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Abstract: Clopidogrel is a chiral compound widely used as an antiplatelet medication that lowers
the risk of blood clots, strokes, and heart attacks. The main aim of the study presented herein was
to obtain (S)-clopidogrel, which is commercially available in treatments, via the kinetic resolution
of racemic clopidogrel carboxylic acid with the use of lipase from Candida rugosa and a two-phase
reaction medium containing an ionic liquid. For this purpose, the enantioselective biotransformation
of clopidogrel carboxylic acid and chiral chromatographic separation with the use of a UPLC-MS/MS
system were optimized. The best kinetic resolution parameters were obtained by using a catalytic
system containing lipase from Candida rugosa OF as a biocatalyst, cyclohexane and [EMIM][BF4] as a
two-phase reaction medium, and methanol as an acyl acceptor. The enantiomeric excess of the product
was eep = 94.21% ± 1.07 and the conversion was c = 49.60% ± 0.57%, whereas the enantioselectivity
was E = 113.40 ± 1.29. The performed study proved the possibility of obtaining (S)-clopidogrel
with the use of lipase as a biocatalyst and a two-phase reaction medium containing an ionic liq-
uid, which is in parallel with green chemistry methodology and does not require environmentally
harmful conditions.

Keywords: clopidogrel; ionic liquid; enantioselective biotransformation; lipase; Candida rugosa

1. Introduction

Cardiovascular disease (CVD), including transient ischemic attack (TIA), acute coro-
nary syndrome (ACS), and peripheral artery disease (PAD) and minor strokes, are primarily
treated and secondarily prevented with antiplatelet therapy. The P2Y12 inhibitors, of which
clopidogrel was one of the first, are crucial components of antiplatelet therapy, which helps
treat and prevent secondary cardiovascular disease (CVD). Clopidogrel is frequently used
in conjunction with aspirin as a part of dual antiplatelet treatment (DAPT) for the secondary
prevention of ACS. In randomized studies of ACS patients, newer and more effective P2Y12
inhibitors (ticagrelor and prasugrel) have demonstrated a more significant reduction in
ischemia risk than clopidogrel. However, these more recent, more potent P2Y12 inhibitors
still have limitations [1–10]. Therefore, clopidogrel is still one of the most frequently used
antiplatelet medicines.

Clopidogrel is a thienopyridine derivative prodrug that, in order to exert its an-
tithrombotic effect, must first be activated by the liver. The active metabolite selectively
inhibits adenosine diphosphate-induced platelet aggregation by irreversibly inhibiting the
platelet adenosine diphosphate P2Y12 receptor [3,11–14]. Clopidogrel is an enantiomeric
medication that undergoes metabolic conversion to activate its (S)-configuration. When
administered in high dosages in animals, the (R)-enantiomer of the activated form of
clopidogrel has the potential to cause convulsions and is devoid of any antithrombotic
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efficacy [15]. As a result, only the (S)-enantiomer of clopidogrel is commercially available
in treatment [16].

According to the European Society of Cardiology (ESC) guidelines on DAPT (2017), for
acute myocardial infarctions in patients presenting with an ST-segment elevation myocar-
dial infarction (STEMI) (2017), revascularization (2018), the diagnosis and management of
chronic coronary syndromes (2019), and acute coronary syndromes in patients presenting
without a persistent ST-segment elevation (NSTE-ACS) (2020), clopidogrel is one of the
P2Y12 receptor inhibitors associated with an excellent safety profile, mainly in terms of
gastrointestinal and skin disorders, allergies, and neutropenia. The wide variability in
the pharmacodynamic response to clopidogrel is connected to various factors, including
genotype polymorphisms. In patients with chronic coronary syndromes that are under-
going or have undergone percutaneous coronary interventions (PCI), clopidogrel is the
default P2Y12 inhibitor in addition to acetylsalicylic acid (ASA). Similarly, suppose oral
anticoagulation is needed (e.g., for stroke prevention in atrial fibrillation) in patients with
chronic coronary syndrome. In that case, triple therapy should be initiated with an oral
anticoagulant (OAC), ASA, and clopidogrel in patients with a moderate or high risk of
stent thrombosis, irrespective of the type of stent used [17–19]. Considering the information
mentioned above, clopidogrel remains the preferable medicine for treating cardiovascular
disorders requiring P2Y12 inhibition.

