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Abstract: The gut microbiome plays a pivotal role in maintaining human health, with numerous
studies demonstrating that alterations in microbial compositions can significantly affect the devel-
opment and progression of various immune-mediated diseases affecting both the digestive tract
and the central nervous system (CNS). This complex interplay between the microbiota, the gut, and
the CNS is referred to as the gut–brain axis. The role of the gut microbiota in the pathogenesis of
neurodegenerative diseases has gained increasing attention in recent years, and evidence suggests
that gut dysbiosis may contribute to disease development and progression. Clinical studies have
shown alterations in the composition of the gut microbiota in multiple sclerosis patients, with a
decrease in beneficial bacteria and an increase in pro-inflammatory bacteria. Furthermore, changes
within the microbial community have been linked to the pathogenesis of Parkinson’s disease and
Alzheimer’s disease. Microbiota–gut–brain communication can impact neurodegenerative diseases
through various mechanisms, including the regulation of immune function, the production of mi-
crobial metabolites, as well as modulation of host-derived soluble factors. This review describes
the current literature on the gut–brain axis and highlights novel communication systems that al-
low cross-talk between the gut microbiota and the host that might influence the pathogenesis of
neuroinflammation and neurodegeneration.

Keywords: neurodegenerative diseases; microbial dysbiosis; gut–brain-axis

1. Introduction

Neurologic and psychiatric disorders are a diverse group of conditions that affect
the nervous system, including the central nervous system (CNS) and the enteric neural
system (ENS). These disorders can result from various causes, including genetic, infectious,
traumatic, and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease
(PD), and multiple sclerosis (MS) are among the most common ones. These disorders
can cause a range of symptoms, including cognitive impairment, motor symptoms, and a
plethora of other systems being affected [1–3]. These are caused both by neurodegeneration
and neuroinflammation. Neurodegeneration refers to the gradual and progressive loss
of structure or function of neurons. On the other hand, neuroinflammation is defined
as an inflammatory response associated with autoimmunity, innate immune processes,
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or infections in the nervous system, leading to the production and release of cytokines,
chemokines, and secondary messengers. Both neurodegeneration and neuroinflammation
are tightly interconnected [1–3]. Extensive research has been conducted on the interaction
between neurodegeneration and neuroinflammation, and the relationship between them is
becoming increasingly clear. Recently, there has been a growing interest in the role of the
gastrointestinal (GI) tract, including the gut microbiome and the mucosal immune system,
in the development of neurodegenerative disorders and neuroinflammation. However,
the role of both pathogenic and commensal microbes residing within the gut lumen in
facilitating this cross-talk has only recently been appreciated. Studies have demonstrated
the pivotal role of the gut microbiome in regulating the mucosal and systemic immune
system, ultimately influencing inflammatory dynamics. Accordingly, disturbances in the
gut microbiome have been implicated in contributing to the development of neurological
disorders [4,5]. Consequently, extensive research has highlighted the gut–brain axis, a
bidirectional communication network linking the GI tract and the CNS. This axis allows
for the transfer of molecules, signals, and information between the brain and the gut,
which can impact various physiological and psychological processes [6,7]. Communication
along the gut–brain axis includes various neural, hormonal, metabolic, and immunological
signals released by cells of the gut mucosa, including mucosal immune cells (lamina propria
cells), intestinal epithelial cells that form the intestinal barrier, cells of the ENS, and other
stromal cells of the gut microenvironment [8–10]. The vagus nerve—the main component
of the parasympathetic nervous system—is also involved in the communication along the
gut–brain axis, as its afferent fibers are able to respond to the microbiota indirectly via
microbial metabolites and cytokines and transmit this information from the gut to the CNS
to generate a response [11]. Finally, the gut–brain axis is complemented by the intestinal
microbiota together with its metabolites and soluble products (the reason why this axis
is often referred to as the microbiota–gut–brain axis) [8,12,13]. Further research is needed
to fully elucidate the mechanisms underlying the so-called gut–brain axis and to develop
effective therapeutic interventions.

