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Abstract: Danshen has been widely used for the treatment of central nervous system diseases. We
investigated the effect of dihydroisotanshinone I (DT), a compound extracted from Danshen, as
well as the corresponding mechanisms in an in vitro-based 6-OHDA-induced Parkinson’s disease
(PD) model. SH-SY5Y human neuroblastoma cell lines were pretreated with 6-hydroxydopamine
(6-OHDA) and challenged with DT. Subsequently, the cell viability and levels of reactive oxygen
species (ROS) and caspase-3 were analyzed. The effect of DT on the 6-OHDA-treated SH-SY5Y cells
and the expression of the core circadian clock genes were measured using a real-time quantitative
polymerase chain reaction. Our results indicated that DT attenuated the 6-OHDA-induced cell death
in the SH-SY5Y cells and suppressed ROS and caspase-3. Moreover, DT reversed both the RNA and
protein levels of BMAL1 and SIRT1 in the 6-OHDA-treated SH-SY5Y cells. Additionally, the SIRT1
inhibitor attenuated the effect of DT on BMAL1 and reduced the cell viability. The DT and SIRT1
activators activated SIRT1 and BMAL1, and then reduced the death of the SH-SY5Y cells damaged
by 6-OHDA. SIRT1 silencing was enhanced by DT and resulted in a BMAL1 downregulation and a
reduction in cell viability. In conclusion, our investigation suggested that DT reduces cell apoptosis,
including an antioxidative effect due to a reduction in ROS, and regulates the circadian genes by
enhancing SIRT1 and suppressing BMAL1. DT may possess novel therapeutic potential for PD in the
future, but further in vivo studies are still needed.

Keywords: Idiopathic Parkinson’s disease; Danshen; Dihydroisotanshinone I; 6-OHDA; SIRT1;
BMAL1; reactive oxygen species; ROS

1. Introduction

Idiopathic Parkinson’s disease (iPD) is a complex neurodegenerative disorder caused
by the progressive decline of dopaminergic neurons in the midbrain [1]. The therapeutic
strategies for iPD, including medication, physiotherapy, music therapy, and deep brain
stimulation, mainly focus on maintaining neuronal function. However, due to its multi-
factorial pathophysiology, there are currently seldom proven neuroprotective therapies
for iPD [2]. The goals of the pharmacologic treatments for iPD are to restore the dopamin-
ergic activity in the striatum and maintain the balance between the dopaminergic and
cholinergic effects to improve the associated motor deficits and avoid long-term motor
and non-motor complications [2,3]. The medications for iPD include dopamine precursors
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(levodopa and carbidopa/levodopa combination), non-ergot dopamine agonists (pramipex-
ole, ropinirole, and rotigotine), a catechol-O-methyltransferase inhibitor (entacapone), and
monoamine oxidase-B (MAO-B) inhibitors (selegiline and rasagiline) [4]. However, these
medications lack long-term effectiveness due to the progressive neurodegenerative process
of the disease. Therefore, novel alternatives are needed to address the inadequate efficacy
of conventional antiparkinsonian drugs.

Patients who are newly diagnosed with Parkinson’s disease (PD) often report sleep
problems that reduce their quality of life [5]. The sleep cycle and circadian rhythms are
mainly controlled by the suprachiasmatic nucleus of the anterior hypothalamus. Motor
activities and environmental cues, such as light and food intake, tune the circadian rhythm
to a 24-h cycle [5]. The circadian rhythm system is present in nearly all organisms and
coordinates behavioral and physiological reactions to changes in the surrounding envi-
ronment [6]. At the molecular level, the circadian rhythm system is mainly composed of
a group of conserved clock proteins, including the brain and muscle Arnt-like protein 1
(BMAL1), CLOCK, periodic circadian rhythm proteins (PER1–3), and cryptochromes (CRY1
and CRY2) [7]. Dopamine modulates the BMAL1/CLOCK heterodimer activity, and its
deficiency may directly affect this central component of the molecular clock, resulting in the
dysfunction of the BMAL1 expression in PD [8]. SIRT1uins, silent information regulators
(SIRs), are a family of nicotine adenine dinucleotide (NAD+)-dependent protein deacety-
lases or adenosine diphosphate-ribosyltransferases. Studies have shown that SIRT1 links
the cellular metabolism to the circadian clock genes [9,10].