There are now three basic methods for acquiring optically pure substances, which
is an asymmetric organic synthesis using pro-chiral substrates, racemate separation, and
a “chiral pool” of optically pure substrates. A high selectivity, more favorable reaction
conditions, and biocompatibility are just a few of the positive characteristics that make
enzyme-mediated transformations so valued as a potent alternative instrument in or-
ganic synthesis. Since organic synthesis relies on performing a stereoselective biotrans-
formation, and is therefore significantly less expensive than using a “chiral pool,” kinetic
resolution (racemate resolution) with the use of enzymes is one of the most widely used
techniques [20–31]. It also avoids the use of environmentally hazardous and toxic
chemical compounds.

Organic solvents are still customary as reaction media in the stereoselective biotrans-
formation of racemic forms of active pharmaceutical substances. However, most of these
substances are poisonous and hazardous to the environment, and in many instances, they
can contaminate the final synthesis product with organic molecules. On the other hand,
ionic liquids offer several benefits when used as the reaction medium. Ionic liquids are
frequently referred to as “design solvents” since they have been designed to address vari-
ous synthetic issues. They are helpful in numerous technical processes due to their unique
characteristics [32–36]. Ionic liquids are regarded as “green solvents” because they have
a number of distinctive properties, such as an extremely low vapor pressure and a high
thermal stability, which offer advantages such as the ease of containment, product recovery,
and a recycling ability as well as a high ionic conductivity and a high solvation power.

2. Results and Discussion
2.1. Enantioselective Biotransformation of Racemic Clopidogrel

The enantioselective biotransformation of (R,S)-clopidogrel carboxylic acid was ex-
amined under various conditions using commercially available lipase from Candida rugosa
OF (Figure 1). The research investigated several reaction systems to avoid the solubility
problem with the racemic molecule. The created and tested catalytic systems utilized
several kinds of ionic liquids, such as: [EMIM][EtSO4], [EMIM][MSF3], [HMIM][BF4],
[EMIM][BF4], and [DMIM][MeSO4]. Nevertheless, only a few of the tested reaction systems
met the required performance standards for kinetic resolution (Table 1). In every instance,
it was seen during the studies that the conversion value increased with the reaction time.
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Figure 1. Enantioselective esterification of (R,S)-clopidogrel carboxylic acid with the use of Candida
rugosa lipase as the biocatalyst. The reaction mixture consisted of (R,S)-clopidogrel carboxylic acid
(3.5 mg, 0.01 mM); methanol (3.0 µL, 0.25 mM); lipase from Candida rugosa OF (10.0 mg); and n-hexane,
n-heptane, or cyclohexane (5 mL) with or without the addition of an ionic liquid (100 µL), and was
incubated for 5 days (120 h) along with shaking (250 RPM) at 37 ◦C.

Table 1. List of obtained results of performed enantioselective esterification of (R,S)-clopidogrel
carboxylic acid after 5 days (120 h) of reaction: enantiomeric excesses of substrates (ees), products
(eep), conversion (c), and enantioselectivity (E).

Reaction Medium
eep ees c EOrganic Solvent Ionic Liquid

n-heptane - 87.17%
±1.50%

65.15%
±1.12%

42.77%
±0.74%

28.56
±0.49

n-heptane [EMIM][EtSO4] 85.70%
±1.47%

29.85%
±0.51%

25.84%
±0.44%

17.36
±0.30

n-heptane [EMIM][MSF3] 84.60%
±1.46%

53.77%
±0.92%

38.86%
±0.67%

20.47
±0.35

n-heptane [HMIM][BF4] 80.69%
±1.39%

44.06%
±0.76%

35.32%
±0.61%

14.39
±0.25

n-heptane [EMIM][BF4] 90.74%
±1.56%

90.11%
±1.55%

49.83%
±0.86%

63.55
±1.09

n-heptane [DMIM][MeSO4] 84.87%
±1.46%

37.15%
±0.64%

30.44%
±0.52%

17.55
±0.30

n-hexane - 94.44%
±1.66%

25.83%
±0.73%

21.48%
±0.60%

44.99
±0.34
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Table 1. Cont.

