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Abstract: Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating
diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is
referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and
the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease,
one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2)
inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of
diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and
sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the
antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria.
Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have
demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as
sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly
exert cardio-renal protection in people with and without diabetes in both preclinical and clinical
settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia
and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
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1. Introduction

Both Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two of the
most prevalent diseases globally. Chronic Kidney Disease is a progressive condition that
affects over 10% (over 800 million) of the global population [1] and may ultimately lead to
the final stage of kidney disease, known as end-stage kidney disease. However, according
to the World Health Organization, CVD is the leading cause of death globally.

An even more disturbing phenomenon occurring now is the combination of cardiac
and renal dysfunction, known as cardiorenal disease. In fact, it is now known that many
individuals dealing with CKD do not actually reach the stage of dialysis, because they die
of heart disease [2]. This is the case because CKD is multifactorial and could be related
to a variety of reasons, including impaired coronary flow reserve (ratio of the maximal or
hyperemic flow down a coronary vessel to the resting flow), reduced aortic compliance
(the ability of the arterial wall to distend and increase volume with increasing transmural
pressure), increase in the level of angiotensin II and changes in the concentrations of
essential vitamins like potassium, calcium and magnesium, as well as fibrosis in the hearts
of patients on dialysis [3].
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Cardiovascular Diseases (CVD) are the leading cause of disease burden throughout the
world, with prevalent cases of CVD doubling from 271 million people in 1990 to 523 million
people in 2019 and the number of CVD deaths increasing from 12.1 million in 1990 to
18.6 million in 2019, and it is more fatal in men than women [4]. Treatment of CVD is
complex, as there are a multitude of underlying causes of cardiovascular death, such as
ischemic heart disease, stroke, hypertensive heart disease, cardiomyopathy/myocarditis,
atherosclerosis, aortic aneurysm and peripheral artery disease. Alarmingly, modifiable
risk factors such as high systolic blood pressure, high fasting plasma glucose, high LDL
cholesterol, high BMI and poor diet choices are also on the rise [4]. In a study including
197 countries, the total costs of heart failure alone in 2012 was USD $108 billion [5].

Diabetes is one of the leading causes of death and disability worldwide, with 529 mil-
lion people living with this condition as of 2021, resulting in health expenditures of USD
$966 billion globally, and they are forecasted to reach more than USD $1054 billion by 2045.
Type 2 diabetes makes up 96% of all diabetes cases worldwide, and it is equally prevalent in
both males and females [6]. Diabetic Kidney Disease (DKD) develops in approximately 40%
of patients with type 2 diabetes (T2D) and 30% of patients with type 1 diabetes (T1D), and it
is the leading cause of chronic kidney disease (CKD) and end-stage renal disease [7,8]. The
mortality risk associated with DKD has increased by 31.1%, and it increases with worsening
disease severity [9]. It is reported that DKD affects males and females equally, and it rarely
develops before 10 years of duration of T1D [10]. The humanistic, societal and economic
impact of DKD is enormous. It places a significant burden on the health care system and
seriously affects the physical health and quality of life of patients [11]. Globally, in 2019,
there were 2.6 million cases of CKD due to diabetes mellitus [12].

At present, there are a multitude of therapies that are used for cardio-renal disease.
Some of these include pharmacological agents such as diuretics, vasodilators, angiotensin-
converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) [13]. In fact, it
has been shown that in an Italian diabetic population affected by both DKD and diabetic
retinopathy, multifactorial intervention using a combination of angiotensin-converting
enzyme inhibitors and angiotensin II receptor blockers resulted in improved outcomes [14].
Although standard treatments have been found to slow the progression of CKD, they
do not halt the disease. Therefore, alternative treatments may be required, such as the
non-steroidal mineralocorticoid receptor antagonist finerenone, which is used to treat DKD
with albuminuria [15]. Other emerging therapies that are currently undergoing clinical
trials include endothelin receptor-A antagonists, complement inhibition, Janus kinase (JAK)
inhibition, chemokine inhibition, renal denervation and, of course, the topic of this review,
sodium glucose cotransporter 2 (SGLT2) inhibitors.

2. What Are Sodium Glucose Cotransporters?

The entry of glucose into cells is regulated by facilitative glucose transporters (GLUTs)
and sodium-dependent glucose cotransporters (SGLTs). Of the SGLT family, SGLT1 and
SGLT2 are frequently investigated in a range of disease settings [16], as they play key roles
in the transport of glucose and sodium across the brush-border membrane of intestinal
and renal cells [17]. Although SGLT1 is less researched than SGLT2, it is more widely
expressed throughout the body and is found predominantly in the small intestine [18–20]
(Figure 1; Table 1), and it only accounts for 5–10% of the glucose reabsorption in the
kidneys. Our studies have shown that heightened Sympathetic Nervous System (SNS)
activity upregulates this SGLT1 expression, and therefore, inhibition of this protein could
also be beneficial in treating cardiometabolic disorders [21]. SGLT2 is a high-capacity,
low-affinity glucose cotransporter, mainly found in the S1 and S2 segments of the renal
convoluted proximal tubules (Figure 1; Table 1), and it is required for the reabsorption of a
majority of the glucose (~90–95%) filtered by the kidneys [22,23].
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Figure 1. SGLT1 and SGLT2 sodium and glucose transport in intestinal lumen (SGLT1) and proximal
tubule lumen in the kidneys (SGLT2).