Due to its neurotoxicity, 6-Hydroxydopamine (6-OHDA) is commonly used as an
inducer of neurodegeneration in in vitro models of PD [11]. The structural analog of
dopamine, 6-OHDA, selectively uptakes noradrenergic and dopaminergic neurons by
the norepinephrine transporters and membranous dopamine, respectively. In neurons,
6-OHDA accumulates in the cytosol, where it is metabolized into dihydrophenylacetic acid
or oxidized into hydrogen peroxide and p-quinone with the participation of MAO enzymes.
This process leads to the formation of reactive oxygen species (ROS) and oxidative stress in
neurons, then causes cell death [12–14].

Danshen (Salvia miltiorrhiza) is a common Chinese herbal medicine that has been
widely used for over 1000 years [15]. The main components of Danshen are hydrophilic
phenolic acids and lipophilic compounds [16] that contribute to its antioxidant and anti-
inflammatory properties, as well as its therapeutic properties, such as its usage in cardio-
vascular disease treatment [17]. Tanshinone, a lipophilic compound of Danshen, has been
classified into four types based on its structural diversity: tanshinone IIA, cryptotanshi-
none, tanshinone I (Tan I), and dihydroisotanshinone I (DT) [18]. In clinical practice, Dan-
shen is used for the treatment of various diseases, including cardiovascular diseases [19],
cerebrovascular diseases [18,20], Alzheimer’s disease [21], PD [22], and renal injury [23].
Danshen is widely used for the treatment of cardiovascular disorders and its aqueous
extract has shown anticancer as well as antioxidant effects [19]. Moreover, Danshen has
been widely used in the treatment of central nervous system diseases. For instance, a study
demonstrated that Tan I inhibits the expression of proinflammatory genes in activated
microglia [24]. Neuroprotective agents as part of PD treatment may help delay or slow the
disease progression [25].

In this study, we aimed to verify the effect of DT and investigate its underlying
mechanisms using an in vitro-based 6-OHDA-induced PD model.

2. Results
2.1. Effect of DT on the 6-OHDA-Induced Cytotoxicity

For the induction of the neurotoxicity, we treated the cells with different concentra-
tions of 6-OHDA for 24 h and 48 h, and we analyzed the cell viability using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. We observed
that 6-OHDA significantly decreased the cell viability starting at a concentration of 20 µM,
followed by 30, 50, 100, and 200 µM, resulting in the lowest cell viability (Figure 1A). Based
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on this result, we used 30 and 50 µM of 6-OHDA to induce cytotoxicity in the subsequent
experiments. We then tested the different concentrations of DT to confirm its toxicity. The
treatment using 5 µM of DT did not significantly reduce the cell viability in the treated
SH-SY5Y cells after 24 h (Figure 1B). For the succeeding experiment, we pretreated the
SH-SY5Y cells with varying concentrations of DT for 12 h and induced them using 30 or
50 µM of 6-OHDA for 24 h. We observed that DT at the concentrations of 3 and 5 µM signif-
icantly attenuated the cell toxicity induced by 30 or 50 µM of 6-OHDA (30 µM, p = 0.0050,
p = 0.0047; 50 µM p = 0.0003, p = 0.0007, respectively; Figure 1C,D).
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Figure 1. Effects of the different concentrations of 6-OHDA and DT on the SH-SY5Y cell viability.
The treatment of the cells using 6-OHDA (A) (30 µM or 50 µM) or DT (5 µM) (B) for 24 h and the
subsequent measurement of the cell viability using the MTT assay. The results showed that 6-OHDA
reduced the cell viability, whereas 5 µM of DT exhibited a minimal toxic effect. The protective effects
of DT against 30 (C) and 50 (D) µM of 6-OHDA induced SH-SY5Y cell damage. * p < 0.05, ** p < 0.01,
indicate the level of significant difference between the DT-treated and DT-untreated cells prior to the
6-OHDA treatment.