Reaction Medium
eep ees c EOrganic Solvent Ionic Liquid

n-hexane [EMIM][EtSO4] 83.88%
±1.85%

44.61%
±0.51%

34.72%
±0.42%

17.67
±0.88

n-hexane [EMIM][MSF3] 92.75%
±1.64%

21.53%
±0.87%

18.84%
±0.68%

32.80
±0.35

n-hexane [HMIM][BF4] 87.54%
±1.82%

63.16%
±0.42%

41.91%
±0.37%

28.75
±0.64

n-hexane [EMIM][BF4] 92.14%
±1.72%

68.95%
±1.24%

42.80%
±0.82%

50.51
±0.56

n-hexane [DMIM][MeSO4] 80.02%
±1.57%

36.25%
±0.71%

31.18%
±0.61%

12.81
±0.25

cyclohexane - 94.03%
±1.07%

42.20%
±0.48%

30.98%
±0.35%

49.24
±0.56

cyclohexane [EMIM][EtSO4] 85.52%
±0.97%

35.90%
±0.41%

29.57%
±0.34%

18.17
±0.21

cyclohexane [EMIM][MSF3] 93.05%
±1.06%

50.78%
±0.58%

35.31%
±0.40%

46.06
±0.53

cyclohexane [HMIM][BF4] 87.43%
±1.00%

84.70%
±0.97%

49.21%
±0.56%

40.00
±0.46

cyclohexane [EMIM][BF4] 94.21%
±1.07%

92.71%
±1.06%

49.60%
±0.57%

113.40
±1.29

cyclohexane [DMIM][MeSO4] 81.05%
±0.92%

28.83%
±0.33%

26.24%
±0.30%

12.63
±0.14

eep—enantiomeric excesses of products; ees—enantiomeric excesses of substrates; c—conversion; E—enantioselectivity.

The reaction containing cyclohexane and [EMIM][BF4] as the rection medium pro-
duced the best results out of all the investigated catalytic systems. The (S)-clopidogrel was
produced after 120 h of incubation, with the maximum value of enantioselectivity equaling
E = 113.4 ± 1.20 and the product’s enantiomeric excesses equaling eep = 94.21% ± 1.07%.
Although using other tested reaction systems enabled the achievement of passable results,
the enantiomeric purity of the products was inferior.

2.2. Effect of Reaction Time

One of the most affecting aspects of the kinetic resolution of racemic compounds
was found to be the incubation duration of the reaction mixture among all the evaluated
influencing factors on enzyme-catalyzed biotransformations. Other investigations have
shown that the enantioselectivity and enantiomeric excess of both products and substrates
rapidly decline when the reaction medium is incubated excessively. The lack of a substrate
makes the reaction no longer regarded as enantioselective because the conversion value has
the potential to be higher than 50%. Commercially available lipases from Candida rugosa
OF, methanol (3 µL) as an acyl acceptor, (R,S)-clopidogrel carboxylic acid (3.0 mg), an
ionic liquid (100 µL), and an organic solvent (5 mL) were utilized as the reaction media
in the experiment. The biotransformations were carried out for 120 h at 37 ◦C. According
to Figures 2 and 3, the enantiomeric excess of the substrates, the conversion, and the
enantiomeric ratio increased along with the reaction duration. Over the same period, the
product’s enantiomeric excess slowly diminished. The conversion value was the highest
after 120 h of reaction (Figure 2), and it varied depending on the type of catalytic system
(Table 1).
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Figure 2. Effect of reaction time on the enzymatic parameters of performed kinetic resolution of
(R,S)-clopidogrel carboxylic acid in the two-phase catalytic system consisting of [EMIM][BF4] and
cyclohexane, including values of enantiomeric excesses of both substrates (ees) and products (eep) as
well as conversion (c) and enantioselectivity (E).

Figure 3. Effect of reaction time on the enzymatic parameters of performed kinetic resolution of
(R,S)-clopidogrel carboxylic acid in the two-phase catalytic system consisting of [EMIM][BF4] and
cyclohexane, including values of enantioselectivity (E).

2.3. Effect of Reaction Medium

The investigated catalytic systems were effective in the reaction media both with and
without ionic liquids. Nevertheless, it was observed that Candida rugosa lipase OF exhibited
various catalytical properties depending on the type of reaction system. Due to this, one
of the most crucial aspects of improving reaction conditions to increase enantioselectivity
is selecting the best reaction medium. Therefore, the effect of five different ILs was tested
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for the production of (S)-clopidogrel. Table 1 shows that the type of utilized ionic liquid
and organic solvent had a significant influence on the enzyme-catalyzed biotransformation
of (R,S)-clopidogrel carboxylic acid. This was proven by obtaining various values of
conversion (c = 18.84% ± 0.68%–49.60% ± 0.57%), enantiomeric excesses of products
(eep = 80.02% ± 1.57%–94.21% ± 1.07%), and enantioselectivity (E = 12.63 ± 0.14–113.40 ± 1.29).

