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Abstract: Phenolic compounds or polyphenols are among the most common compounds of secondary
metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the
participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various
structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric
compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics
affects their biological activity and functional role. Most of their representatives are characterized
by interaction with reactive oxygen species, which manifests itself not only in plants but also in
the human body, where they enter through food chains. Having a high biological activity, phenolic
compounds are successfully used as medicines and nutritional supplements for the health of the
population. The accumulation and biosynthesis of polyphenols in plants depend on many factors,
including physiological–biochemical, molecular–genetic, and environmental factors. In the review,
we present the latest literature data on the structure of various classes of phenolic compounds,
their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes
and transfactors). Since plants grow with significant environmental changes on the planet, their
response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the
level of accumulation and composition of these secondary metabolites, as well as their metabolic
regulation, is considered. Information is given about plant polyphenols as important and necessary
components of functional nutrition and pharmaceutically valuable substances for the health of
the population. Proposals on promising areas of research and development in the field of plant
polyphenols are presented.

Keywords: phenolic compounds; phenylpropanoids; flavonoids; antioxidant activity; environmental
factors; regulation; health care

1. Introduction

A unique characteristic of plants, along with photosynthesis, is their ability to form
various low-molecular-weight specialized (secondary) compounds that do not participate
in primary metabolism [1,2]. The primary metabolites are crucial for plant growth and
development, whereas secondary metabolites are viewed as essential components for their
interaction with the environment [3,4].

The spectrum of synthesized secondary metabolites in plants is diverse. The main
representatives are terpenes, alkaloids, cyanogenic glucosides, and polyphenols [1,4].

Polyphenols or phenolic compounds (PCs) are considered to be among the most
prevalent secondary metabolites, synthesized in all plant cells [5,6]. Significant progress
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has been made to date in establishing their structure and chemical properties [7,8]. The
biosynthesis of PCs is extensively studied, and the key enzymes participating in this process
are identified [7,9,10]. Due to transcriptome research, there are data on genes that determine
cells’ ability to produce these compounds [11,12], along with numerous molecular markers
that are valuable for identifying phenol-producing plants [13].

Formerly, in the 20th century, PCs were considered only as a mechanism to eliminate
high-carbon components from metabolism. However, now, their significant contribution
to plant cell functionality is beyond doubt [3]. The production of these metabolites is
essential for plant growth and development and protection against various biotic and
abiotic factors [4,6,7].

The accumulation of PCs in the early stages of plant growth is known well [14].
The correlation between its formation and the process of photosynthesis [15], auxin
metabolism [16], and cell protection against various stressors [7,9,17] has been proved. The
latter characteristic is associated with the antioxidant capacity of PCs, which is determined
by their chemical structure [7,18]. This aspect of the functional role of these specialized
metabolites commands significant attention from researchers due to the broad-ranging
activity of these metabolites within the human body. The PCs’ capillary-strengthening,
antibacterial, antiviral, antitoxic, and neurodegenerative effects are known [19,20].

Plant-derived PCs, frequently referred to as bioflavonoids, are increasingly used as
therapeutic pharmaceutical agents for treating diseases of various etiologies [4,21,22]. De-
spite the considerable number of publications regarding plant-derived PCs, their structure,
biosynthesis, and function require further research.

This concerns the study of the structural diversity of these metabolites and their
properties. A greater “detailing” of PCs’ biosynthesis is needed, including genes and
transcription factors that ensure its functioning. Ideas about the influence of various
environmental factors on the accumulation of PCs in plants are still rather contradictory
and ambivalent. However, their study and evaluation are very important for agricultural
crops and medicinal plants, which are successfully used as producers of biologically active
compounds and nutraceuticals in the food industry and pharmacology.

In our review, we briefly present the current state of research on the structure of various
PCs, their properties (mainly antioxidant activity), and the main stages of biosynthesis,
including genes and transcription factors. In addition, we present recent data on the
regulatory effect of various abiotic environmental factors (light, UV radiation, temperature,
and heavy metals) on the accumulation of PCs in plants. Since these are some of the plant
metabolites actively used in pharmacology, there is a small section on their use in medicine.
The important fundamental and practical significance of PCs allowed us to consider the
prospects for further research on these unique plant metabolites.

2. Polyphenols Structure, Properties and Antioxidant Activity

Polyphenols are low-molecular-weight organic substances containing an aromatic
(benzene or phenol) ring with one or more hydroxyl groups in their molecule [23]. It can be
a simple compound or a complex polymer [24]. They are categorized into various classes
and subclasses based on the chemical structure, the number of phenol rings, the position of
functional groups, or the carbon skeleton [7,25,26]. Among them, phenol is the simplest
and the least common form of PC in plants (Figure 1).
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The presence of a single benzene ring along with a one-carbon or three-carbon side
chain is a distinguishing feature of hydroxybenzoic and hydroxy-cinnamic acids, respec-
tively (Figure 2). Their general formulas are usually denoted as C6-C1 and C6-C3, respec-
tively [27]. It should be noted that they belong to the class of phenylpropanoids, which are
widespread PCs in plants [9,10].
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Flavonoid-type PCs exhibit more complex structures, featuring two aromatic rings
(labeled as A and B) interconnected by a three-carbon fragment (designated as C) (Figure 3).
The general formula for flavonoids is denoted as C6-C3-C6.
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Flavonoids are categorized into different subclasses depending on the degree of
oxidation (or reduction) of the three-carbon fragment [8,26,27]. The main classes are shown
in Figure 4.
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In addition to the monomeric PCs mentioned earlier, plants also produce oligomeric
and polymeric forms. Oligomeric PCs include dimers of phenylpropanoids, flavones, and
flavonols, as well as flavan-3-ols and (or) flavan-3,4-diols (depicted in Figure 5). The latter
are known as proanthocyanidins [28].

Polymers of PCs are tannins, lignin, and melanins. Tannins are classified into hydrolyz-
able, condensed, thearubigins, and phlorotannins [27,29]. A unique phenolic metabolite
formed from phenylpropanoid units is lignin, widely distributed in plant tissues [30,31].
Melanins, somewhat “conditionally” considered PCs since they are primarily formed
through the acetate-malonate pathway, have also captured researchers’ interest due to their
protective role not only in plants but also in humans [32–34]. Figure 6 showcases some of
these substances.