2.2. Effect of DT on Cell Apoptosis and the 6-OHDA-Induced ROS Formation

The SH-SY5Y cells were kept as the control, treated with 6-OHDA (30 or 50 µM),
DT 5 µM, and 6-OHDA (30 or 50 µM) plus DT 5 µM for 24 h. Then, the cell apopto-
sis was examined using PI and Annexin V-FITC double staining and flow cytometry
analysis. The development of the cell apoptosis was significantly manifested in both
cells treated with 6-OHDA, which initiated a decrease in living cells and an increase
in apoptotic and necrotic cells compared to the untreated controls (6-OHDA 30 µM:6-
OHDA30 µM + DT 5 µM:control = 15.1%:8%:9.8%; 6-OHDA 50 µM:6-OHDA50 µM + DT
5 µM:control = 20.4%:12.5%:9.6 %; all p < 0.05). Quadrants 1 (Q1) and Quadrants 2 (Q2)
were indicated as the late apoptotic and necrotic cells, Quadrants 3 (Q3) were indicated as
the living cells, and Quadrants 4 (Q4) were indicated as the apoptotic cells (Figure 2A).

Compared to the untreated cells, those treated with 30 or 50 µM of 6-OHDA for 6 h had
significantly higher levels of intracellular ROS (113.0% ± 36.76% vs. 2263.67% ± 196.5%,
p = 0.0024). However, the pretreatment with DT 5 µM markedly decreased the levels of
6-OHDA-induced ROS (Figure 2B) and caspase-3 (Figure 2C).
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2.3. Effect of DT on the PER1, CLOCK, BMAL1, and SIRT1 Levels in the 6-OHDA-Treated
SH-SY5Y Cells

To investigate the mechanism of the 6-OHDA-induced disruption of the circadian
clock genes, we measured the RNA levels of PER1, CLOCK, BMAL1, and SIRT1 after the
6-OHDA treatment. Both the 30 µM or 50 µM 6-OHDA-treated SH-SY5Y cells exhibited
reductions in the levels of SIRT1 RNA and an elevation in the levels of BMAL1 RNA. The
pretreatment using 5 µM of DT for 12 h reversed the reduction in BMAL1 and SIRT1 RNA
in the 30 µM 6-OHDA-treated cells (Figure 3A), whereas the pretreatment using 10 µM of
DT for 12 h reversed the reduction in PER1 and SIRT1 RNA and reversed the elevation in
CLOCK and BMAL1 RNA in the 50 µM 6-OHDA-treated cells (Figure 3B). The p-values
(Figure 3A,B) for PER1, CLOCK, BMAL1, and SIRT1 were not all significant, but there was a
trend toward a true statistical significance.
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for 24 h and the other two groups were only treated with DT 5 µM or a combination of 6-OHDA (30
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significant difference between the DT-treated and DT-untreated cells prior to the 6-OHDA treatment.
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2.4. Effect of DT and the SIRT1 Inhibitor on the 6-OHDA-Induced Cell Toxicity

EX-527, an inhibitor of the deacetylase protein Sirtuin 1 (SIRT1), reduced the expression
and activity of SIRT1, whose dysregulation resulted in neuronal damage in PD (Figure 4A).
However, EX-527 did not exhibit neurotoxicity in the SH-SY5Y cells, as shown in Figure 4B.
The pretreatment using 5 µM of DT for 12 h reversed the reduction in SIRT1 and reversed
the BMAL1 proteins in the 6-OHDA-treated cells. However, the EX-527 treatment reversed
the effect of DT on the SIRT1 and BMAL1 protein levels in the 6-OHDA-treated cells
(Figure 4C). The treatment using 5 µM of DT significantly reversed the 6-OHDA-induced
cell death (p = 0.0089), but the addition of 10 µThM of EX-527 weakened the cell viability
(Figure 4D).
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EX-527 (1, 5, 10, 20 µM) (C) 5 µM of DT reversed the 6-OHDA-induced reduction in the BMAL1 and
SIRT1 expression. EX-527 reversed the effect of DT on the BMAL1 and SIRT1 expression. (D) The DT
treatment significantly reversed the 30 µM 6-OHDA-induced cell death (p = 0.0089). The reduction in
the effect of 10 µM of DT using EX-527. ** p < 0.01 indicate the level of significant difference between
the DT-treated and DT-untreated cells or the EX-527-treated and EX-527-untreated cells.