According to the choice of organic solvent, various reaction media were tested during
the chemical esterification of clopidogrel carboxylic acid, such as acetonitrile, chloroform,
cyclohexane, dichloroethane, dichloromethane, n-hexane, n-heptane, methanol, t-butyl-
methyl ether, methyl octane, and ethyl octane. The chemical esterifications were performed
using the above-mentioned organic solvents, sulfuric acid as catalysts, and methanol as
the acyl acceptor. All reactions were carried out for 24 h at 37 ◦C. After that, all mixtures
were tested in terms of the efficiency of esterification using an HPLC analysis. Based
on the obtained results, cyclohexane, n-heptane, and n-hexane were selected as the most
appropriate organic solvents for further experiments related to the kinetic resolution of
racemic clopidogrel carboxylic acid.

Taking into account the addition of ionic liquids, it should be noted that [EMIM]
[BF4] was the best for the enantioselective esterification of (R,S)-clopidogrel carboxylic acid
among all the tested ILs in every catalytic system, as is shown in Table 1. The catalytic
efficiency of Candida rugosa lipase varies depending on different anions of the ILs in the
following order: [BF4]− > [MSF3]− > [MeSO4]− > [EtSO4]−, and on different cations of
the ILs as follows: [EMIM]+ > [HMIM]+ > [DMIM]+. As previously described in the
literature, various ILs, which contain different anions and cations, could interact with the
enantioselective biocatalyst in various ways, such as through ionic and dipolar interactions,
hydrogen bonding, or van der Waals forces. It was previously stated that anions with a
lower hydrogen bond basicity have been demonstrated as enzyme-compatible, since they
do not affect the internal conformation of the enzyme’s structure [37].

Racemic clopidogrel carboxylic acid was fully dissolved in [EMIM][EtSO4], [EMIM][MSF3],
[HMIM][BF4], [EMIM][BF4], or [DMIM][MeSO4], and then one of the organic solvents was
added. The best kinetic resolution parameters were observed for the system containing
[EMIM][BF4] and cyclohexane. In all the tested reaction systems, the enantiomeric excesses
of products were higher than 80% (Figure 4). Based on the previously described studies,
biotransformation could be considered enantioselective if the E-ratio is higher than 20.
In Figure 5, the E-ratios of the tested systems are summed up. Each system without the
addition of ionic liquids could be considered enantioselective. Nevertheless, the addition
of an ionic liquid could increase the enantioselectivity of the kinetic resolution of the
clopidogrel carboxylic acid.
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Figure 4. Overview of obtained results of performed enantioselective biotransformation of (R,S)-
clopidogrel carboxylic acid after 120 h of incubation, including enantiomeric excesses of products
(eep) and conversion (c).
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Figure 5. Overview of obtained results of performed enantioselective biotransformation of (R,S)-
clopidogrel carboxylic acid after 120 h of incubation, including enantioselectivity (E).

3. Materials and Methods
3.1. Chemicals

Acetonitrile, methanol, formic acid, [EMIM][BF4], [EMIM][EtSO4], [HMIM][BF4],
[EMIM][MSF3], [DMIMMeSO4], n-heptane, n-hexane, and cyclohexane were purchased
from Merck, Sigma-Aldrich Co., Steinheim, Germany.

(R,S)-clopidogrel carboxylic acid, (R,S)-clopidogrel, (R)-clopidogrel, and (S)-clopidogrel
were purchased from Toronto Research Chemicals, Toronto, Canada.

Lipase from Candida rugosa OF was a gift from Meito Sangyo Co., Tachikawa, Japan.
The activity of lipase from Candida rugosa OF was a 360,000 U/g powder. The thermal
stability of lipase was equal to or below 37 ◦C, and the optimal pH was 6–7.

In the conducted study, the water used was obtained using a Milli-Q Water Purification
System, Millipore, Bedford, MA, USA.