Int. J. Mol. Sci. 2023, 24, 13874 5 of 25Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 5. Structural formulas of dimers from different classes of polyphenols. 

Polymers of PCs are tannins, lignin, and melanins. Tannins are classified into hydro-
lyzable, condensed, thearubigins, and phlorotannins [27,29]. A unique phenolic metabo-
lite formed from phenylpropanoid units is lignin, widely distributed in plant tissues 
[30,31]. Melanins, somewhat “conditionally” considered PCs since they are primarily 
formed through the acetate-malonate pathway, have also captured researchers’ interest 
due to their protective role not only in plants but also in humans [32–34]. Figure 6 show-
cases some of these substances. 

At present, more than 10,000 PCs have been identified, including both water-soluble 
and organic-solvent-soluble or insoluble forms [23]. This number continues to grow due 
to the advancement and implementation of novel analytic research methodologies such 
as capillary electrophoresis, high-performance liquid chromatography, mass spectrome-
try, nuclear magnetic resonance, and others [25,26]. 

 
Figure 6. Structural formulas of polymeric compounds of phenolic nature. 

Figure 5. Structural formulas of dimers from different classes of polyphenols.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 5. Structural formulas of dimers from different classes of polyphenols. 

Polymers of PCs are tannins, lignin, and melanins. Tannins are classified into hydro-
lyzable, condensed, thearubigins, and phlorotannins [27,29]. A unique phenolic metabo-
lite formed from phenylpropanoid units is lignin, widely distributed in plant tissues 
[30,31]. Melanins, somewhat “conditionally” considered PCs since they are primarily 
formed through the acetate-malonate pathway, have also captured researchers’ interest 
due to their protective role not only in plants but also in humans [32–34]. Figure 6 show-
cases some of these substances. 

At present, more than 10,000 PCs have been identified, including both water-soluble 
and organic-solvent-soluble or insoluble forms [23]. This number continues to grow due 
to the advancement and implementation of novel analytic research methodologies such 
as capillary electrophoresis, high-performance liquid chromatography, mass spectrome-
try, nuclear magnetic resonance, and others [25,26]. 

 
Figure 6. Structural formulas of polymeric compounds of phenolic nature. Figure 6. Structural formulas of polymeric compounds of phenolic nature.

At present, more than 10,000 PCs have been identified, including both water-soluble
and organic-solvent-soluble or insoluble forms [23]. This number continues to grow due to
the advancement and implementation of novel analytic research methodologies such as
capillary electrophoresis, high-performance liquid chromatography, mass spectrometry,
nuclear magnetic resonance, and others [25,26].

The properties of PCs are significantly influenced by their chemical structure [26].
Their ability to form hydrogen bonds (both intermolecular and intramolecular) relies on
the degree of hydroxylation of the benzene ring and the position of the hydroxyl group
(OH). For instance, meta-substituted diphenols (dioxibenzenes) exhibit significantly greater
resistance to oxidation than para- and especially ortho-diphenols [35].

Due to the presence of hydroxyl and carboxyl groups in their molecules, PCs possess
the ability to form conjugates with compounds such as sugars, organic acids, plant amines,
and others [36]. In this process, glycosidic, methylated, methoxylated, and acylated com-
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pounds of a phenolic nature are synthesized. As indicated in earlier studies, flavonoids
undergo hydroxylation at positions 3, 5, 7, 2, 3′, 4′, and 5′ (Figure 3). Additionally, glycosidic
bonds form at positions 3 or 7, involving glucose, rhamnose, galactose, or arabinose [37].
Some researchers report that during the formation of polyphenolic glycosides, β-glycosidic
bonds link one or more sugar residues (monosaccharides, disaccharides, and oligosac-
charides) to the hydroxyl group (O-glycosides) or the carbon atom of the aromatic ring
(C-glycosides) [38].

According to the literature [25], PCs are characterized by two primary properties:
reducing activity, which governs their antioxidant properties and their sensitivity to oxi-
dation, and the binding properties, which are attributed to their metal-chelating activities
and their affinity for proteins, including enzymes, transport proteins, and receptors. It is
these properties that determine the biological activity of these secondary metabolites in
both plant and animal cells.

The biological activity of PCs is frequently evaluated through their antioxidant proper-
ties [4,39]. These properties stem from their structural composition, comprising an aromatic
ring, double bonds, and numerous functional groups [8,37]. PCs interact with reactive
oxygen species (ROS) present in cells, which, at high concentrations, induce oxidative stress
within them (Figure 7).
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PCs scavenge hydroxyl radicals (OH) and superoxide anion radicals (O2) while also
neutralizing active oxygen species such as hydrogen peroxide (H2O2) or singlet oxygen
(1O2) [17]. As a result, they can prevent radical reactions instigated by these ROS, including
lipid peroxidation, protein oxidation, oxidative damage to nucleic acids, alterations in
the cytoskeleton, and other processes [18,40]. The antioxidant capacity of PCs is mainly
determined by the number of hydroxyl groups in the molecule [7] as well as by the
methylation and esterification of the compounds [35].

Some differences in the interactions between various plant PCs and ROS should be
underlined. For instance, catechin gallates exhibit high activity against superoxide radicals
exclusively (O2), while luteolin and kaempferol demonstrate activity against hydroxyl
radicals (OH) [41]. The antioxidant activity of catechins is attributed to the ability of the
hydroxyl groups of the catechol moiety to forge hydrogen bonds with the two oxygen
atoms of lipid peroxide radicals [42]. The antioxidant activity of flavonoids (derivatives of
luteolin and apigenin) isolated from celery leaves hinges on the location and quantity of
-OH groups on the B-ring in their structures, as elucidated in a study by Wen et al. [43] based
on data concerning DPPH• scavenging capacity and ABTS+• scavenging capacity. For



Int. J. Mol. Sci. 2023, 24, 13874 7 of 25

some flavonoids, in particular quercetin and its glycosides, a higher activity of aglycones
was noted [44,45].

