. Found: C, 62.93; H, 3.92; N, 14.98.

3.1.18. N-(2,6-Dimethoxypyrimidin-4-yl)-4-((7-methoxyquinolin-4-yl)amino)
benzenesulfonamide (3q)

Yield 78%, m.p. 170–172 ◦C. IR: 3387, 3200 (2NH), 3110 (arom.), 2978, 2892 (aliph.),
1629 (CN), 1352, 1142 (SO2). 1H-NMR δ: 3.78 (s, 6H, 2OCH3), 3.83 (s, 3H, 3OCH3), 5.91
(s, 1H), 6.51 (d, 1H, J = 7.5 Hz), 7.50–7.62 (m, 4H), 7.98 (d, 2H, J = 7 Hz, AB), 8.21 (d, 1H,
J = 6 Hz), 8.62–8.65 (m, 2H), 10.51 (s, 1H, SO2NH). 13C NMR δ: 54.18, 54.89, 56.17, 84.66,
101.43, 108.23, 112.90 (2), 116.61, 121.21, 124.53, 125.37, 129.85 (2), 147.72, 148.30, 151.28 (2),
153.84, 160.62, 164.84, 172.05. Anal. Calcd. for C22H21N5O5S (467.13): C, 56.52; H, 4.53; N,
14.98. Found: C, 56.26; H, 4.23; N, 14.72.

3.1.19. N-(5,6-Dimethoxypyrimidin-4-yl)-4-((7-methoxyquinolin-4-yl)amino)
benzenesulfonamide (3r)

Yield 76%, m.p. 103–105 ◦C. IR: 3398, 3363 (2NH), 3079(arom.), 2952, 2865 (aliph.),
1620 (CN), 1343, 1139 (SO2). 1H-NMR δ: 3.75 (s, 3H, OCH3), 3.86 (s, 6H, 2OCH3), 6.60 (d,
1H, J = 8 Hz), 7.30–7.49 (m, 4H), 7.99 (d, 2H, J = 8 Hz, AB), 8.11 (d, 1H, J = 6.5 Hz), 8.20
(d, 1H, J = 9 Hz), 8.60–8.70 (m, 2H), 11.12 (s, 1H, SO2NH). 13C NMR δ: 54.37, 55.95, 56.48,
107.68, 112.59, 119.20 (2), 119.82, 121.31, 124.71, 126.41, 127.11, 130.28 (2), 147.12, 148.32,
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149.18, 151.02, 151.19, 152.89, 160.61, 161.80. Anal. Calcd. for C22H21N5O5S (467.13): C,
56.52; H, 4.53; N, 14.98. Found: C, 56.82; H, 4.58; N, 15.14.

3.1.20. 4-((7-Methoxyquinolin-4-yl)amino)-N-(1-phenyl-1H-pyrazol-5-yl)benzen-
esulfonamide (3s)

Yield 74%, m.p. 220–222 ◦C. IR: 3262, 3276 (2NH), 3096 (arom.), 2920, 2868 (aliph.),
1640 (CN), 1354, 1163 (SO2). 1H-NMR δ: 3.85 (s, 3H, OCH3), 6.50 (d, 1H, J = 6.5 Hz), 6.72
(d, 1H, J = 7 Hz), 7.29–7.40 (m, 4H), 7.41–7.75 (m, 8H), 7.94 (d, 1H, J = 6.5 Hz), 8.30 (d, 1H,
J = 7 Hz), 8.89 (s, 1H, NH), 11.10 (s, 1H, SO2NH). 13C NMR δ: 56.60, 105.50, 107.61, 110.49,
112.46 (2), 115.46 (2), 119.23 (3), 125.26, 129.68 (2), 130.31 (3), 136.80, 138.94, 141.31, 145.52
(2), 150.17, 151.07, 152.35. Anal. Calcd. for C25H21N5O3S (471.14): C, 63.68; H, 4.49; N,
14.85. Found: C, 64.00; H, 4.71; N, 15.04.

3.2. Antimicrobial Activity

The antimicrobial activity of the synthesized samples was evaluated using the agar
well diffusion method on six microorganisms, including Gram-negative bacteria (Escherichia
coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), Gram-positive bacteria (Staphy-
lococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6051), and unicellular fungi (Candida
albicans ATCC 90028 and Cryptococcus neoformans ATCC 14116). The pathogenic microbes
that were examined were known to cause UTIs. While the fungal strains were inoculated
on malt extract agar (MEA) dishes and incubated for 3–5 days at 28 ± 2 ◦C before being
stored at 4 ◦C for further use, the tested bacteria were inoculated on nutrient agar for one
day at 37 ◦C [72]. The minimal inhibitory concentration (MIC) of the synthesized samples
was also established using the microdilution method. To establish the MIC, tests at various
concentrations (ranging from 1000 to 0.5 µg/mL) for each substance were conducted. To
evaluate the antimicrobial potential of the synthesized samples, the ZOI test must also
be performed with amoxicillin/clavulanic acid (AMC), a common antibacterial drug, and
nystatin (NS), a common antifungal positive control [61].