This review will summarize the current literature on the gut–brain axis (Figure 1), with
a particular focus on microbial alterations and bacterial vesicles as novel communication
systems that allow cross-talk between the gut/microbiota and the CNS in the context of
AD, PD, as well as MS.
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Figure 1. The Gut–Brain Axis. Emerging evidence from both clinical and experimental studies
strongly indicates that the gut–brain axis plays a pivotal role in linking inflammatory conditions
of the gut and the CNS. It is proposed that intestinal dysbiosis, along with the translocation of
bacterial membrane products, diverse metabolites (e.g., SCFA, neuropeptides), as well as host-derived
inflammatory factors in response to bacteria, exerts multifaceted influences on various aspects along
this network. Factors can shuttle ether via the bloodstream or the vagus nerve and can cross the
blood–brain barrier. Furthermore, a pro-inflammatory intestinal environment, often associated with
increased intestinal permeability (“leaky gut”), may result in an altered communication along the
gut–brain axis, potentially contributing to neuroinflammation in the ENS and CNS. Arrows indicate
the bi-directional communication network linking the GI tract and the CNS. Graphic created with
Biorender.com (accessed on 18 September 2023).

2. The Gut and the Brain—Neurological Disorders and Intestinal Inflammation
2.1. Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease that affects the CNS and is charac-
terized by inflammation, demyelination, and neurodegeneration. The pathogenesis of MS
is multifactorial and involves genetic susceptibility, as well as environmental factors [14,15].
This neuroinflammatory disorder can be classified into different subtypes based on the
clinical course of the disease, including relapsing-remitting MS (RRMS), secondary progres-
sive MS (SPMS), and primary progressive MS (PPMS) [15,16]. The pathogenesis of MS is
complex and involves immune-mediated damage to myelin, oligodendrocytes, and axons
in the CNS. Activated T cells with an inflammatory phenotype, including CD4+ type 1 T
helper (Th1) and Th17 (interleukin-17-producing T helper) cells, as well as CD8+ T cells,
play a key role in driving the inflammatory response, while regulatory T cells (Tregs) can
limit inflammation [17,18]. These important features of T helper cell-mediated autoim-
munity are also represented in the experimental autoimmune encephalomyelitis (EAE),
the most commonly used mouse model for MS. EAE is characterized by infiltration of T

Biorender.com
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cells and monocytes into the CNS, leading to local inflammation. EAE is typically induced
either by active immunization with myelin-derived proteins or peptides in an adjuvant or
by passive transfer of activated myelin-specific CD4+ T cells, and it represents a suitable
model to study potential treatments and the important aspects of the pathogenesis of
MS [19]. Moreover, further cells involved in MS pathogenesis include B cells and glial cells,
such as microglia and astrocytes, which contribute to inflammation, demyelination, and
neurodegeneration. Disruption of the blood–brain barrier (BBB) is also a critical component
of disease onset, allowing infiltration of peripheral immune cells into the CNS. So far, it
is poorly understood how inflammation in the CNS is initiated; however, it is clear that
the breakdown of the BBB is one of the critical components in disease onset [17,18]. While
there is currently no cure for MS, several disease-modifying therapies are available that
can slow disease progression and reduce the frequency and severity of relapses. Moreover,
early diagnosis and treatment of MS are important to improve outcomes and prevent
disability [16,20]. Of note, recent studies have highlighted a strong connection between
gut inflammation and MS [7,17]. Several studies have described that MS patients display
an increased prevalence of mucosal inflammation, including alterations in gut microbial
composition and intestinal permeability [21,22]. Microbial dysbiosis may contribute to
the activation of immune cells and inflammation in the CNS and is linked to the devel-
opment of MS in humans and pre-clinical animal models [21–24]. The alterations of a
Th17 immune response observed in MS patients were associated with changes within the
microbial community and high disease activity [21,24]. But also, the production of IL-10,
with its immune modulatory function, can be altered by the intestinal microbiota, and
this relation is linked to CNS autoimmunity [23]. Additionally, various environmental
risk factors for MS, such as diet, are known to modulate the intestinal microbiota and
their metabolites and subsequently influence intestinal homeostasis [25,26]. Recent studies
in microbial endocrinology have highlighted the role of neuroactive molecules, such as
neurotransmitters, produced by gut microbes as an important aspect of the communication
between the gut and the brain. These neurotransmitters, such as γ-aminobutyric acid
(GABA), produced by specific bacterial species, can, directly and indirectly, influence brain
cell physiology. GABA plays a vital role in balancing inhibitory and excitatory functions in
the brain, suppressing cytokine release from pro-inflammatory immune cells, and regulat-
ing neuropeptide secretion in intestinal nerve fibers [27–29]. GABA treatment has shown
effectiveness in reducing inflammation and improving conditions in animal models for
MS [30]. Additionally, gut microbial-derived metabolites, such as SCFAs, are involved
in neurophysiological, biochemical, and microbiological processes that may contribute
to neurodegeneration and inflammation. Significantly noteworthy is the striking decline
observed in species that are responsible for SCFA production, such as Butyricimonas, among
MS patients. There is increasing evidence that microbiota-derived metabolites can serve
as important regulators of the intestinal barrier, as well as the blood–brain barrier [31–37].
Overall, the communication between the gut and the CNS is strongly modulated by the
enteric microbiota. Molecular mechanisms by which the gut microbiota influences MS
pathogenesis and potential targets of this communication might represent promising novel
avenues for therapeutic strategies for MS, but further research is needed to fully understand
the role of the gut–brain axis [38–40].