The antioxidant activity of PCs in plants can also be attributed to their ability to
chelate microelements; to inhibit enzymes involved in ROS formation, such as glutathione-
S-transferase, microsomal monooxygenase, mitochondrial succinoxidase, NADPH oxidase,
and xanthine oxidase; and to enhance the activity of high-molecular-weight antioxidants
(enzymes) capable of scavenging radicals [26]. These mechanisms can operate indepen-
dently or in specific combinations, which hinders their study [8,18].

While the formation of PCs is a characteristic feature across all members of the plant
kingdom, their content and composition can vary significantly among different plant
species and even within their respective organs [8,15,46]. In most instances, their accumu-
lation remains below 1% of the dry weight [47–49]. However, there are exceptions, such
as Camellia sinensis, where the PC content can surpass 20% of the dry weight [50]. It is
noteworthy that the content of PCs tends to be higher, and their composition more diverse,
in the above-ground parts of plants compared to their underground counterparts [51,52].

As previously mentioned, plants produce a wide variety of PCs with extremely diverse
structural characteristics [8]. While flavonols are almost always present in chlorophyll-
containing plant cells, they are rare in the absence of these organelles. In contrast, phenyl-
propanoids tend to exhibit relatively higher levels in such scenarios [8,46]. Based on these
findings, we assume that the biosynthesis of PCs in plants is significantly influenced by the
level of their intracellular differentiation and the functionality of chloroplasts, which are
among the primary sites of their synthesis [15,53,54].

3. Biosynthesis of Polyphenols

The biosynthesis of PCs is a crucial component of plant secondary metabolism. The
synthesis of their diverse structural forms occurs through two main metabolic pathways:
the shikimate and aceto-malonate pathways [8–10].

The name of the shikimate pathway originates from shikimic acid, which is the primary
precursor in the biosynthesis of aromatic amino acids (L-phenylalanine, L-tyrosine, and
L-tryptophan) as well as PCs [55,56]. Their substrates are products of primary metabolism:
phosphoenolpyruvate from glycolysis and erythrose-4-phosphate from the pentose phos-
phate pathway (Figure 8). The 3-deoxy-D-arabinohexulose-7-phosphate, formed through
their condensation, subsequently undergoes transformation into shikimic acid through a
series of intermediate compounds catalyzed by enzyme-driven processes. As a result of
additional transformations, shikimic acid can give rise to various hydroxybenzoic acids,
such as p-hydroxybenzoic acid, protocatechuic acid, and gallic acid [10].

The predominant purpose of shikimic acid is to serve as a precursor for the synthesis
of aromatic amino acids such as L-phenylalanine and L-tyrosine [9,10]. In this process, the
deamination of L-phenylalanine by the key phenolic metabolism enzyme phenylalanine
ammonia-lyase (PAL) results in the formation of trans-cinnamic acid [57]. This stage corre-
sponds to the beginning of the phenylpropanoid pathway of PC biosynthesis. Trans-cinamic
acid is regarded as one of the earliest phenolic metabolites produced in plant cells, acting
as a bridge between the metabolism of aromatic amino acids and PCs [58,59]. The involve-
ment of tyrosine ammonia-lyase in the transformation of L-tyrosine to trans-cinnamic acid
has also been reported. However, its deamination is generally less pronounced compared
to L-phenylalanine, which is the primary precursor for phenolic compounds [57]. It is
suggested that in monocots, PAL can also function as L-tyrosine ammonia-lyase, acting as a
bifunctional enzyme for both L-phenylalanine and L-tyrosine and converting L-tyrosine to
p-coumaric acid (without the 4-hydroxylation step), albeit with reduced efficiency [58].
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Enzymes: DAHPS, 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase; PAL,
phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL,4-coumaroyl-CoA lig-
ase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS,
flavonol synthase; FNS, flavone synthase; IFS, isoflavon synthase; DFR, dihydroflavonol
4-reductase; LAR, leucoanthocyanidin reductase; ANS, anthocyanidin synthase; ANR,
anthocyanidin reductase.

A series of subsequent hydroxylations of trans-cinnamic acid leads to the formation
of other hydroxycinnamic acids. Typically, these compounds do not accumulate in their
free form within plant tissues, as they undergo further transformations. Among the most
significant of them are β-oxidation resulting in hydroxybenzoic acids, reduction leading to
cinnamic alcohols involved in lignin biosynthesis, the creation of various acyl derivatives
and complex esters (such as chlorogenic acid), and the synthesis of coumarins [30,31,60].
This completes the formation of the major components in the phenylpropanoid pathway,
which is a central component in the biosynthesis of natural PCs [61,62].

The aceto-malonate pathway plays a significant role in the biosynthesis of phenolic
compounds [9,63]. In higher plants, this pathway is usually coupled with the phenyl-
propanoid pathway and leads to the formation of flavonoids [64]. Ring B in their structures
is formed through the shikimate pathway (from hydroxycinnamic acid), while ring A is
formed through the aceto-malonate pathway [63]. p-Coumaroyl-CoA and three molecules
of malonyl-CoA are used as starting compounds (substrates), and their condensation leads
to the formation of chalcone [65]. This reaction is catalyzed by chalcone synthase (CHS), the
key enzyme in the biosynthesis of flavonoids [63,66]. The formed chalcone naringenin can
easily be transformed into flavanone naringenin through the action of chalcone-flavanone
isomerase (CHI). After undergoing changes in the oxidation state of the central heterocyclic
ring of the molecule (due to redox reactions), naringenin can serve as a precursor for all
other classes of flavonoids (flavan-3-ols, flavanones, flavones, anthocyanins, etc.) except for
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chalcones and dihydrochalcones. Enzymes involved in the formation of various classes of
flavonoids have been extensively described in the literature [8,9,64,67].

Typically, most monomeric forms of phenolic compounds are not end products of
phenolic metabolism; instead, they can participate in the formation of more complex
oligomeric and polymeric structures. Among these are proanthocyanidins, which are
derivatives of flavan-3-ols and are distributed in higher plant tissues [68]. Their biosynthesis
occurs in the final stages of the flavonoid pathway, and the process of condensing flavan-
3-ols into proanthocyanidins still remains unclear [69]. It is postulated that condensation
can occur either through enzymatic pathways involving peroxidase, polyphenol oxidase,
and laccase or through non-enzymatic means, specifically sequential autocondensation of
flavan-3-ols [64,65,68].