SGLT2 inhibitors (SGLT2i’s) have been developed based on the antidiabetic action
initiated by inhibiting renal glucose reabsorption, thereby increasing urinary glucose
excretion [24] (Table 2). As demonstrated by several large-scale clinical trials [25–27],
SGLT2i’s are now recognized to be capable of altering a range of metabolic and biochemical
parameters via novel mechanisms, which are discussed in this review, thereby exerting
cardio-renal protection in individuals with and without diabetes [28,29].

One critical requirement before SGLT2i’s can be prescribed for the treatment of CKD
is a functional glomerular filtration rate (GFR). The glomerular filtration rate is considered
the optimal way to measure kidney function. In a healthy kidney, the glomerular filtration
rate is 120 mL/min/1.73 m2, but as CKD progresses, it may decline to 60 mL/min/1.73 m2

or less. Interestingly, studies have shown that SGLT2i’s are safe and beneficial to use in
patients with a GFR above 20 mL/min/1.73 m2 and can actually be used in subjects that
have a GFR of less than 20 mL/min/1.73 m2, as long as they are tolerating it well and are
not on dialysis [30]. However, this topic of discussion is controversial, and a number of
other specific aspects need to be addressed. Currently, SGLT2 inhibitors can be used in
CKD patients up until starting dialysis due to their nephro- and cardioprotective effects. It
is also believed that SGLT2 inhibitors may be used safely in hemodialysis and peritoneal
dialysis patients, especially if they have additional heart failure.

Table 1. Areas of expression of SGLT1 and SGLT2 in the human body.

Location SGLT1 SGLT2

Small Intestine Apical membrane, K and L cells [19]. Not expressed.

Eye Retina [20]. Retina, cornea and lens [20].

Kidney Section 3 of the proximal tubule. [21]. Section 1 and 2 of the proximal tubules [22].

Pancreas Pancreatic alpha cells [18]. Not expressed.

Liver Biliary duct cells [19]. Not expressed.

Heart Capillaries [19]. Not expressed.

Table 2. Summary of key findings from the characterization of Canagliflozin (CANA), Dapagliflozin
(DAPA), Ipragliflozin, Empagliflozin (EMPA), Tofogliflozin and Luseogliflozin [31–33].

Study Parameters Key Findings
Longest plasma half-life: Canagliflozin.
Longest half-life in the kidney: Dapagliflozin.
Highest distribution in the kidney: Ipragliflozin.Pharmacokinetic

properties
Drug distribution in the kidney suggested to be dependent on chemical
structure.
All SGLT2i’s increased urinary glucose excretion in a
dose-dependent manner.
Long-acting SGLT2i’s exhibited persistent action, even 18 h post dose.Pharmacodynamic

properties Close correlation between the duration of action, plasma drug
concentration, drug distribution and kidney retention.
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Table 2. Cont.

Study Parameters Key Findings
Significant reductions in blood glucose and plasma insulin with all SGLT2i’s.
Significant improvement in glucose tolerance with all SGLT2i’s.
Long-acting SGLT2i’s exert stronger anti-hyperglycaemic effects through
persistent urine glucose excretion.

Pharmacologic
properties

Intermediate-acting SGLT2i’s may provide better glycaemic control when
administered twice daily.
All SGLT2i’s significantly improved hyperglycaemia and hyperinsulinemia.
All SGLT2i’s significantly increased pancreatic insulin content by
prevention of pancreatic exhaustion.Anti-diabetic effects
Long-acting SGLT2i’s exert favourable glycaemic control over 24 h and
may have slightly enhanced antidiabetic effects compared with
intermediate-acting SGLT2i’s.
All SGLT2i’s exhibited significant improvements/trends in obesity
parameters (e.g., body and visceral fat weights, lipid metabolism
markers), proinflammatory cytokines and endothelial
dysfunction markers.
All SGLT2i’s significantly decreased or showed a decreasing trend in
steatohepatitis parameters (e.g., liver weight, plasma levels of liver
enzymes) and renal parameters (e.g., creatinine clearance, renal tubular
injury markers).

Effects on diabetic
complications

Long-acting SGLT2i’s (0.3 mg/kg) demonstrated slight superiority in
comparison with intermediate-acting SGLT2i’s (3 mg/kg) on several
parameters (e.g., daily blood glucose control, visceral fat weight).