2.2. Alzheimer’s Disease

In addition to MS, the intestinal microbiota has been implicated in the pathogenesis of
Alzheimer’s disease. AD is a neurodegenerative disorder that primarily affects the elderly
population and is characterized by progressive memory impairment, cognitive decline, and
behavioral changes. It is the most common cause of dementia worldwide, with a rapidly
increasing prevalence [41]. This multifactorial disease has a complex interplay between
genetic and environmental factors contributing to its pathogenesis. The pathological
hallmarks of AD include the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary
tangles composed of hyperphosphorylated tau protein, as well as neuroinflammation and
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synaptic dysfunction. The accumulation of Aβ peptides, resulting from the aberrant
cleavage of the amyloid precursor protein (APP), is potentially toxic to neurons and crucial
for AD pathogenesis [42–44]. Presently, clinical trials with antibodies targeting Aβ as
disease-modifying therapies display promising results, whereas the majority of the existing
therapies merely offer relief from AD symptoms. The ongoing endeavors in research are
directed toward the creation of disease-modifying treatments that possess the capability to
either halt or decelerate the advancement of AD [45–47]. Several studies have suggested
a possible link between AD and intestinal inflammation. It has been shown that AD
patients have an altered gut microbiota composition, with an increased abundance of pro-
inflammatory bacteria and a decrease in anti-inflammatory bacteria [48,49]. This microbial
dysbiosis may lead to increased intestinal permeability, allowing the translocation of
bacterial products, such as lipopolysaccharides (LPS), into the bloodstream. LPS has
been shown to activate microglia and induce neuroinflammation, which is an additional
hallmark of AD pathology [50,51]. AD patients have been found to have increased levels of
inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF),
in both the brain and the blood, which may be linked to mucosal inflammation [52,53].
Further studies have also shown that targeting microbial dysbiosis with prebiotics or
probiotics may have a beneficial effect on AD symptoms [54]. For example, it has been
shown that supplementing AD patients with a probiotic mix containing Lactobacillus and
Bifidobacterium resulted in improved cognitive functions and reduced levels of inflammatory
markers [55]. Another experimental study showed that supplementation with prebiotic
oligosaccharides (galacto-, fructo- or mannan-) improved memory performance in rodent
models [56–58]. Interfering with the intestinal microbiota displays an interesting aspect
of ameliorating disease symptoms and improving cognitive functions, but it seems to
have its limitations as a disease-modifying therapy and in restricting disease progression
and neurodegeneration. Further research is needed to fully evaluate the potential of pre-
and probiotics for neurodegenerative disease [54,59]. Overall, these findings suggest that
intestinal inflammation and dysbiosis may play a role in the pathogenesis of AD, and
targeting gut health could represent a disease-modulating therapeutic strategy for AD.