In addition to biochemical studies on the biosynthesis of PCs, which remain relevant,
the current emphasis is focused on studying the genes responsible for phenolic metabolism
and their regulatory mechanisms. This shift is facilitated by advancements in molecular
biology and functional genomics [13,59,70]. The field of genetic engineering is actively
progressing to optimize plant phenolic profiles, with the primary aim of expediting the
production of pharmacologically valuable compounds among other objectives [63,70,71].

More emphasis is currently being placed on studying gene expression related to the
biosynthesis of PCs. For instance, gene networks responsible for regulating biochemical
processes in Camellia sinensis have been documented [72,73]. Transcriptomic research has
revealed metabolic pathways and crucial genes implicated in the biosynthesis, transport,
and metabolism of catechins, caffeine, and L-theanine [74,75].

Gene expression responsible for metabolite biosynthesis is under the control of various
processes, including transcription, post-translational modifications, and micro-regulators
like non-coding RNAs [58]. Among the key regulators of PC biosynthesis, transcription
factors (TFs) stand out. TFs are DNA-binding proteins that bind to the promoter regions of
target genes, modifying the rate of transcription initiation. In response to environmental
signals (both internal and external, including phytohormones and abiotic factors), TFs can
affect both structural and regulatory enzyme genes, thus influencing the accumulation of
secondary metabolites (Figure 9).

Numerous families of TFs are known to be involved in phenolic metabolism, with
one of the most prominent being the MYB TF family. They play a significant role in plant
defense against various stresses [59,64]. It has been demonstrated that numerous MYBs
play a regulatory role in the phenylpropanoid and flavonoid pathways within plants. Some
of these TFs function as activators of enzyme genes, while others act as repressors [60].
For instance, the overexpression of the TF MusaMYB31 in bananas (Musa cultivar Rasthal)
led to a reduction in the transcript levels of most genes within the phenylpropanoid and
flavonoid pathways [76]. In contrast, studies conducted on poplar trees (Populus spp.)
revealed that the TF PtMYB115 binds to the promoter regions of ANR1 and LAR3 genes,
enhancing the expression of these genes and subsequently resulting in an increased accumu-
lation of proanthocyanidins [77]. Furthermore, in grapevine (Vitis vinifera), the VvMYB5a
transcription factor contributes to flavonoid synthesis by inhibiting lignin production. This
unique regulatory mechanism helps maintain a balance in carbon flow between lignin and
flavonoids in the plant [60]. Notably, a single MYB transcription factor can exert control
over multiple genes within a pathway, and, conversely, a single gene can be subject to
regulation by several MYB proteins [78].
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Often, TFs are presented in the form of complexes. The MBW complex, composed
of MYB, bHLH, and WD40 proteins, is a central transcriptional regulator in flavonoid
biosynthesis [78]. This complex activates structural genes responsible for the flavonoid
biosynthesis process, particularly anthocyanins. In several plants such as Helianthus annuus
L., Arabidopsis thaliana, Camellia sinensis, Narcissus tazetta, Medicago truncatula, Vitis vinifera,
and others, these transcription factors have been well characterized functionally [79].

Understanding the mechanisms of gene regulation in phenolic metabolism holds the po-
tential to enhance the production of pharmacologically valuable secondary plant metabolites.

4. Abiotic Factors and Polyphenol Accumulation in Plants

The interaction between plants leading a sessile lifestyle and their surrounding environ-
ment constitutes an indispensable prerequisite for their growth and development. However,
fluctuating environmental conditions can exert stressful effects on them (Figure 10).

In these instances, the plant survival and preservation of their productivity and
quantitative and qualitative characteristics, which are particularly important for agricultural
and medicinal plants, depend on their adaptive potential [15,17,61]. The exploration of
processes related to adaptation and resilience is one of the up-to-date domains within
physiology, biochemistry, and molecular biology. These studies provide insights into the
mechanisms of adaptation and facilitate the development of strategies to enhance plant
resistance against exogenous influences. Notably, these strategies have proven effective in
the selective breeding and development of transgenic stress-tolerant plants [71,79].
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It is established that exposure to stressors leads to an excessive accumulation of
reactive oxygen species (ROS) within plant cells. These ROS molecules interact with various
biomolecules, including lipids, proteins, DNA, RNA, and other metabolites, exerting toxic
effects that can ultimately result in cell death [80]. And in this case, an important role
is assigned to antioxidants, including low-molecular-weight PCs. Their accumulation
typically rises during exposure to stressful conditions, and this phenomenon is considered
a benchmark for their resistance [2,40,81]. In the following sections, we will discuss
these issues.

4.1. Light

Light is one of the “key” factors profoundly influencing plant life (Figure 11). This
factor impacts many metabolic processes, including the biosynthesis of PCs [59]. Its
regulatory role extends to numerous enzymes involved in phenolic metabolism, with
their activation accompanied by the accumulation of these metabolites, primarily in their
monomeric forms [9,15]. Additionally, light exposure contributes to the formation of
chloroplasts, which represent one of the main sites for the biosynthesis of these secondary
metabolites [53,54]. At the same time, light can also act as a stress-inducing factor, leading
to an increase in the ROS levels in cells and even triggering an event termed an ‘oxidative
burst’ [5].