Blue colouration is related to pharmacological effects. Green colouration is related to anti-diabetic effects. Pink
colouration is related to effects on diabetic complications.

3. Use of Selective SGLT2 Inhibition as an Antidiabetic Therapy

There are many studies that have shown the beneficial cardiovascular and renal effects
that SGLT2i’s can have in both T1D and T2D. In patients with T2D, SGLT2i treatments are
now being considered as the first line of therapy because of their metabolic and cardio-
renal benefits. As just mentioned, SGLT2i’s provide benefits by promoting the excretion of
glucose in the urine, therefore assisting with a reduction in hyperglycemia and subsequently
a decrease in weight. SGLT2 inhibitors also promote both uric acid reduction [34,35]
and stimulation of erythropoiesis, which may have cardiovascular and renal effects [34].
However, aside from the metabolic benefits of SGLT2i’s, there are numerous other beneficial
protective mechanisms, as outlined below.

3.1. Preclinical Studies
3.1.1. Blood Pressure Reduction

One common complication of patients with diabetes is hypertension, and although
the anti-hypertensive therapies have improved over the years, there is definitely still room
for improvement. Although SGLT2i’s are not predominantly prescribed as hypertensive
medications, research has now shown that SGLT2i’s have overwhelming beneficial effects
in patients with both hypertension and diabetes. Mechanisms that may contribute to their
anti-hypertensive action are their mild natriuresis, osmotic diuresis and weight-loss effects
in patients with diabetes [36]. In human studies, both Empagliflozin (EMPA) [37] and
Dapagliflozin (DAPA) [38] were associated with significant reductions in blood pressure in
patients with diabetes compared with placebo. We have also demonstrated in our murine
studies that SGLT2i’s may promote sympathoinhibition in the kidneys and heart in diabetic
mice, and this may be an underlying mechanism for blood pressure reduction [39].

3.1.2. Improved Digestive Health

The intestinal microbiota is aggravated as diabetes progresses and, during the de-
velopment of DKD, there is an increased imbalance in the gut microbiota. The SGLT2i
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DAPA has been beneficial in lowering the level of dysbacteriosis and bile acids [40], al-
tering the microbiota composition [41] and reducing succinate levels (pathogenic factor
in diabetic retinopathy) [42], while the inhibitor EMPA reduces the lipopolysaccharide
(LPS)-producing bacteria and increases the short-chain fatty acid (SCFA)-producing bacte-
ria [43]. Additional inhibitors such as Luseogliflozin have also been found to be beneficial
in altering the microbiota. When mice were given the SGLT2 inhibitor Luseogliflozin, there
was a significant increase in the abundance of the species Syntrophothermus lipocalidus, Syn-
trophomonadaceae and Anaerotignum, which are all involved in the biosynthesis of important
SCFAs such as acetic acid, propionic acid and butyric acid [44].

3.1.3. Diabetic Retinopathy

Diabetic retinopathy is a common complication associated with diabetes, and the SGLT2i’s
EMPA [45] and DAPA [46] have improved diabetic retinopathy in T2D db/db mice. Em-
pagliflozin has also been shown to mitigate ocular edema and microaneurysms in the retina
as well as inhibit the mammalian target of raptomycin activation. One of the characteristics
of diabetic retinopathy in db/db mice is an increase in acellular capillary numbers [46], and
DAPA has been shown to produce a substantial decrease in the acellular capillary numbers
compared with placebo. Aside from this, inflammation is another main factor associated with
diabetic retinopathy. According to these studies, both EMPA and DAPA have been shown to
downregulate inflammatory and angiogenic factors, such as Tumor Necrosis Factor-α (TNF-
α) [45,46], Interleukin 1-β (IL1-β) [46], Interleukin 6 (IL-6) [45], Vascular Cell Adhesion Molecule
1 (VCAM-1) [45] and Vascular Endothelial Growth Factor (VEGF) [45] in the retina.

3.1.4. Kidney Health

There have been numerous preclinical studies conducted which show the renoprotective
effects of SGLT2i’s. Dapagliflozin treatment in db/db mice halted the progressive increases
in albumineria and glomerulosclerosis [47], while in the Otsuka Long–Evans Tokushima Fatty
(OLETF) T2D rat model, DAPA was shown to reverse renal oxidative stress markers as well
as attenuate inflammatory cell infiltration, mesangial widening, interstitial fibrosis and total
collagen content [48]. Luseogliflozin treatment in a T2D nephropathy rat model has been shown
to prevent the fall in GFR and reduce the degree of glomerular injury, renal fibrosis and tubular
necrosis compared with those on vehicle or insulin alone [49]. Empagliflozin treatment has also
been found to ameliorate albuminuria and glomerular injury in db/db mice [50].