2.5. Effect of the DT, ROS, and SIRT1 Activators on BMAL1, SIRT1, and PARP after the
6-OHDA Treatment

To investigate whether the effect of DT was due to the ROS and SIRT1 activation, we
measured the protein levels of BMAL1, SIRT1, caspase 3, and PARP after the 6-OHDA
treatment through pretreatment using 1, 3, and 5 µM of DT, acetylcysteine (NAC), or
resveratrol (RSV, SIRT1 activator) for 12 h. Reducing the ROS concomitantly inhibited the
expression of BMAL1, Caspase 3, PARP but increased that of SIRT1. DT increased SIRT1
and reduced the other proteins expression as NAC (Figure 5A). RSV, the SIRT1 activator,
increased the expression of BMAL1, PARP. (Figure 5B).



Int. J. Mol. Sci. 2023, 24, 11088 7 of 14

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. (A) EX-527 (SIRT1 inhibitor) reduced the SIRT1 expression. (B) The nil neurotoxic effect 
of EX-527 (1, 5, 10, 20 µM) (C) 5 µM of DT reversed the 6-OHDA-induced reduction in the BMAL1 
and SIRT1 expression. EX-527 reversed the effect of DT on the BMAL1 and SIRT1 expression. (D) 
The DT treatment significantly reversed the 30 µM 6-OHDA-induced cell death (p = 0.0089). The 
reduction in the effect of 10 µM of DT using EX-527. ** p < 0.01 indicate the level of significant dif-
ference between the DT-treated and DT-untreated cells or the EX-527-treated and EX-527-untreated 
cells. 

2.5. Effect of the DT, ROS, and SIRT1 Activators on BMAL1, SIRT1, and PARP after the 6-
OHDA Treatment 

To investigate whether the effect of DT was due to the ROS and SIRT1 activation, we 
measured the protein levels of BMAL1, SIRT1, caspase 3, and PARP after the 6-OHDA 
treatment through pretreatment using 1, 3, and 5 µM of DT, acetylcysteine (NAC), or 
resveratrol (RSV, SIRT1 activator) for 12 h. Reducing the ROS concomitantly inhibited the 
expression of BMAL1, Caspase 3, PARP but increased that of SIRT1. DT increased SIRT1 
and reduced the other proteins expression as NAC (Figure 5A). RSV, the SIRT1 activator, 
increased the expression of BMAL1, PARP. (Figure 5B). 

 
Figure 5. (A) DT as NAC, reduced the BMAL1 and PARP expressions after the 30 µM 6-OHDA 
treatment. (B) DT, as RSV, increase the BMAL1 and PARP expressions. (C) RSV increased the cell 
viability after the 6-OHDA treatment. (NAC: acetylcysteine; RSV: SIRT1 activator). 
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2.6. Effect of DT and SIRT1 siRNA on the BMAL1 Expression and Cell Viablity

SIRT silencing was enhanced by DT and resulted in a BMAL1 downregulation (Figure 6A).
SIRT1 silencing enhanced the reduction in the cell viability by DT. (Figure 6B).
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Figure 6. (A) siSIRT1 (SIRT1 small interfering RNA) silenced the SIRT expression. BMAL was
also downregulated by siSIRT1. DT reduced SIRT1 and BMAL1. (B) SIRT1 silencing enhanced the
reduction in the cell viability by DT. * p < 0.05 and ** p < 0.01 indicate the level of significant difference
between the siSIRT1-treated and siSIRT1-untreated cells.

3. Discussion

Idiopathic Parkinson’s disease results in major disability and high medical costs due
to motor deficits and concurrent multisystem complications occurring over the course of
the disease. Patients may not be aware of the disease until clinical motor symptoms occur.
According to Braak’s theory, the pathological accumulation of Lewy bodies or similar
compounds begins in the brainstem in patients with stage I or II PD, followed by its spread
to the motor system in patients with stage III or IV PD and then to the neocortex in patients
with stage V or VI PD, who often present dementia.

Currently, the effectiveness of therapeutic interventions to arrest PD and its progres-
sion remains unsatisfactory [26]. Since the introduction of levodopa for iPD treatment in the
1960s, pharmacological therapy has mainly focused on motor symptom management and
neurological function restoration. Scientists have strived to identify the crucial pathways
or indicators that would allow for early diagnosis and delay iPD progression. Neuroprotec-
tive agents, such as MAO-B inhibitors, dopamine receptor agonists, N-methyl-D-aspartate
receptor antagonists, iron chelators, and other neurotrophic factors, are being investigated
in experimental or clinical studies. However, varied results have been obtained [27].