The enhancement of the accumulation of phenolic antioxidants in plant tissues under
light exposure has been discussed in several review articles [6,15]. The stimulatory effect
of light on the levels of flavonoids, proanthocyanidins, and some other metabolites has
been documented not only in leaves but also in in vitro cultures of Camellia sinensis [82,83].
Moreover, a discernible correlation has been established between the accumulation of
proanthocyanidins and the expression of phenolic metabolism genes, encompassing PAL,
flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol reductase
(DFR), and anthocyanidin reductase1 (ANR1), predominantly observed within leaf tissues.
Furthermore, a correlation between proanthocyanidin accumulation and the expression
of phenolic metabolism genes, such as PAL, flavanone 3-hydroxylase (F3H), flavonoid
3′-hydroxylase (F3′H), dihydroflavonol reductase (DFR), and anthocyanidin reductase1
(ANR1), was observed in leaves. On the other hand, the formation of O-glycosylated
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flavonols correlated with the expression of chalcone synthase (CHS) and flavonoid 3′,5′-
hydroxylase (F3′5′H).
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Considerable emphasis is put on the investigation of how the spectral composition of
light (red, far-red, blue, and green) influences the biosynthesis of PCs and their accumula-
tion within plant tissues [5,6,15,59]. The stimulating impact of blue light on the production
of these metabolites has been documented across a diverse array of plant species, including
Brassica napus, B. campestris L. ssp. chinensis var. communis, and B. oleracea var. alboglabra
Bailey [84,85]. Within callus cultures of Camellia japonica, the highest accumulation of PCs,
encompassing flavonoids, was observed under the combined influence of red and blue
light or, alternatively, blue and green light [86]. The involvement of MYB transcription
factors in the light regulation of PC biosynthesis has also been reported [11]. In tartary
buckwheat plants (Fagopyrum tataricum), a novel transcription factor has been identified
and characterized, SG7 R2R3-MYB—FtMYB6, the promoter of which becomes induced by
light [87]. Based on the acquired data, FtMYB6 stimulated the activity of FtF3H and FtFLS1
promoters while suppressing that of the Ft4CL promoter, thereby fostering the biosynthesis
of flavonols within plant cells.

Overall, these divergences in the plant’s responsive reactions to light and/or its
spectral composition are rooted in the functionalities of specific photoreceptors, attuned
to distinct regions of the light spectrum [15,59]. Different classes of photoreceptors per-
ceive wavelengths corresponding to blue (B, 445–500 nm), green (G, 500–580 nm), red
(R, 620–700 nm), and far-red (FR, 700–775 nm) light. Their functional activity is regulated
by the intensity and duration of the light exposure [88]. It implies that there is potential
for regulating photomorphogenetic and biochemical processes, encompassing the accumu-
lation of phenolic bioantioxidants, through artificial lighting as an economically valuable
approach in industrial plant cultivation.

The presence of a significant number of studies on the effect of light on the accumu-
lation of PCs in plants, their biosynthesis, and their gene regulation (some of them are
presented in this review) does not yet allow us to obtain an accurate answer about the
mechanism of its action. So far, we only have information about the response of different
plants (species and varieties), which, in some cases, differs significantly. These differences
are due to their physiological state, growing conditions, intensity and duration of light
exposure, and other environmental factors. Consequently, biochemical and molecular
genetic aspects of PC biosynthesis in plants exposed to light can be considered one of the
promising and important areas of plant biology.

4.2. UV Radiation

One of the prominent challenges of our time is the shifting climate conditions across
the planet. Within this context, particular attention is drawn to the effects of increased
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doses of solar radiation, including its ultraviolet (UV) range [89]. The intensity of this
radiation is contingent upon the quantity and composition of anthropogenic emissions of
greenhouse gases (carbon dioxide, methane, and nitrous oxide), cloud formation dynamics,
and the extent of sea ice and snow cover on the Earth’s surface.

UV light is categorized into distinct ranges: UV-A (315–400 nm), UV-B (280–315 nm),
and UV-C (200–280 nm). Notably, UV-C does not reach the Earth’s surface, whereas
UV-A fully penetrates the ozone layer (Figure 12). UV-B, accounting for 5% of the total
UV radiation, is considered one of the most potent stressors for the vitality of numerous
organisms [61,90].
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Elevated levels of UV-B radiation are commonly observed in high-altitude regions
and in areas with ‘ozone holes’ that form due to a reduction in stratospheric ozone concen-
tration [91,92]. Exposure to this factor results in alterations in the morphophysiological,
biochemical, and genetic characteristics of plants, the manifestation of which is contingent
upon the ‘dosage’ of this stress factor [59,93]. Frequently, notable instances of their growth
retardation, decreased productivity, reduced photosynthetic pigment content and intensity,
the activation of mutagenic processes, and the disruption of DNA structure were ob-
served [7,94]. In addition, the ‘ultimate’ biological effect of UV-B radiation exhibits not only
a rapid response but also a temporally distant ‘outcome,’ attributed to the transformation
of the de novo biosynthesis of various cellular components [95].

Despite all of these alterations, plants, as a whole, exhibit greater resilience to UV-B
radiation compared to microorganisms and animals. This phenomenon could be attributed
to the formation and functioning of adaptive mechanisms, including the accumulation of
“protective” substances [61,94]. Among them are natural phenolic antioxidants, which,
in this context, not only deactivate reactive oxygen species but also absorb the short-
wavelength portion of solar radiation. As a result, they provide both physical and metabolic
protection to cells against the damaging effects of UV-B radiation [89,90].

In most cases, exposure to UV-B rays increases the content of various phenolic metabo-
lites within plant cells. One particularly striking illustration of this phenomenon was
observed in a cell culture of rose (Rosa damascena) grown in in vitro conditions, where the
accumulation of flavonoids increased by nearly 15 times [96]. Following exposure to UV-B
radiation, the levels of flavonoids within olive leaves, such as 4′-methoxylutelin and 4′-
or 3′-methoxylutelinglucoside, experienced an increase. Moreover, the phenylpropanoid
β-hydroxy-verbascoside (a derivative of hydroxycinnamic acid) emerged [97]. Against
the backdrop of changes in PC accumulation, the activation of phenolic metabolism genes
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occurred. For instance, in Mangifera indica, 3 out of the 21 chalcone synthase genes (MiCHS4,
MiCHS1, and MiCHS17) were triggered in response to UV-B radiation exposure [98].

In conclusion, it is crucial to emphasize that the effects of increased UV-B radiation
doses are contingent upon the endogenous content of PCs in plants, their composition, and
their compartmentalization within plant tissues. This has been elucidated in a range of
reviews [92,97,99].

4.3. Temperature

The growth and development of plants occur across a diverse temperature range [9,61].
However, significant fluctuations in temperature can impose stress, affecting physiological
and biochemical processes, thereby leading to growth inhibition and developmental dis-
turbances [100]. In this case, PCs play a crucial role in protecting plants from unfavorable
temperature conditions.