3.1.5. Cardiovascular Benefits

There have been many preclinical animal studies showing the cardioprotective effects
of SGLT2i’s in T2D. When EMPA was administered to db/db mice over a 10-week period, it
was shown to significantly ameliorate cardiac interstitial fibrosis, pericoronary arterial thick-
ening, cardiac macrophage infiltration and the impairment of vascular dilation [50]. Further
discussion of SGLT2i-mediated cardiovascular benefits is presented later in the review.

3.1.6. Improved Cognitive Function in T2D

One of the most underrecognized but life-changing effects of T2D is the decline in
cognitive function. Therefore, the question as to whether SGLT2i’s reduce the cognitive
impairment associated with T2D has been investigated in numerous animal studies. Em-
pagliflozin has been shown to significantly prevent the impairment of cognitive function in
T2D db/db mice due to its ability to attenuate cerebral oxidative stress, as well as increase
cerebral Brain-Derived Neurotrophic Factor (BDNF) levels [50].

3.2. Human Clinical Trials

There are a multitude of clinical trials that have been conducted utilizing the SGLT2 inhibitors
EMPA, DAPA, Canagliflozin (CANA) and Ertugliflozin, and they are outlined below (Table 3).
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Table 3. Clinical trials in patients irrespective of diabetic status.

Clinical Trials in Patients with Diabetes Only

Trial/Year SGLT2
Inhibitor Patient Cohort Patient # Outcome Ref #

2015
EMPA-REG Empagliflozin

T2D—High
Risk of Cardio-

vascular
Events

7064

↓Mortality &
Hospitalisation due
to HF
↓ Risk of Clinically
Relevant Renal
Events

[25,51]

2017
CANVAS Canagliflozin T2D—High

Risk of CVD 10,143

↓Major Adverse
Cardiovascular
Events
↓ Albuminuria
Levels
↓ Renal Replacement
Therapy/Death

[27]

2018
DELCARE-

TIMI
Dapagliflozin

T2D—High
Risk of

Atherosclerotic
CVD

17,190

↓ Cardiovascular
Death or
Hospitalisation for
HF.

[26]

2018
CREDENCE Canagliflozin T2D and

Kidney Disease 4401
↓ Risk of Kidney Fail-
ure/Cardiovascular
Events

[52]

2019
VERTIS Ertugliflozin T2D and CVD 8246

↓ First/Total
Hospitalization
↓ Risk of death from
HF/CVD

[53]

Clinical Trials in Patients Irrespective of Diabetic Status

Trial/Year SGLT2
Inhibitor Patient Cohort Patient # Outcome Ref #

2019
DAPA-HF Dapagliflozin

Class II, III or
IV Heart

Failure & EF <
40%

4744
↓Worsening Heart
Failure/Death from
CV Events

[54]

2019
DIAMOND Dapagliflozin

Non Diabetic
Patients with

CKD
50

Induced an acute and
reversible decline in
mGFR levels.

[55]

2020
EMPEROR-
REDUCED

Empagliflozin

Class II, III or
IV Heart

Failure & EF <
40%

3730
↓Mortality &
Hospitalisation due
to HF

[56]

2020
DAPA-CKD Dapagliflozin

High Risk of
Kidney & CDV

Outcomes
4304

↓ Risk of a declining
GFR level
↓ End Stage Renal
Disease/Death from
Renal Causes

[57]

2021
EMPEROR-

PRESERVED
Empagliflozin

Class II, III or
IV Heart

Failure & EF >
40%

5988

↓ Cardiovascular
Death and
Hospitalisation for
HF.

[58]

2022
EMMY Empagliflozin

Recent acute
myocardial
infarction

476

↓ Risk of a declining
GFR level
↓ ES Renal
Disease/Death from
Renal Causes

[59]

2022
EMPA-

KIDNEY
Empagliflozin Patients with

CKD 6609

↓ Progression of
Kidney Disease
↓ Death from
Cardiovascular
Causes

[60]

2022
DELIVER Dapagliflozin

Heart Failure,
Left

Ventricular EF
> 40%

6263

↓Worsening Heart
Failure/Death from
Cardiovascular
Events

[61]

Arrows represent decreases of parameters in the table. # represents the number of patients.
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3.2.1. Empagliflozin

The groundbreaking clinical trial assessing the effectiveness of the SGLT2 inhibitor
EMPA in preventing Cardiovascular Disease in people with diabetes is the Empagliflozin
Cardiovascular Outcome Event Trial in type 2 diabetes Mellitus Patients–Removing Excess
Glucose (EMPA-REG) [25,51]. This trial demonstrated that when patients who had T2D as
well as a high risk of cardiovascular events were treated with EMPA, mortality (3.7% vs.
5.9%) and hospitalizations (2.7% vs. 4.1%) due to heart failure were reduced compared with
placebo [25]. Empagliflozin also promoted a slowing down of the progression of kidney
disease (12.7% vs. 18.8%), as well as a significantly lower risk of clinically relevant renal
events, including renal replacement therapy (0.3% vs. 0.6%) versus placebo controls [51].