3.2. Instrumentation

The HPLC samples were washed using refrigerated CentriVap concentrators pur-
chased from Labconco, Kansas City, MO, USA. The Shimadzu, Kyoto, Japan, UPLC-MS/MS
system used for the HPLC studies consisted of an autosampler (SIL-40AC), two solvent feed
pumps with a gradient system (LC-40AD), a degasser (DGU- 30A5), a column oven (CTO-
40AC), a UV detector (SPD-M20A), and a triple quadrupole mass spectrometer detector
(model: LCMS-8045).

A model KJO-4282 Guard Cartridge System and a Lux Cellulose-2 (LC-2) chiral column
with a cellulose tris(3-chloro-4-methylphenylcarbamate) stationary phase, as well as a Lux
Cellulose-3 (LC-3) chiral column with a cellulose tris(4-methyl benzoate) from Phenomenex
Co., Torrance, CA, USA, were used in the chiral chromatographic separations.

All incubations were performed in a dedicated incubator, model Incubators 1000 and
Unimax 1010. The incubators were purchased from Heidolph, Schwabach, Germany with
controlled temperature and rotation (250 RPM). Each piece of glass used was dried in an
oven overnight before being cooled with a stream of nitrogen.
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3.3. Chromatographic Conditions

In order to optimize the chiral separations of all reagents, e.g., the enantiomers of
racemic clopidogrel carboxylic acid and the enantiomers of racemic clopidogrel, various
chromatographic conditions were investigated. Finally, the baseline chiral separations of
the enantiomers of both clopidogrel carboxylic acid and clopidogrel were accomplished
using two different chiral columns: Lux Cellulose-2 for (R,S)-clopidogrel carboxylic acid
and Lux Cellulose-3 for (R,S)-clopidogrel. The composition of the mobile phase for the
chiral separation of (R,S)-clopidogrel carboxylic acid included acetonitrile, methanol, and
formic acid in a volumetric ratio of 87.5/12.5/0.1, whereas for the chiral separation of (R,S)-
clopidogrel, the mobile phase was composed of methanol and formic acid in a volumetric
ratio of 100/0.1.

In both the optimized chromatographic conditions, the mobile phase flow rate was
set at 0.8 mL/min in order to obtain a proper resolution. A triple quadrupole mass spec-
trometer in multiple reaction monitoring modes (MRMs) was utilized to detect chiral
compounds. (R,S)-clopidogrel carboxylic acid had MRM transitions of 308.30 > 198.10,
308.30 > 152.10, and 308.30 > 111.25, whereas (R,S)-clopidogrel had transitions of
322.20 > 212.15, 322.20 > 185.15, and 322.20 > 155.10 (Figure 6).
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clopidogrel carboxylic acid (m/z 308.30).

The retention time of (R)-clopidogrel carboxylic acid was tR = 5.821 min and (S)-
clopidogrel carboxylic acid was tR = 7.539 min, whereas (R)-clopidogrel was tR = 5.595 min
and (S)-clopidogrel was tR = 7.214 min (Figure 7).
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Figure 7. Chromatogram of (R,S)-clopidogrel after 120 h of kinetic resolution of (R,S)-clopidogrel car-
boxylic acid with the use of Candida rugosa OF in two-phase reaction media containing [EMIM] [BF4]
and cyclohexane: (R)-clopidgorel (tR = 5.595 min) and (S)-clopidogrel (tR = 7.214 min). Chromato-
graphic conditions: Lux Cellulose-3 (4.6 × 250 mm × 3 µm) column, mobile phase: methanol/formic
acid (100/0.1 v/v), FR = 0.8 mL/min, t = 20 ◦C.

Using the equations described by Chen et al. [38] and Chen et al. [39] based on the
peak areas from chromatograms of the enantiomers of clopidogrel carboxylic acid and clopi-
dogrel, it was possible to determine the conversion and optical purity of both substrates
and products, as well as the enantioselectivity of the enzyme-catalyzed biotransformation
that was carried out.