It is well established that exposure to cold stress frequently triggers a heightened accu-
mulation of anthocyanins in plants [101]. At the same time, an increase in the expression
of genes responsible for flavonoid biosynthesis has also been noted. Particularly, in the
case of Brassica rapa, a close correlation has been established between the plant resilience
to cold stress and the expression of genes encoding dihydroflavonol-4-reductase (BrDFR)
and anthocyanidin synthase (BrANS) [16,102]. Furthermore, it has been reported that
exposure to lowered temperatures in Malus sieversii leads to an enhanced accumulation of
anthocyanins, a phenomenon attributed to the involvement in this regulatory process of the
transcription factor MdMYBPA1 [65]. The accumulation of anthocyanin in purple Chinese
cabbages under low-temperature conditions was mediated through the induction of the
regulatory genes BrTT8 and BrMYB2. These, in turn, triggered the activation of almost all
of the late-stage biosynthesis genes responsible for these phenolic metabolites (BrDFR1,
BrANS1, BrUGT79B1, DrUGT75C1, and Br5MAT) [103].

Lignin, a phenolic polymer, stands as one of the most prevalent forms of polyphenols
in plant organisms [104]. The accumulation of lignin is a typical trait in most plant cells and,
to a certain extent, contributes to their resilience to low temperatures. It has been reported
that under cold stress conditions, its content within the epidermal cell layer increased [31].
This process facilitated the subsequent lignification of the cell wall, which “protected” in-
tracellular contents from freezing and reduced cell damage during dehydration induced by
freezing. Furthermore, there is evidence of the significant involvement of the transcription
factors C2H2Zn and MYB in the biosynthesis of lignin during periods of abiotic stress
exposure [105].

Changes in temperature during the vegetative phase of plants are frequently man-
ifested by an increase, thereby affecting the plants’ antioxidant system and accumula-
tion of PCs [17]. Through the example of Solanum lycopersicon, it was demonstrated that
flavonols reduce the accumulation of reactive oxygen species induced by high-temperature
stress [106]. Under elevated temperatures, an increase in the content of flavonoids and
phenylpropanoids in Glycine max was observed [107]. It should also be noted that the
activation of these processes may vary throughout the day and night. Through the example
of grapevine (Vitis vinifera), it has been demonstrated that in darkness, with the temperature
maintained at 35 ◦C, no changes in the quantity of flavonols were observed. However, at a
more extreme temperature (45 ◦C), it decreased both during the night and daytime [108].

Molecular and genetic studies on chrysanthemum (Chrysanthemum cultivar ‘Fencui’)
revealed a novel atypical transcription factor of subgroup 7 (SG7) R2R3-MYB (CmMYB012).
This factor was induced in response to prolonged high-temperature exposure and inhibited
flavonoid biosynthesis [109]. Moreover, it was demonstrated that it exerts an inhibitory
effect on anthocyanin biosynthesis by suppressing the expression of CmCHS, CmDFR,
CmANS, and CmUFGT.

An analysis of the literature reveals diversity in plant responses to temperature stimuli
in terms of PCs: low temperatures generally lead to the activation of their biosynthesis,
particularly anthocyanins, whereas high temperatures suppress this process [103,109].
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All of this indicates that changes in the temperature of the surrounding environment
influence the biosynthesis of various classes of PCs in plant tissues, and this process is
dependent on the functional activity of genes responsible for their synthesis.

4.4. Heavy Metals

Among the abiotic stressors are heavy metals, a result of human technological activ-
ities, which mostly exert a negative impact on plant growth and metabolism [110]. The
toxicity threshold of heavy metals hinges on the chemical characteristics of individual
representatives, the form of their presence in the soil solution or other substrates, and the
concentration and duration of exposure [111,112]. Certain heavy metals, including zinc,
copper, and molybdenum, at elevated concentrations exhibit toxicity to plants, whereas at
low levels, they play a vital role in supporting essential physiological processes. Heavy
metals not involved in metabolic processes, like cadmium, lead, and mercury, can be toxic
even at low levels [113].

Exposure to heavy metals is responsible for interrupting homeostasis in plants, which
is mediated by increasing ROS levels in their cells [110]. But, in spite of that, plants keep
surviving due to the functionality of antioxidant systems, where key positions belong to
direct-acting antioxidants [13,114]. Among them are low-molecular-weight compounds,
including PCs, which, in addition to neutralizing ROS, also act as agents chelating with
heavy metals, thereby inhibiting metal-catalyzed free radical oxidation reactions [18,115].
Additionally, the ability of PCs to interact with the HM arises from the high nucleophilicity
of their benzene rings and depends on the number and location of hydroxyl groups [7].
Flavonoids, the predominant class of PCs, play a crucial role in the chelation process with
heavy metals. It has been revealed that in Gynura pseudochina plants, many of them are
capable of chelating zink and cadmium, while catechins can chelate iron [116].

In most cases, plants’ exposure to heavy metals leads to an increased accumulation of
various PCs within them. This is supported by data on the accumulation of catechins and
quercetin in the roots of Pínus and Zea mays plants [7,117]. Callus cultures of Amaranthus
caudatus and Ginkgo biloba, when exposed to copper, exhibited an increase in the content of
flavonoids [19,118].

On the other hand, there are reports of a reduction in the content of PCs in plant tissues
following exposure to heavy metals. The excess nickel in the surrounding environment led
to a reduction in anthocyanin levels in the sprouts of Lactuca sativa [119]. A decrease in the
levels of secondary metabolites in certain plants of the Asteraceae family has been reported
under the conditions of metal-induced stress [120]. The absence of PC accumulation is
attributed to the damaging effects of high levels of heavy metals, hindering the antioxidant
system’s functionality and limiting the organisms’ ability to biosynthesize these metabolites.

The PC content in the plant cells is attributed to the functional activity of enzymes
involved in their biosynthesis. Thus, in the sprouts of the red cabbage exposed to copper,
along with an increased content of PCs, phenylalanine ammonia-lyase levels were aug-
mented, which is responsible for the initial stages of phenolic metabolism [121]. In wheat,
the activity not only of phenylalanine ammonia-lyase but also of tyrosine ammonia-lyase
increased under elevated concentrations of lead and copper, and this effect was more
pronounced under copper-induced stress [122].