3.2.2. Dapagliflozin

When it comes to cardiovascular and kidney disease, there are two main clinical
trials evaluating the effectiveness of the SGLT2 inhibitor DAPA in people with diabetes.
One major cause of Cardiovascular Disease is atherosclerosis, which may be caused by
both traditional and nontraditional risk factors [4] (Figure 2). The Dapagliflozin Effect
on Cardiovascular Events–Thrombolysis in Myocardial Infarction 58 (DELCARE-TIMI
58) trial [26] recruited people who had both diabetes and atherosclerotic Cardiovascular
Disease, and although Dapagliflozin did not result in a higher or lower rate of Major
Adverse Cardiovascular Events (MACE), it did lead to a lower rate of cardiovascular death
or hospitalization for heart failure (4.9% vs. 5.8%) compared with placebo. In addition to
this trial, the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease
(DAPA-CKD) study [57] found that not only did DAPA reduce the risk of a declining GFR
level (5.2% vs. 9.3%), it decreased the risk of end-stage kidney disease (5.1% vs. 7.5%) and
death from renal causes (<0.1% vs. 0.3%) versus controls.
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3.2.3. Canagliflozin

There are also two main clinical trials determining the effectiveness of the SGLT2 inhibitor
CANA on Cardiovascular Disease in people with type 2 diabetes. The first is the Canagliflozin
Cardiovascular Assessment Study (CANVAS) [27], where it was found that CANA not only
reduced the risk of major adverse cardiovascular events in T2D patients at an increased risk of
Cardiovascular Disease, it also offered renoprotective benefits, such as the regression of albuminuria
levels (8.9% vs. 12.9%) and a decrease in the need for renal-replacement therapy or death (0.55% vs.
0.9%) when compared with placebo. In the second trial, known as the Canagliflozin and Renal
Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study [52],
it was concluded that in patients who had both T2D and kidney disease, the risk of kidney failure
and cardiovascular events was lower in the CANA group compared with the placebo group.
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3.2.4. Ertugliflozin

The final major SGLT2 inhibitor clinical trial is the Evaluation of Ertugliflozin efficacy and
Safety Cardiovascular Outcomes (VERTIS) study [53], where the effect of Ertugliflozin in patients
with both T2D and Cardiovascular Disease was investigated. It was found that not only did this
inhibitor reduce the risk for first and total hospitalizations for heart failure, it also reduced the
risk of death from heart failure/Cardiovascular Disease (8.1% vs. 9.1%) versus controls.

4. Use of Selective SGLT2 Inhibition as a Nondiabetic Therapy

Although SGLT2 inhibitors were originally utilized for the treatment of type 2 diabetes
specifically, this drug class is now also being used in people without diabetes to assist in
protection against cardiorenal disease (Table 3).

4.1. Preclinical Studies
4.1.1. Modulation of Sympathetic Nervous System Activity

The SNS is a driver of hypertension, hyperglycemia and chronic kidney disease and,
remarkably, our team and others have shown that SGLT2i’s may protect the kidneys and
the heart through their sympathoinhibitory abilities [22,62]. In Apo E−/− mice, it was
discovered that with the use of EMPA, norepinephrine (NE), the marker of heightened sym-
pathetic activity was partially inhibited [63]. Our study with neurogenically hypertensive
BPH/2J mice showed that DAPA lowered the NE and tyrosine hydroxylase (TH) levels in
heart and kidneys [22].

Interestingly, the SNS performs diverse functions in different tissues. For instance, our
team discovered that SGLT2 inhibition in the white adipose tissue (WAT) actually promoted
sympathoexcitation and beiging [64]. In a cohort of BPH/2J mice, DAPA was administered
via oral gavage, and the mice were found to have an increased level of tyrosine hydroxylase
(TH) and norepinephrine expression in the WAT [64]. This is particularly exciting, as
beiging is a process that typically occurs during fasting or exercise. During beiging, there
is an upregulation of Uncoupling Protein 1 (UCP1), but there is also an increase in the
molecules’ α-Aminoisobutyric acid, irisin and fibroblast growth factor 21 (FGF-21) [65].

4.1.2. Reductions in Blood Pressure

Studies have highlighted that SGLT2 inhibition promotes remarkable reductions in
blood pressure. In our neurogenically hypertensive BPH/2J mice, treatment with DAPA
significantly reduced systolic and diastolic blood pressure, as well as mean arterial pressure
(Figure 3). This blood pressure reduction also correlated with a remarkable sympathoin-
hibitory effect in the kidneys [22].
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Figure 3. SGLT2 inhibition with DAPA treatment prevents the increase in blood pressure in neuro-
genically hypertensive mice: Effects of DAPA treatment on (A) systolic blood pressure, (B) diastolic
blood pressure and (C) mean arterial blood pressure were measured using a tail-cuff apparatus.
n = 10–12 mice/group; * p = 0.006; ** p = 0.0003; *** p = 0.0008; All data represented as mean ± SEM.
Figure taken from [22].