Traditional antiparkinsonian drugs alleviate motor symptoms in early-stage patients.
However, they are accompanied by several side effects and late-stage complications that
can be debilitating to older patients and reduce their quality of life. The commonly re-
ported side effects in older patients taking levodopa or dopamine receptor agonists include
nausea, vomiting, confusion, postural hypotension, hallucinations, delusions, psychosis,
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and agitation [28]. As far as we know, several in vitro studies, in vivo studies, and clinical
trials suggest that rasagiline, one of the MAO-B inhibitors, might exert neuroprotective
effects by mitigating oxidative stress, increasing the expression of a glial cell line-derived
neurotrophic factor [29], blocking the apoptosis pathway, and promoting the survival of
dopaminergic neurons [30].

The complete pathogenesis of iPD remains unclear. However, studies have showed
that multiple factors may be involved, including environmental factors, mitochondrial
dysfunction, neuroinflammation, oxidative stress, and genetic factors [30–34]. Neuroinflam-
mation is highly emphasized in neurodegenerative diseases, such as PD and Alzheimer’s
disease, and is related to neurogenesis dysregulation [32,33]. Normal biological rhythms
are essential for regulating antioxidant function. However, circadian rhythm disruptions
are frequently noted in patients with iPD. These disruptions may result in the oscillation
and fluctuation of motor and non-motor symptoms in iPD.

Oxidative stress is a crucial pathological mechanism in iPD [34,35]. However, the
extent to which circadian rhythm disturbances affect the antioxidant activity in PD remains
unclear. The ROS formation triggers mitochondrial dysfunction, followed by changes in the
electron transport chain and increased damage to nuclear and mitochondrial DNA, thereby
leading to neuroinflammation. These events result in a vicious cycle, with increased ROS
formation and progressive neuron loss [36]. Mutations in circadian genes (CLOCK, BMAL1,
PER 1–3, CRY 1, and CRY 2) are responsible for circadian rhythm dysregulation in PD,
resulting in oxidative stress, neuroinflammation, metabolic dysfunction, and immunity
suppression [5]. A few studies have suggested the association between the circadian rhythm
and oxidative stress. For instance, the decrease in the BMAL1 expression was associated
with mitochondrial dysfunction and ROS overproduction [37]. Our results revealed that
increasing ROS will decrease SIRT1 and increase BMAL1, resulting in disruptions in the
circadian rhythm and apoptosis of the SH-SY5Y cells. Therefore, apart from the traditional
symptomatic management of neurodegenerative diseases, such as iPD, the alteration and
modulation of the circadian rhythm might prove beneficial for modifying the disease
process by increasing neuroprotection.

Epidemiological and dietary intervention studies have revealed neuroprotective effects
in animal models from theaflavin’s antioxidant character, which is rich in black tea [13].
The citrus flavonoid hesperetin produced anti-inflammatory and antioxidative effects by
regulating the Nrf2 and NF-kB expressions in a PD animal model [36]. For peripheral
nerve injury, some extracts from Cannabis sativa L. were documented to restore muscle
function by measuring the ratio between the gastrocnemius and tibialis anterior muscle [38].
Proanthocyanidin-rich foods, such as cranberries, cocoa, grapes, apples, strawberries, red
wine, and green tea, may alleviate neurodegeneration in PD by enhancing mitochondrial
activity [39].

Danshen, a common traditional Chinese medicine, has a demonstrated bioactivity in
several organ systems and has been widely analyzed and applied in the treatment of several
diseases. A study evaluating the effect of Danshen on the central nervous system reported
that it exhibited neuroprotective effects and preserved cognitive function in Alzheimer’s
disease and ischemic stroke animal models through different targets, resulting in decreased
intracellular oxidative stress, apoptosis, inflammation, and platelet aggregation, apart from
enhanced neurogenesis [40].