3.4. Kinetic Resolution of (R,S)-Clopidogrel Carboxylic Acid

In a 10 mL glass flask, the enantioselective biotransformation of racemic clopidogrel
carboxylic acid was performed. The reaction mixture contained (R,S)-clopidogrel carboxylic
acid (3.0 mg, 0.01 mM) dissolved in 250 µL of the chosen ionic liquid and placed in 5 mL
of n-hexane, n-heptane, or cyclohexane, which, when combined, constituted a two-phase
reaction medium. In the samples without ionic liquids, (R,S)-clopidogrel carboxylic acid
(3.0 mg, 0.01 mM) was directly dissolved in 5 mL of one of the above-mentioned organic
solvents. The reaction used methanol (3 µL, 0.25 mM) as an acyl acceptor. The effect of the
addition of the ionic liquids [EMIM][BF4], [EMIM][EtSO4], [HMIM][BF4], [EMIM][MSF3],
or [DMIMMeSO4] on the kinetic resolution of (R,S)-clopidogrel carboxylic acid was a part
of the investigation. By directly adding 10 mg of native lipase from Candida rugosa OF
to the previously assembled bioreactor, the enzyme-catalyzed biotransformation of (R,S)-
carboxylic acid was initiated. The reaction mixtures were incubated and shaken (250 RPM)
at 37 ◦C.

By using a chiral stationary phase and a UPLC system coupled with a triple quadrupole
mass spectrometer in MRM mode, the enantioselective biotransformation of (R,S)-clopidogrel
carboxylic acid was monitored. Samples of 10 µL of ionic liquid containing the substrates
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and products were collected at predetermined time points every 24 h for 120 h. Next,
the chiral compounds were extracted from the ionic liquid via liquid–liquid extraction by
vigorous shaking with 500 µL of acetonitrile for 10 min. After centrifugation and filtration
using syringe filters, the prepared samples were transfered into the vials and directly
injected into a UPLC chiral column.

4. Conclusions

Several other approaches previously described elsewhere allow for the obtaining
of (S)-clopidogrel [16,40,41]. Nevertheless, more attempts to find green and economical
synthetic methods recommended by the ESC P2Y12 inhibitor are still necessary. The
presented study aimed to optimize the most suitable conditions to obtain enantiomerically
pure (S)-clopidogrel at a laboratory scale. The experiment’s results support the hypothesis
that Candida rugosa lipase OF is suitable for catalyzing the kinetic resolution of racemic
clopidogrel carboxylic acid. It was proven that using the two-phase catalytic system
with cyclohexane, [EMIM][BF4], and Candida rugosa lipase allowed for the obtaining of
highly enantioselective parameters. The enantioselective biotransformation of racemic
clopidogrel carboxylic acid was performed under various reaction conditions. The study
verified the possibility of performing the kinetic resolution of racemic clopidogrel carboxylic
acid in a two-phase catalytic system using methanol as an acyl acceptor. According to
the available literature, it was decided to test five various ionic liquids: [EMIM][EtSO4],
[EMIM][MSF3], [HMIM][BF4], [EMIM][BF4], and [DMIM][MeSO4] [42–47]. The used
ionic liquids, however, displayed a variety of kinetic characteristics, leading to varying
enantioselectivities and enantiomeric excesses of substrates and products. The catalytic
efficiency of the Candida rugosa lipase varied depending on the different anions of the ILs in
the following order: [BF4]− > [MSF3]− > [MeSO4]− > [EtSO4]−, and on the different cations
of the ILs as follows: [EMIM]+ > [HMIM]+ > [DMIM]+. As has been previously described
in the literature, various ILs, which contain different anions and cations, could possibly
interact with the enantioselective biocatalyst in various ways, such as through ionic and
dipolar interactions, hydrogen bonding, or van der Waals forces [37]. Nevertheless, it is
important not to affect the enzyme conformation. Therefore, it seems that factors such as
the reaction medium influence the enzyme conformation and could decrease or increase
the enantioselective properties of biocatalysts. Although the biotransformations were
performed at a laboratory scale, the optimized conditions and the described observations
could be considered significant milestones for further scaling up the production and for
possible industrial synthesis, which is planned.

It should be stressed that two-phase catalytic systems containing ionic liquids can be
critical from an economic point of view, as they allow for a direct and substantial reduction
in the overall cost of biotransformations catalyzed by enzymes. Since the biocatalysts
can be easily separated from the substrate and the product, the lipase can be reused in
another reaction. This approach has been comprehensively described elsewhere in kinetic
resolutions of various racemic compounds using ionic liquids [29,48,49]. Furthermore, it
should be emphasized that the solubility of racemic clopidogrel carboxylic acid in organic
solvents is relatively low and requires more significant volumes of the reaction medium,
which could have a negative impact on the environment. Therefore, the future prospects of
the presented study should be referred to when seeking a new functionality for reaction
mixtures, which, apart from obtaining better and more efficient reaction parameters, should
also be “greener” and re-usable.
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