4.1.3. Inflammation Control

One contributing pathogenic factor when it comes to both Chronic Kidney Disease
and heart disease is that of inflammation. In Apo E−/−mice, EMPA, DAPA and CANA
were all found to reduce inflammatory markers. Empagliflozin reduced IL-1β and IL-
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6 [63] and DAPA reduced IL-1β, Interleukin 18 (IL-18) and the inflammasome marker
NOD-LRR and Pyrin domain containing protein 3 (NLRP3) [66], while CANA reduced
VCAM-1 and the Monocyte chemotactic protein-1 (MCP-1) inflammatory protein while
increasing the TIMP metallopeptidase inhibitor 1 (TIMP-1) [24]. In our neurogenically
hypertensive BPH/2J mice, we found that DAPA treatment reduced inflammation in the
heart by significantly reducing the inflammatory cytokine IL-6, while at the same time
increasing the anti-inflammatory cytokine Interleukin 10 (IL-10) [22].

4.1.4. Increases in Ketone Levels

More and more research is now showing that ketone bodies are an efficient substrate
for the heart [67] and the kidneys [68]. Empagliflozin has been shown in multiple studies
to increase ketone bodies in patients with chronic heart failure [69], as well as in both
ZSF1 [70] and ApoE knockout mice [71]. Although ketoacidosis is a topic of concern when
it comes to utilization of SGLT2i’s, it is of much greater concern for those with T1D as
opposed to T2D. Although ketoacidosis can occur in T2D patients not on insulin, a human
study has shown that when T2D patients were admitted to hospital with COVID-19, those
who were administered SGLT2i therapy were at no greater risk of ketoacidosis than those
not taking the inhibitors [72]. The subject of whether ketones increase or decrease SNS
activity is still a controversy. In a preclinical study, it was found that the ketone body
β-hydroxybutyrate suppresses SNS activity by antagonizing G-protein-coupled receptor 41
(GPR41) [73]. However, an alternative study involving rats showed that increased ketone
body utilization did not suppress SNS activity and may stimulate it similarly to results
seen with carbohydrates or fats [74]. In our future studies, we aim to assess whether ketone
bodies suppress SNS and, consequently, how they may promote cardiorenal health.

4.1.5. Improved Cardiovascular Health

Cardiomyopathy is a condition caused by inflammation in the cardiomyocytes, often
through HFD consumption. In an in vitro study involving cultured rat H9c2 cardiomyocyte
cells, treatment with the SGLT2 inhibitor DAPA attenuated hypertrophy, fibrosis and apoptosis.
Furthermore, HFD-fed mice were administered DAPA, and this treatment improved the lipid
profile as well as alleviated HFD-induced cardiac dysfunction and cardiac inflammation [75].

4.1.6. Steatosis and Insulin Resistance

It is well known that SGLT2i’s lead to blood glucose reductions and weight loss in T2D.
However, the influence of SGLT2 inhibition on high-fat diet (HFD)-induced obesity and
insulin resistance is less well known. Preclinical studies on C57BL/6J HFD mice found that
when given the SGLT2i’s EMPA [76,77] or CANA [78], not only did it increase the urinary
excretion of glucose, it also increased weight loss and attenuated hepatic steatosis in the
treatment groups compared with vehicle. In addition, EMPA suppressed the HFD-induced
weight gain by enhancing fat utilization and browning and attenuated obesity-induced
inflammation and insulin resistance [76].

4.2. Human Clinical Trials
4.2.1. Empagliflozin

Empagliflozin is an SGLT2 inhibitor that has been approved for use in people with
diabetes, but it is now being increasingly used in people who do not have diabetes but do
have cardiovascular and/or renal disease. In the Empagliflozin Outcome Trial in Patients
with Chronic Heart Failure and a Reduced Ejection Fraction (EMPEROR-REDUCED) [56],
it was concluded that patients on EMPA had a 25% lower risk of cardiovascular death or
hospitalization for heart failure (19.4% vs. 24.7%) than subjects on placebo, irrespective
of whether the patients had diabetes or not. Another trial, known as the Empagliflozin
Outcome Trial in Patients with Chronic Heart Failure with Preserved Ejection Fraction
(EMPEROR-PRESERVED) [58], determined that EMPA treatment reduced the risk and
severity of a broad range of inpatient and outpatient worsening heart failure events, in-
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cluding a reduction in hospitalization for heart failure (8.6% vs. 11.8%) and death from
cardiovascular causes (7.3% vs. 8.2%) versus controls, therefore offering protective benefits.
Aside from the EMPEROR trials, another clinical trial, known as Empagliflozin in Acute
Myocardial Infarction (EMMY), investigated the effect of EMPA on CVD [59]. This trial as-
sessed the benefits of utilizing EMPA in patients following acute myocardial infarction and
found that EMPA significantly improved the echocardiographic functional and structural
parameters. In addition, the EMMY clinical trial demonstrated that EMPA promoted a
greater reduction in the N-terminal prohormone of brain natriuretic peptide (NT-proBNP),
which is a heart failure marker. Finally, in order to ascertain the effect of EMPA on renal
health, the Study of Heart and Kidney Protection with Empagliflozin (EMPA-KIDNEY)
trial [60] was conducted, which showed a lower risk of progression of kidney disease or
death from cardiovascular causes (13.1% vs. 16.9%) compared with placebo.