According to our results, DT exerted an increased cell viability on the SH-SY5Y
cells, possibly due to reducing the oxidative stress, ROS formation, and apoptosis that
subsequently rescued the circadian clock genes. The DT treatments reduced the 6-OHDA-
induced ROS formation. Moreover, a significant increase in the cell viability and reduced
apoptosis was observed in the DT-treated cells compared to the untreated cells. Our findings
corroborated a study where Danshen also exhibited antioxidative effects by suppressing
the ROS formation in a rotenone toxicity cellular model [41].

SIRT1 is highly expressed in neurons and glial cells in the human brain [42], and
the hippocampus and hypothalamus of the adult mouse brain [43,44]. SIRT1 plays a role
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in neurodegenerative diseases [45] and is considered a suppressor of oxidative stress in
PD [46]. Our study indicated that DT protected against neurotoxicity in a SIRT1-dependent
manner. Nevertheless, further silencing and knockdown of SIRT1 is still needed to confirm
whether DT acts through the SIRT1–BMAL pathway. In this study, we demonstrated that
SIRT1 targeted and regulated the expression of the circadian clock genes BMAL1, PER1,
and CLOCK in a PD model, thereby confirming the key role of SIRT1 in PD pathogenesis.
EX-527, an inhibitor of SIRT1, reversed the effect of DT, thereby indicating an association
between DT and SIRT1. The apoptosis was enhanced after the SIRT1 inactivation and
BMAL1 activation. The effect may be increased once SIRT1 is activated.

In our study, NAC inhibited the production of ROS, and DT displayed similar results.
At the same time, inhibiting ROS also concomitantly activated SIRT1 but inhibited BMAL1
and caspase-3. Inhibiting SIRT1 also reduced the utility of DT and reduced the cell viability.

As shown in Figure 6, silencing SIRT1 has the same result and enhanced the reduction
in the cell viability. However, DT increased the SIRT1 activity and improved cell survival
in the presence of 6-OHDA.

We propose that ROS may be the key element for controlling the DT effects. DT and
RSV displayed possible neuroprotective effects by activating SIRT1 and regulating the
circadian clock genes, followed by reducing the death of the SH-SY5Y cells induced by
6-OHDA (Figure 7).
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Our study had several strengths, including multiple adjustments and adequate ex-
periments. Our study also had some limitations. First, no animal studies existed for more
evidence in the circadian clock gene. Second, the SH-SY5Y cells were not purely dopamin-
ergic since the cell line was obtained as a neuroblastoma derivative. The nature of this
tumor resulted in physiological features that differed from those of normal dopaminergic
neurons.

In conclusion, DT increased the expression of SIRT1 and attenuated the alteration of
the circadian clock genes BMAL1 and PER1. DT exhibited a potent antioxidative activity as
NAC, suggesting that it may act through the SIRT1–BMAL1 pathway [44]. ROS may be the
key element for controlling the DT effects. DT and RSV activated SIRT1 and the circadian
clock genes, and reduced the death of the SH-SY5Y cells induced by 6-OHDA. Therefore,
DT regulated the molecular circadian clock genes, possibly through SIRT1. Thus, the
in vitro studies of the active compound appeared promising. However, there is a need for
further in vivo studies to establish the true efficacy and safety profile of the test compound
before it can be applied in clinical practice.
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4. Materials and Methods
4.1. Cell Culture and Treatment

The human neuroblastoma SH-SY5Y cells were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA) and grown using Dulbecco’s Modified
Eagle Medium (DMEM) (ThermoFisher Scientific, Watham, MA, USA) supplemented
with 10% fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 U/mL) and
incubated at 37 ◦C in an atmosphere of 5% CO2. The cells were seeded in 96-well plates
at a density of 5.0 × 103 cells per well and incubated for 24 h. For the induction of the
neurotoxicity, varying concentrations of 6-OHDA were added to each well, and the plates
were incubated for 24 h. DT was added 30 min after 50 µM of the 6-OHDA treatment.

The SH-SY5Y cells were used for the transient knockdown of SIRT1. Briefly, the cells
(4000 cells/well) were transfected with SiRNA Stealth siRNA or control siRNA (Ther-
moFisher Scientific, Watham, MA, USA) in each well by using 1 µL of Lipofectamine 2000
(Invitrogen, Camarillo, CA, USA) (ThermoFisher Scientific, Watham, MA, USA), according
to the manufacturer’s instructions. Then, the cells were harvested after the transfection.