2.3. Parkinson’s Disease

Parkinson’s disease is the second most common neurodegenerative disorder char-
acterized by the progressive loss of dopaminergic neurons in the substantia nigra and
the presence of intracellular protein inclusions containing α-synuclein aggregates (Lewy
bodies), leading to motor and non-motor symptoms, among others. The incidence of
PD increases with age and is estimated to affect 2–3% of the population over the age
of 65 [60]. While the exact cause of PD is unknown, both genetic and environmental
factors contribute to the disease’s pathogenesis. Pathogenic variants in several genes,
such as alpha-synuclein (SNCA), leucine-rich repeat kinase 2 (LRRK2), and Parkinsonism-
associated deglycase (PARK7), have been associated with rare forms of PD. In addition,
aggregation of alpha-synuclein in Lewy bodies and Lewy neurites is a neuropathological
hallmark of genetic and sporadic forms of PD [60]. Moreover, environmental factors, such
as exposure to environmental toxins (e.g., pesticides) and heavy metals, also increase the
risk of developing PD [61]. The diagnosis of PD is based on clinical symptoms and the
response to dopaminergic medication, which remains the mainstay of treatment. However,
the progression of the disease is inevitable, and there is currently no cure for PD. Research
efforts are aimed at identifying disease-modifying therapies and better understanding the
underlying molecular mechanisms of PD [60,61]. Of note, recent studies have implicated
the involvement of extracellular vesicles (EVs), including exosomes and microvesicles, in
the pathogenesis of PD [62]. These vesicles, which are released by various cells in the body,
can transport proteins and other molecules between cells and organs and contribute to
intercellular and interorgan communication. Within the CNS, EVs are secreted by various
cell types, including neurons, astrocytes, microglia, and oligodendrocytes. In the context of
PD, EVs derived from neurons and glial cells have been implicated in the propagation of
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pathological proteins, such as α-synuclein, between cells. Several studies have reported al-
tered levels of EVs in the cerebrospinal fluid (CSF) [63–66] and blood [65–68] of PD patients
compared to healthy controls. Moreover, these EVs are enriched with α-synuclein [63,68]
and other proteins [65] or carrying microRNAs (miRNAs) and other nucleic acids that can
modulate gene expression [64,66,67] and are associated with PD pathogenesis. A recent
study demonstrated the usage of α-synuclein concentration in plasma EVs to discriminate
between PD, healthy controls, and atypical PD, such as dementia with Lewy bodies or
progressive supranuclear palsy [69]. Similarly, the latest research has highlighted the de-
tection of pathological α-synuclein conformers from neuron-derived EVs as a potential
novel blood-biomarker of PD [70]. Interestingly, α-synuclein aggregates could also be
detected within the GI tract of PD patients [71,72]. Moreover, several studies suggest that
α-synuclein aggregation and, accordingly, PD pathogenesis can start in the GI tract. Two
independent studies described increased α-synuclein aggregates in early and prodromal
PD patients in intestinal tissue [73,74]. Moreover, Stockholm et al. highlighted the presence
of pathological protein aggregates even several years before the PD diagnosis within the
intestine [74]. Additionally, current findings derived from animal models suggest that
intestinal inflammation and a pro-inflammatory immune response in the gut can lead to
α-synuclein aggregation and promote neuronal damage [75,76]. In a transgenic mice model
for PD, immunohistochemical analysis revealed a progressive expression and accumulation
of age-dependent α-synuclein in colonic tissue several months prior to the loss of dopamin-
ergic neurons [77]. Multiple studies have suggested that various forms of α-synuclein may
be transmitted to the brain via the vagus nerve [78–80]. Of particular note, different studies
demonstrated the accumulation and the transport of α-synuclein from the intestine to the
brain via the vagus nerve. Moreover, this transport via the vagus nerve was associated
with motor and cognitive impairment in mice [78,81]. A recent study has indicated that
the propagation of α-synuclein pathology from the gut to the brain is more effective in
aged compared to young wild-type rats following gastrointestinal injection of aggregated
α-synuclein [82]. Moreover, it is worth noting that overexpressed α-synuclein has also been
shown to be transmitted from the brain to the ENS, suggesting a bidirectional pathway [83].
Hence, the gut–brain axis represents an important aspect in the development of PD.