4.2.2. Dapagliflozin

The second SGLT2 inhibitor that has been found to be beneficial in treating cardio-
vascular and renal disease in people without diabetes is DAPA. In the Dapagliflozin and
Prevention of Adverse Outcomes in Heart Failure (DAPA-HF) [54] and the Dapagliflozin
Evaluation to Improve the Lives of Patients with Preserved Ejection Fraction Heart Failure
(DELIVER) [61] clinical trials, patients on DAPA had a lowered risk of worsening heart
failure (16.3% vs. 21.2% and 11.8% vs. 14.5%, respectively) or death from cardiovascular
causes (9.6% vs. 11.5% and 7.4% vs. 8.3%, respectively) compared with placebo. To ascer-
tain the effect DAPA has on renal health, the DAPA-CKD [57] and the Effects of the SGLT2
inhibitor Dapagliflozin on proteinuria in nondiabetic patients with Chronic Kidney Disease
(DIAMOND) [55] trials were conducted. The DAPA-CKD trial showed a significant reduc-
tion in the risk of death from renal or cardiovascular causes (9.2% vs. 14.5%) compared
with placebos. Meanwhile, the DIAMOND trial showed that while DAPA treatment did
not affect proteinuria in patients with CKD, it reduced GFR levels compared with placebo.
While reduced GFR is a sign of progressive kidney disease, there is a phenomenon that
occurs with SGLT2i’s known as the estimated GFR (eGFR) acute dip, which is an acute
reversible reduction in GFR. Of significance, the EMPA-REG [51], VERTIS-CV [53] and the
CREDENCE [52] clinical trials have all confirmed that the dip in eGFR is not associated
with progressive loss of long-term kidney function or acute kidney injury [79].

4.2.3. Ipragliflozin

Although not one of the main SGLT2i’s, Ipragliflozin may also offer clinical potential,
as demonstrated by a recent case study [80]. In this study, an 83-year-old man with
chronic heart failure and T2D was hospitalized four times over 5 years, but with the use
of Ipragliflozin, he displayed reduced cardiac sympathetic nerve activity and was not
hospitalized for 2 years afterwards. The improved health of the patient may be due to the
reduction in observed cardiac sympathetic nerve hyperactivity, and this finding warrants
further investigation of this inhibitor [80].

5. Discussion
5.1. Are Dual SGLT1/2 Inhibitors More Effective Than Sole SGLT2 Inhibitors?

One of the burning questions at present is whether utilizing a dual SGLT1/2 inhibitor
like Sotagliflozin (SOTA) may be more beneficial than sole SGLT2i’s such as EMPA, CANA
or DAPA when it comes to the treatment of cardiorenal disease in both patients with and
without diabetes. As dual SGLT1/2 inhibition is a relatively new pharmacological therapy
compared with sole SGLT2 inhibitors, the breadth of research findings is limited.

A study conducted on nondiabetic C57BL/6J mice found that treatment with SOTA
attenuated cardiac hypertrophy and histological markers of cardiac fibrosis which were
induced by the transverse aortic constriction (TAC) procedure [81].

Two clinical trials utilizing SOTA are the Effect of Sotagliflozin on Cardiovascular
Events in Patients with Type 2 Diabetes Post Worsening Heart Failure (SOLOIST-WHF)
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trial [82] and the Effect of Sotagliflozin on Cardiovascular and Renal Events in Participants
with Type 2 Diabetes and Renal Impairment Who Are At Cardiovascular Risk (SCORED)
trial [83]. Both the SOLOIST-WHF trial and the SCORED trial showed that in patients with
T2D and CKD, the rate of hospitalization and urgent care visits for heart failure was reduced
when patients were administered SOTA compared with placebo. A new clinical trial,
called the Sotagliflozin in Heart Failure with Preserved Ejection Fraction Patients (SOTA-P-
CARDIA) [84], is currently underway to investigate the SOTA-mediated cardiovascular
effects and mechanisms of action in patients with heart failure with preserved ejection
fraction (HFpEF) but without diabetes.