3.3. Antibiofilm Potential

Furthermore, a qualitative analysis concerning biofilm restraint was conducted, as
described by Christensen et al. [73]. The definitive study of the biofilm, which was dis-
played on the tube wall, verified the absence and proximity of the biofilm in the integrated
samples. The antibiofilm of the synthesized samples (at 10.0 µg/mL) was assessed against
the selected microbes, tested, and correlated with the reference (non-treated one). The
examined bacteria and fungi were then inoculated into 5 mL of the nutrient broth medium,
which was then adjusted by 0.5 McFarland to be 1–3.5 × 108 CFU/mL. Later, they were
incubated at 37.0 ± 0.5 ◦C for 24 h. The media found in control and treated tubes were
dropped, combined with Phosphate Buffer Saline (PBS; pH 7.0), and ultimately preserved.
Next, the bacterial and yeast cells that adhered to the tube walls were implanted with
5 mL of sodium acetate (3.5%) for approximately 20 min. Finally, they were cleaned with
de-ionized water. Biofilms organized inside tubes were stained with 20 mL of crystal violet
(CV; 0.15%) and washed with de-ionized water to eliminate the CV. It must be noted that,
for the semi-quantitative antibiofilm calculation, 5 mL of absolute ethanol was injected
to separate the stained bacterial and yeast biofilms [74]. A UV-Vis. spectrophotometer at
570.0 nm measured the O.D. of the stained bacterial and yeast biofilms [60]. The bacterial
and yeast biofilm hindrance percentage was determined by using the subsequent relation
(Equation (1)) [75]:

Biofilm inhibition % = (O.D. Control sample − O.D. treated sample)/O.D. Control sample × 100 (1)
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3.4. Growth Curve Assay

The growth curve assay determined the influence of compound 3l on the growth of E.
coli (the most sensitive microbes), according to the method of Huang et al. [76]. The bacterial
suspension was adjusted to 0.5 McFarland (1 × 108 CFU/mL) in 5.0 mL nutrient broth
tubes. Compound 3l was included separately in every examined tube. The absorbance of
the bacterial growth following treatment was evaluated at 2 h time intervals up to 24 h
(wavelength of 600 nm) [77]. To obtain the regular growth curve, the average of duplicate
measurements was compared to those of the hourly intervals.

3.5. Effect of Compound 3l on Protein Leakage from Bacterial Cell Membranes

A pure 18 h bacterial culture was set at 0.5 McFarland (1 × 108 CFU/mL) and 100 µL
was injected into 10 mL of the nutrient broth, including compound 3l. As a control, a broth
without compound 3l was infused with culture. All of the treated samples were centrifuged
for 15 min at 5000 rpm after being kept at 37 ◦C for 5 h [78]. For the different samples,
100 µL of supernatants were combined with 1 mL of Bradford reagent. Optical density was
measured at 595 nm after 10 min of dark incubation [78].

3.6. Reaction Mechanism Using SEM Analysis

The sensitive microbial cells (E. coli) were washed with PBS three times and fixed with
a 4.0% glutaraldehyde solution [79]. The preserved microbial cells were regularly cleaned
with PBS and repeatedly drained with various ethanol concentrations (30, 50, 70, 90, and
100%) for 15 min at 28 ± 2 ◦C [80]. The fixed samples were then solidified on a piece of
aluminum for SEM determination. SEM analysis was used to examine the morphological
traits of the control (non-treated microbial cell) and treated microbes.

3.7. Physicochemical and Pharmacokinetic Parameters

All physicochemical parameters and pharmacokinetics were calculated using swis-
sADME, a free online web tool, (http://www.swissadme.ch/, accessed on 21 April 2023).

3.8. Statistical Analysis

The statistical analysis of the obtained results was performed after applying the
ONE-WAY ANOVA (at p < 0.05) and Duncan’s methods [81]. The accepted findings were
examined using SPSS software version 15.

4. Conclusions

A new series of quinoline derivatives bearing sulfonamide 3(a–s), was synthesized
from the starting material, 4-chloro-7-methoxyquinoline 1. The target compounds were
designed and synthesized to be evaluated as antimicrobial agents for various Gram-positive
bacteria, Gram-negative bacteria, and fungi. Compound 3l was the most potent in this study.
Overall, all the designed compounds exhibited promising antimicrobial activity against the
tested bacterial and fungal strains compared to AMC/Nyst as conventional antimicrobial
agents, where compounds 3c, 3d, and 3l were significantly more active than AMC/Nyst.
The antibiofilm results showed that the highest percentage of inhibition after the addition
of 10.0 µg/mL of compound 3l was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03%
for C. neoformans. Note that compound 3l could achieve biofilm extension at its adhesion
strength, which is the initial start in the antimicrobial method. In the growth curve assay,
the control sample’s E. coli development rate appeared to be rapid. The O.D. of the control
sample at λ = 600 nm was 2.18. In contrast, the OD600 value of the compound 3l-treated
cells was lower than that of the control sample due to the exceptional antibacterial action
of compound 3l. In the protein leakage assay, it was observed that the quantity of cellular
protein discharged from E. coli was directly proportional to the concentration of compound
3l, which was determined to be 180.25 µg/mL after the treatment with 1.0 mg/mL of
compound 3l. This proved the antibacterial characteristics of the synthesized compound 3l,
and explained the creation of holes in the cell membrane of E. coli, which produce the oozing

http://www.swissadme.ch/


Int. J. Mol. Sci. 2023, 24, 8933 19 of 22

out of the proteins from the E. coli cytoplasm. The physicochemical and pharmacokinetic
properties of compounds 3c, 3d, and 3l were also estimated to determine their drug-like
properties. According to the obtained results, the newly targeted compounds are regarded
as promising scaffolds for the continued development of novel antimicrobials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24108933/s1. NMR spectra of the synthesized compounds
and antimicrobial activity represented by inhibition zones and MIC.
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