2.4. Inflammatory Bowel Disease

Intestinal disorders have been associated with neurological alterations. Inflammatory
bowel disease (IBD) is an immune-mediated inflammatory disease affecting the GI tract.
The two ideotypes of IBD include ulcerative colitis (UC) and Crohn’s disease (CD). CD is
characterized by skip lesions, transmural inflammation, granulomas, fistulae, and frequent
terminal ileum involvement. Whereas UC—as the second major form of IBD—is featured
by continuous colorectal disease, often more prominent distally, with predominant mucosal
involvement [84,85]. While IBD primarily affects the gut, it can also cause extraintestinal
manifestations, including neurological disorders. For example, IBD patients can experience
neuropsychiatric symptoms, such as depression and anxiety. Up to a third of IBD patients
are affected by anxiety symptoms and a quarter are affected by depression symptoms, with
a higher prevalence of anxiety and depression in patients with an active disease [86,87].
Furthermore, a bi-directional association between MS and IBD has been suggested due to
their common epidemiological and immunological patterns [88]. As an example, a compre-
hensive meta-analysis conducted by Kosmidou et al. revealed a notable 55% elevated risk
among patients with MS to develop IBD, alongside a parallel 53% heightened risk of devel-
oping MS in individuals already diagnosed with IBD. [89]. A similar analysis performed by
Wang et al. evaluating 17 studies described a pooled prevalence of 0.2% of MS in patients
with IBD and 0.6% of IBD in patients with MS. Both patient groups (IBD and MS) displayed
higher risks of developing additional intestinal or neurological manifestation than healthy
controls, but no differences for CD and UC were described [88,89]. Interestingly, current
data support the hypothesis that IBD and MS might be genetically linked. Different genes
in IBD-associated loci overlap with other immune-mediated disorders, including MS, and
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shared single nucleotide polymorphisms (SNPs), associated with higher disease risks, were
detected for MS and IBD [85,90,91]. Additionally, MS and IBD have similar environmental
risk factors, such as vitamin D deficiency, cold climate, socioeconomic status, and smok-
ing [88]. Moreover, alterations in gut microbial compositions have been implicated in
the pathogenesis of both diseases. When epithelial cell death becomes dysregulated or
excessive, it leads to an increase in intestinal permeability. This heightened permeability, in
turn, facilitates the leakage of bacterial antigens into the mucosal and systemic circulation,
ultimately predisposing the host to extraintestinal inflammation [17,37,92]. Thus, the gut
microbiota, by regulating gut barrier function and immunity, can significantly contribute
to the development of both mucosal- and neuroinflammation. In addition to the epidemi-
ological data connecting chronic mucosal inflammation with MS, IBD patients have an
increased risk of developing dementia [93,94], AD [95], and PD (especially with increasing
age) [96,97]. Moreover, several genetic as well as environmental risk factors are shared
between IBD and AD [98,99] or IBD and PD [100,101]. Overall, these findings suggest that
IBD patients are more frequently affected by neurodegenerative and neuroimmunological
disorders.

3. Mechanisms of Microbe-Host Communication

While the importance of the gut microbes was described some time ago for IBD
and a variety of other immune and metabolically driven diseases, the essential role of
the gut microbiota in CNS inflammation was discovered only a few years ago [102]. To
understand why environmental factors derived from the gut microbiota have such a
huge impact on host physiology and pathophysiology, it is important to mention that the
gastrointestinal tract harbors more than 100 trillion microbial cells belonging to more than
1000 bacterial species [103]. This results in 10 times more microbial than human cells in our
body. Accordingly, it is not surprising that the microbiome plays an important role in the
pathogenesis of intestinal and extraintestinal diseases.

Humans are constantly exposed to microbes in their environment. Communication
between these two players can have different effects depending on factors such as host
genetic background, mucosal barrier dysfunction, bacterial virulence, and transmissibility.
The host can detect bacteria by signaling through pattern recognition receptors (PRRs) that
recognize pathogen-associated molecular patterns (PAMPs) expressed by the microbes,
leading to immune cell activation. PRRs are localized either on the surface of the cell, in
endosomes, or intracellularly and comprise, e.g., Toll-like receptors (TLRs), C-type lectin
receptors (CLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs) [104]. In EAE, TLR signaling through myeloid differentiation primary response
88 (MyD88)—an adaptor for TLRs and cytokine signaling—plays an important role in
disease progression, as confirmed by the fact that Myd88-deficient mice were protected
from developing EAE [105,106]. In addition, TLR9 (sensing pathogenic DNA containing
CpG motifs and being expressed by monocytes, macrophages, plasmacytoid dendritic cells
(DCs), and B cells) and MyD88 are crucial in the modulation of autoimmune processes
during the effector phase of EAE [106,107]. TLR9-expressing plasmacytoid DCs, which are
an important source of type I interferons (IFNs), produce IFNα in response to TLR9 ligation
in early endosomes and are present in the leptomeninges and demyelinating lesions of
MS patients [105]. Of note, astrocytes also express TLR9 and activation of this receptor
leads to the production of pro-inflammatory mediators that exacerbate tissue damage
and neuroinflammation in the CNS [108]. However, human TLR9 appears to play both
a protective and deleterious role depending on the MS disease stage [109]. Furthermore,
mice lacking the dendritic cell immunoreceptor (DCIR), a CLR involved in the suppression
of T cell function, show worsening of EAE, indicating that CLR regulation is important in
the development of autoimmune disorders like MS [110]. In addition to this, members of
the NLR family that specifically bind peptidoglycans have been identified as both positive
and negative regulators of inflammatory responses. Notably, mutations in the NLR family
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pyrin domain containing 1 (NLRP1) gene have been linked with inflammatory disorders,
including MS [111,112].