5.2. Interesting Avenues for SGLT2i Therapy for the Treatment of T1D

To date, SGLT2i’s have not been clinically approved for the sole treatment of T1D due to
the concerns surrounding hypoglycemia and ketoacidosis. However, it is a field of research
that is gaining momentum, both in the context of preclinical and clinical pilot studies.

5.2.1. Animal Studies Utilizing SGLT2i’s as a Treatment for T1D

Our team has conducted a great deal of research utilizing our T1D Akimba mouse
model. We have shown that SGLT2i’s may be a potential therapeutic for not just T2D but
also T1D. When our Akimba mice were treated with the SGLT2i’s DAPA [85], CANA [86]
and EMPA [86], metabolic parameters such as fasting blood glucose levels, polydipsia
(excessive thirst) and weight management were all improved. Aside from the metabolic
advantages in our T1D mice, we determined that DAPA and EMPA conferred beneficial
effects on (i) digestive health [42] by significantly increasing the beneficial short-chain fatty
acid butyric acid and (ii) diabetic retinopathy by reducing microvascular lesions [85–87]
and reducing the pathogenic factor succinate [42].

Studies have shown that SGLT2i’s promote an upregulation of the family member
SGLT1 in the kidneys (Figure 4) and also cause a reduction in kidney size and an improve-
ment in renal histology [88]. The compensatory upregulation of SGLT1 with SGLT2i’s
warrants the use of dual SGLT1/2 inhibitors such as SOTA.

While we have studied the effects of SGLT2i’s in our Akita and Akimba mice with
regards to kidney health, our future studies aim to determine how these inhibitors may also
improve cardiovascular health in our T1D Akita mice, as this strain is known to manifest
diabetic cardiomyopathy with ageing [89].
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5.2.2. Human Pilot Studies/Clinical Trials Utilizing SGLT2i’s as an Add-On to Insulin for
Patients with Type 1 Diabetes

Due to the difficulty in managing insulin in T1D patients, there are many clinical trials
and pilot studies that have investigated the effect of utilizing the three main SGLT2 inhibitors,
CANA [91], DAPA [92,93] or EMPA [94], as adjunctive therapies alongside insulin. While the
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inhibitors promoted ketoacidosis (KA), it was indicated that it was related to inadequately
controlled insulin. Proper monitoring of glucose and ketone levels, as well as titration of the
inhibitor/insulin, may be able to control the incidence of ketoacidosis. The Empagliflozin as
Adjunctive to Insulin Therapy (EASE) trial determined that a dose of 2.5 mg/day of EMPA
(phase 3) as opposed to a dose of 10 mg/day of EMPA (phase 2) helped to reduce the incidence
of KA and, therefore, the lower dose may be a viable treatment option.

All clinical trials, including the Study of Effects of Canagliflozin as Add-on Therapy to
Insulin in the Treatment of Participants With Type 1 Diabetes Mellitus (T1DM) [91] trial,
the Dapagliflozin Evaluation in Patients With Inadequately Controlled Type 1 Diabetes
(DEPICT-1) [92] and Efficacy and Safety of Dapagliflozin in Patients With Inadequately Con-
trolled Type 1 Diabetes (DEPICT-2) [93] trials, as well as the EASE-2/3 [94] Empagliflozin
trials, showed that SGLT2i’s promoted reductions in HbA1c, body weight and insulin
requirements. Additionally, the aforementioned clinical trials most importantly improved
glycemic control [95,96] after treatment, without producing any hypoglycemia.

5.3. Use of Dual SGLT 1/2 Inhibitors in T1D

As highlighted above, there are many benefits to utilizing SGLT2i’s for the treatment
of T1D. This review highlighted the promising emerging studies that have been conducted
to show that SOTA is beneficial for T2D [97]. A question that remains is whether the dual
SGLT1/2 inhibitor, SOTA, may be beneficial for T1D and even surpass the benefits conferred
by sole SGLT2 inhibitors. In our recent study utilizing our T1D Akimba mice [90], we
concluded that SOTA not only significantly decreased fasting blood glucose levels but also
promoted healthy weight gain compared with vehicle counterparts. Aside from this, SOTA
also improved diabetes-associated polydipsia. As mentioned previously, overactivation of
the SNS is strongly associated with diabetes as well as cardiorenal disease and, therefore,
understanding the effects that SOTA has on SNS activation is of critical importance. We
found that SOTA therapy resulted in a reduction in the main neurotransmitter of the SNS,
NE. This phenomenon is otherwise known as sympathoinhibition.

6. Conclusions

We clearly demonstrated that SGLT2 inhibitors have enormous potential in improving
renal and cardiovascular outcomes in patients with or without diabetes (Figure 5). Although
most research has been conducted on T2D, the use of SGLT2i’s in the treatment of T1D has
also been found to be beneficial and definitely warrants further research.
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