The regulation of secondary metabolite formation in plant cells is strongly influenced
by changes in the transcriptional levels of genes involved in their biosynthesis, a phe-
nomenon directed by transcription factors (TFs), including the MYB family, the largest
among them [11]. Within the latter, sub-family R2R3MYBs is the most interesting, which is
involved not only in the ontogenetic development processes but also in the plants’ reactions
to the stress conditions. This activity is mediated by the regulation of the biosynthesis of
secondary metabolites, including flavonoids and monolignols [123]. It is established that
this process occurs through the MBW (MYB-bHLH-WDR) complex, both for flavonoids
and anthocyanins [61]. In plants of sweet wormwood (Artemisia annua), the overexpression
of genes HMGR, ADS, CPYA171, and FDS enhances the formation of artemisinin against
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the backdrop of the toxic influence of copper and silver. Additionally, the elevated ac-
tivity of genes PAL and CHS leads to an increase in concentrations of anthocyanins and
flavonoids [116]. Under metal-induced stress, the transcription levels of genes encoding
enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase, chalcone syn-
thase, shikimate dehydrogenase, and cinnamyl alcohol dehydrogenase) are linked to an
increase in the content of PCs in plant tissues [61].

All of the aforementioned evidence suggests that the enhanced plants’ capability of
biosynthesis, i.e., their capacity to accumulate PCs under the influence of heavy metals,
is ensured by the functioning of various mechanisms critical for the survival and com-
petitiveness of these organisms under abiotic stress conditions. Herewith, the activation
of the phenylpropanoid pathway of PC biosynthesis often correlates with an increase in
plant resistance and the manifestation of PCs’ functions such as antioxidant and protective
functions. All of that is crucial for enhancing the quality of plant products used in the
medical, pharmacological, and nutriceutical industries while developing a strategy for
public health protection.

5. Phenolic Bioantioxidants in Public Health Protection

One of the actively developing approaches for preserving and maintaining human
health is the development of functional nutrition, along with the increasingly broader
utilization of natural remedies [51]. This can reduce the usage of synthetic pharmacological
products; enhance human vitality, including resistance to stress factors; and augment
longevity (Figure 13).
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Over the past few decades, significant attention worldwide has been devoted to the
search for effective natural antioxidants that protect living organisms from the damaging
effects of ROS [4]. Among them, PCs hold a distinctive position, demonstrating robust
antioxidant capacity and potent antimicrobial, antiviral, antiatherosclerotic, and antihyper-
tensive effects [124,125].

While the presence of ROS is an integral part of the normal functional activities of
various organisms, the “uncontrolled” production of these molecules triggers oxidative
stress, ultimately leading to the development of many diseases in humans [126]. In this
scenario, PCs assume a vital and imperative role in protecting and preserving public health.
Their aromatic nature and highly conjugated bond system with hydroxyl groups render
these metabolites excellent donors of electrons or hydrogen atoms [18]. The mechanism of
antioxidant action of PCs includes their reductive capacity in neutralizing ROS, as well as
their ability to chelate metal ions that trigger oxidative stress. Furthermore, they can inhibit
enzymes participating in ROS formation and activate antioxidant enzymes [26].
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It is important to emphasize that PCs are not synthesized within the human body
but rather enter it through food chains while retaining their inherent antioxidant activ-
ity [127,128]. This is precisely why pharmacologists and other experts show significant
interest in studying plants as potential “sources” of phenolic phytonutrients with diverse
biological activities (Table 1).

Table 1. Plant Polyphenols and Their Pharmacological Activity.

Class of
Polyphenols

Phenolic
Compound

Pharmacological
Activity Plant Source References

Flavonols quercetin, kaempferol,
myricetin, fisetin

anti-inflammatory,
immunomodulatory, antiviral

(against SARS-CoV-2, influenza,
HIV)

grapefruit, capers, parsley,
elderberry, sorrel [129]

Flavanes
epicatechin,

epigallocatechin gallate,
epigallocatechin

neuroprotective, anti-inflammatory,
capillary-strengthening

tea plant, cranberry,
strawberry, blackberry,

kiwi, cherry, pear, avocado
[130]

Flavones apigenin, luteolin,
chrysin

antimutagenic, anticarcinogenic,
anti-inflammatory

green bell pepper, thyme,
parsley, spinach, celery,

chamomile, orange
[131]

Anthocyanins delphinidin, cyanidin,
malvidin

antidiabetic, antimicrobial,
neuroprotective, cardioprotective,

anticarcinogenic

blueberry, cranberry,
lingonberry, grape,

eggplant
[132]

Flavanols proanthocyanidins
cardioprotective, neuroprotective,
immunomodulatory, antidiabetic,

anticancer

rosehip, lingonberry,
cranberry, elderberry, black
elder, currant, persimmon,

quince

[69]

Flavones naringenin anticancer, antiviral, antibacterial,
cardioprotective, antidiabetic

lemon, orange, grapefruit,
tomato [133]

Phenylpropanoids rosmarinic acid,
chlorogenic acid

neuroprotective, anti-inflammatory,
antimicrobial hepatoprotective,

immunomodulatory, antidiabetic,
antitumor

rosemary, mint, sage, tea
plant, apple, artichoke,

carrot
[134,135]

Antimicrobial, antiviral, antiatherosclerotic, capillary-strengthening, and anticancer effects
are characteristic both of plant extracts and specific natural PC representatives [124,125,136].
According to preclinical and clinical research, the prolonged consumption of a diet rich in
PCs (such as quercetin, resveratrol, gallic acid, and caffeic acid) reduces the incidence of
cardiovascular diseases, diabetes, cancer, and atherosclerosis and also provides protection
against certain types of allergies while slowing down the progression of Alzheimer’s dis-
ease [4,127]. Reports have indicated the involvement of these plant metabolites, including
flavonoids, in activating the immune response of human cells to coronavirus infection
(SARS-CoV-2) [137]. It is also worth mentioning that under specific conditions (alkaline
pH and high metal content), polyphenolic compounds can act as pro-oxidants. This prop-
erty contributes to their anticancer activity, as they can inhibit the proliferation of cancer
cells [138].