Moreover, TLR activation has also been implicated in the initiation and progression of
PD. Several studies have shown increased expression and activation of TLRs, particularly
TLR2 and TLR4, in immune cells as well as brain tissue of PD patients and preclinical
animal models [113–116]. The activation of TLRs in microglia, the resident immune cells
of the CNS, leads to the production of pro-inflammatory cytokines and chemokines, ex-
acerbating neuroinflammation [117,118]. Interestingly, TLR2 activation in microglia can
be triggered by α-synuclein and is an important aspect of PD progression [117,119]. In
contrast to this, TLR activation within the intestine influences the intestinal barrier in-
tegrity and can promote the aggregation of α-synuclein and its spread within the brain,
contributing to the propagation of PD pathology [120–122]. Moreover, TLRs can induce
the activation of inflammasomes, which are protein complexes involved in the processing
and release of pro-inflammatory cytokines, including IL-1β. Inflammasome activation
has been implicated in PD pathogenesis, further emphasizing the involvement of TLRs
in the disease [123,124]. In the case of AD, TLRs have also emerged as important players
in disease progression. For example, alterations of TLR4 signaling are associated with
neurotoxic actions [125,126], whereas TLR3 activation can attenuate neuronal loss in an
early stage of a preclinical AD model [127]. TLRs, particularly activation of TLRs in mi-
croglia and astrocytes, trigger the release of pro-inflammatory molecules, leading to a
sustained inflammatory response that can contribute to synaptic dysfunction and neuronal
damage [128]. In addition to their role in neuroinflammation, TLRs in AD are involved in
the clearance of Aβ plaques [129]. In summary, TLR can have oppositional functions during
the pathogenesis of neurodegeneration and neuroinflammation, and it is an important
aspect during disease progression.

Inflammation may also occur without a persistent infection through an immune
response directed against antigens present in the targeted tissues. These antigenic compo-
nents could cross-react with self-antigens to change the regulatory state of the host. Various
mechanisms based on bacterial antigens have been suggested to clarify how pathogens
might trigger autoreactive immune responses. For example, according to the molecu-
lar mimicry theory, foreign peptides with sequence similarity to self-peptides can trigger
pathogen-derived autoreactive T cells [107]. Of note, in EAE, administration of the encephal-
itogenic antigen requires co-administration of an adjuvant to enhance its immunogenicity
and effectiveness. For example, the complete Freund’s Adjuvant contains heat-killed
Mycobacterium tuberculosis and activates antigen-presenting cells (APCs) through TLR2
via binding of mycobacterial components that elicit a Th1 response and cause an aug-
mented delayed-type hypersensitivity to self-antigens [130]. Furthermore, superantigens
are another mechanism by which bacterial microbes can influence the host immune system.
Superantigens, such as staphylococcal enterotoxin B (SEB), can trigger bystander activation
and stimulate T cells specific for self-antigens without the need for antigen processing.
While the role of SEB in the pathomechanism of MS is currently unknown, it has been
associated with the reactivation of EAE. One example is the inoculation of SEB into myelin
basic protein (MBP)-immunized mice, resulting in a clinical relapse in those mice that had
already recovered from a previous EAE episode [107,131].

In conclusion, pathogens may have an impact on the onset and pathogenesis of neu-
rodegeneration and neuroinflammation either by playing a protective role or by worsening
disease manifestation during immunologic maturation.