4.2. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction

A quantitative reverse transcription polymerase chain reaction (QRT-PCR) was applied
extensively in genomics studies, especially where target-specific primers and real-time
technology served a greater advantage [47]. By using the TRIzol reagent, the total RNA
was isolated from the SH-SY5Y cells (Invitrogen, Camarillo, CA, USA) following the
manufacturer’s instructions. The reverse transcription was performed using the cDNA
Synthesis Kit (Roche Diagnostics GmbH, Mannheim, Germany). The cDNA sequence
of the three circadian clock genes (PER1, CLOCK, BMAL1) and SIRT1 were evaluated,
and the specific forward and reverse primers and MGB TaqMan® probe were designed
using the Primer Express software version 1.5 (Applied Biosystems, Foster City, CA, USA).
Polymerase chain reactions (PCRs) were performed using the 7900HT Fast Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA).

4.3. Evaluation of Apoptosis and the ROS Levels Using Flow Cytometry

The ROS is a molecule involved in oxidative reactions, immune systems, and the regu-
lation of the cell cycle. The generation of ROS might indicate excessive oxidative damage
inside the tested cell [48]. The SH-SY5Y cell line was seeded in a 100 mm plate and cultured
overnight before treatment. After the 6-OHDA (30 or 50 µM) treatment, with or without DT
5 µM, the cells were detected for the cell cycle progression and necrosis/apoptosis using PI
staining and an-nexin V/PI double staining, according to the manufacturer’s instructions.
The stained samples were further analyzed using flow cytometry (BD Bioscience FacsCanto
II flow cytometer, Marshall Scientific, Hampton, NH, USA).

The intracellular ROS levels were evaluated using 2′-7′dichlorofluorescin diacetate
(DCFH-DA) as the fluorescent probe. In brief, the SH-SY5Y cells (1 × 105 cells/well in
six-well plates) were pretreated with 1 µM of DT for 2 h. The supernatant was removed,
and the cells were incubated with 1 mL DCFH-DA (10 µM of DCFH-DA dissolved in
serum-free DMEM) for 20 min at 37 ◦C in the dark. Subsequently, the cells were rinsed
twice with phosphate-buffered saline (PBS) for detachment then resuspended in 1 mL PBS.
The ROS levels were analyzed using flow cytometry (BD Bioscience FACSCanto II Flow
Cytometer, Marshall Scientific, Hampton, NH, USA) and the values were expressed relative
to the control, according to the manufacturer’s instructions.

4.4. Western Blotting

The protein analysis was established using Western blotting. The tested proteins
were transferred and separated based on the molecular weight or discharge character [49].
The samples were prepared in a radioimmunoprecipitation assay buffer (20 mM Tris-HCl
pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxy-
cholate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, and
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1 µg/mL leupeptin). For the Western blotting, 30 µg of total lysate was separated using
6–15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to the
polyvinylidene difluoride membranes (Millipore, Darmstadt, Germany). The membranes
were blocked with non-fat dry milk for 1 h and incubated overnight with 1:3000 diluted
primary antibodies against the phosphorylated epitopes of caspase-3, BMAL1, CLOCK,
and SIRT1 (all purchased from Cell Signaling Technologies, Danvers, MA, USA). β-Actin
(1:5000 dilution, Sigma-Aldrich, St. Louis, MO, USA) was used as an internal control.
The secondary antibodies were horseradish peroxidase-conjugated goat anti-mouse IgG
(Sigma-Aldrich) and goat anti-rabbit IgG (Sigma-Aldrich). The membranes were briefly
incubated using Western Lightning Plus-ECL, an enhanced chemiluminescent substrate,
(PerkinElmer Inc., Waltham, MA, USA) to visualize the proteins.

4.5. Experimental Set-Up

The experimental procedure follows the flow chart below (Figure 8).

4.6. Statistical Analyses

The data on the replicate samples (n = 3 to 6, depending on the experiment) were
expressed as the mean ± the standard error of the mean, and the experiments were per-
formed at least three times. The differences between the two groups were calculated
using the unpaired two-tailed Student’s t-test, and a p-value < 0.05 was considered statisti-
cally significant. The statistical analyses were performed using SPSS 15.0 (SPSS, Chicago,
IL, USA).
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