Compounds of a phenolic nature are widely distributed in fruits, vegetables, grains,
nuts, spices, tea, and other crops, with their quantity varying significantly. For instance,
the total concentration of polyphenols in black-eyed peas can reach 1200 (mg-eq. gallic
acid/g dry weight); in pomegranate leaves, 199.26 (mg-eq. gallic acid/g dry weight); and
in peppermint, 70.06 (mg-eq. gallic acid/g dry weight) [48,134,135].

Including plant-based foods with high phenolic antioxidant content in the diet can
help prevent oxidative stress in the body [48,139]. However, consuming PCs in the form
of high-dose bioactive supplements may lead to adverse side effects in individuals [140].
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This also applies to the use of dihydroquercetin, a commonly used capillary-strengthening
agent, as excessive doses can result in various metabolic disruptions within the body [141].

It is worth highlighting that PCs in plants primarily accumulate in a conjugated form
(as glycosides, acylglycosides, etc.) [142]. After their entry into the human body, they
undergo various transformations in the digestive tract, including deglycosylation, methyla-
tion, sulfation, and glucuronidation [124,143]. An important role in the bioavailability of
PCs belongs to the microbiome of the large intestine, which is involved in the cleavage of
flavonoids to phenolic acids, which contributes to their reabsorption. It has been shown
that the digestibility of PCs, including flavonoids, depends on individual characteristics of
a person, such as gender, age, the presence of pathologies, and genetics [8,144]. The intake
of plant-derived PCs into the human body, their transportation, and their pharmacological
activity have been discussed in a series of reviews in recent years [31,145,146].

The effectiveness of the prevention and treatment of human diseases when eating
plant foods enriched with PCs is beyond doubt. However, they are used not only fresh but
also after various treatments (heating, cooling, preservation, drying, and fermentation).
In this case, the composition, content, and biological activity of PCs depend on the type
of process, the duration of exposure, the intensity of the regime, and the class of these
secondary metabolites. All of this can increase the bioavailability of PCs for the human
body due to their structural changes [147,148].

To overcome the problem of PC bioavailability, systems for their delivery using bio-
compatible materials such as nanoparticles, including liposomes, phytosomes, lipid and
protein nanoparticles, micelles, and natural and synthetic polymers, have been devel-
oped [149]. They allow the protection of phenolic compounds from degradation; improve
their solubility, cellular absorption, and stability; and maintain pharmacological activity in
the human body. For example, nanocubasomas with anthocyanin-rich Cornus mas extract
had a size of 22.75 nm. This contributed to their good entry into the cells. The stability of
anthocyanins in this delivery system was 92%, while in the free extract, it was 75% [150].

Despite the pharmacological activity of many PCs and their effectiveness in the preven-
tion and treatment of a number of diseases, the commercial production of these secondary
metabolites is limited. This is due to the limited nature of the plant materials used to obtain
them and the difficulty in isolating individual components [151]. An important limiting
factor is the development of effective “delivery systems” of PCs into the human body that
ensure their bioavailability [152]. We should not forget about the effect of high doses of
PCs, which are not always optimal for maintaining human life. All of this requires further
scientific and clinical studies to establish a safe dosage of pharmacological preparations
containing these metabolites, improve their bioavailability, and develop the foundations
for the effectiveness of both extracts of plant materials and individual compounds.

In conclusion, it should be noted that PCs are valuable phytonutrients, contributing
to the prevention and/or treatment of a broad spectrum of human diseases as well as
protecting the body from various stressors. Their “multifaceted” impact (with over 40 types
of biological activity), non-toxicity, and widespread distribution in functional foods and
medicinal plants allow us to view these secondary metabolite compounds as factors that
modify the biological response of the organism. They hold significant importance in
protecting public health all over the world.

6. Conclusions and Future Perspectives

PCs are unique secondary metabolites that play a role in numerous physiological and
biochemical processes within plants. They also exhibit high antioxidant activity, which
has led to their successful utilization in pharmacology for treating diseases of various
etiologies. The application of high-performance liquid chromatography, mass spectrometry,
and other analytical methods has enabled the acquisition of new insights into the structure,
properties, and biological activity of diverse constituents of phenolic metabolism. And
this field requires further research due to the variety of chemical structures of PCs and the
ability to form complexes with various metabolites. Biochemical and molecular-genetic



Int. J. Mol. Sci. 2023, 24, 13874 19 of 25

research has refined our understanding of the various stages of PC biosynthesis, along
with the enzymes, genes, and transcription factors engaged in these pathways. However,
there is still a lack of clarity regarding the formation of proanthocyanidins, one of the
prevalent PCs in plants that vary in their degree of polymerization. Our knowledge about
the gene networks of phenolic metabolism and their functioning within plant cells is still
insufficient. The examination and analysis of antioxidant activity in both plant extracts
and individual phenolic compounds can be regarded as one of the actively developing
areas in plant biology, physiology, and pharmacological medicine. In this context, the
ecological aspect of these studies is of great significance, considering the substantial shifts
in temperature regimes, light, and UV exposure and the accumulation of heavy metals on
the planet. These changes may be a consequence of technological atmospheric pollution.
All of these factors result in considerable changes in the life processes and productivity
of plants, including the accumulation of phenolic bioantioxidants—crucial components
for plant functional nutrition and the preservation of human health. The necessity of
investigating the impact of these stress factors is beyond doubt. This research will allow us
to “evaluate” the nature of their response and develop strategies to regulate the resistance
and adaptation of plants to changing environmental conditions, including at the level of
vital bioactive metabolites like PCs. Among the promising directions for further research is
the production of nanoparticles, with PCs as important regulators of the vital activity of
various organisms, including plants and humans. Despite significant progress in the study
of plant PCs and their functional activity, there are still many unresolved issues that are of
great interest to scientists of various specialties—chemists, biologists, geneticists, biotech-
nologists, pharmacists, physicians, and others. To a large extent, this is due to the regulation
of the accumulation and composition of these biologically active metabolites in plants used
for food and medicinal purposes for the health and preservation of the population.
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