4. Microbial Dysbiosis: Implications for Pathogenesis and Therapeutic Strategies

Colonization of the GI tract starts directly after birth [13,132]. In adults, the GI tract
contains an abundant and diverse microbial community with bacterial species belonging
to the Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla [133–136]. In
contrast to the human genome, which consists of approximately 23,000 genes, the gut
microbiome encodes over 3 million genes, producing thousands of metabolites [137]. The
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diversity of the microbiome is modulated by various host-derived soluble factors, includ-
ing metabolites (e.g., bile acids), peptides with antimicrobial activity (e.g., defensin and
lysozyme), mucin, and sIgA [138,139]. These factors are released not only by epithelial
cells but also by mucosal immune cells, and recently, it has been shown that the ENS can
modulate the gut microbiota [140]. In turn, gut microbes, their metabolites, and soluble
antigens provide immune stimulatory signals regulating innate and adaptive immune
responses and, thus, maintain immune homeostasis [13]. This symbiosis is important for
the host since the gut microbiota—besides shaping our immune system—also protects
the host from invasive pathogens by competing for the same environmental niche, pro-
ducing neurotransmitters, and processing nutrients such as vitamins and fatty acids [141].
Therefore, they are often referred to as our “hidden metabolic organ” [37].

Numerous clinical studies have highlighted the presence of reduced diversity and
disrupted composition of the gut microbiota, known as dysbiosis, not only in mouse
models of neuroinflammation and neurodegeneration but also as a common characteris-
tic among patients with PD [142–145] and MS [22,23,146–151]. While dysbiosis has been
consistently demonstrated in various clinical and preclinical studies, the existence of a
microbiota specifically associated with neuroinflammation or neurodegeneration is still a
subject of debate. Additionally, it remains uncertain whether dysbiosis actively modulates
inflammatory processes in the CNS or if it is merely a consequence of neuroinflamma-
tion/neurodegeneration.

For MS patients, several studies have shed light on the alterations in microbial compo-
sition. One of the bacteria that has been discussed intensively is Akkermansia muciniphila
(A. muciniphila), with an enhanced abundance in MS patients [23,147,152–154]. Of note,
Akkermansia is a Gram-negative, strictly anaerobic, oval-shaped, non-motile bacterium that
has previously been linked to obesity [155]. Interestingly, Akkermansia is known to modulate
immune responses and to alter the metabolite pool, specifically butyrate levels within the
intestine [156]. Liu et al. demonstrated that A. muciniphila, on the one hand, promotes
the expansion of Tregs that suppress EAE symptoms [157]. On the other hand, in vitro
studies using individual culture extracts of A. muciniphila and Acinetobacter calcoaceticus
showed that these protein lysates were able to promote the polarization of Th1 cells while
suppressing Treg differentiation under T cell polarizing conditions [149]. Furthermore,
mice colonized with Akkermansia isolated from MS patients displayed reduced EAE disease
scores linked to IL-17-producing RORγ T cells, suggesting a beneficial role [153]. Moreover,
the role of Akkermansia in either strengthening or weakening the intestinal barrier by its
mucus-degradative function is controversial and discussed [156,158–160]. Although there
is a strong correlation between mucus-degrading bacteria like A. muciniphila and MS, its ex-
act role in MS pathogenesis is still unknown. Currently, it is believed that mucus-degrading
microbes have a pro-inflammatory effect only when combined with certain additional gut
pathobionts [161,162]. Thus, Akkermansia species appear to play a dual role in MS disease,
which seems to be context-dependent. Tremlett et al. (by comparing samples of pediatric
MS patients to controls) were able to detect that Fusobacteria abundance exhibited a strong
positive association with Tregs and that members of the Firmicutes phylum were inversely
associated with Th1 cells. They proposed that the depletion of Fusobacteria in pediatric MS
cases is associated with a higher risk of relapse [150]. Vice versa, species with a reduced
abundance, such as Bacteroides, are often reported to have an anti-inflammatory effect on the
host’s immune system. For example, Round et al. showed that polysaccharides (PSA)—as
a symbiont-associated molecular pattern (SAMP)—of Bacteroides fragilis (which was de-
creased in MS patients [22]) are able to directly activate the TLR2 pathway on Tregs, thereby
inducing mucosal tolerance, suppressing antibacterial immune responses via suppressing
Th17 cells, and promoting microbial colonization of the gut lumen [163,164]. Oral adminis-
tration of PSA can prevent mice against EAE by enhancing dendritic cells and, subsequently,
Treg activation [165]. The central function of the gut microbiota in the pathogenesis of
neuroinflammation has been demonstrated in several preclinical studies. Important find-
ings from these studies could point out that the development of EAE is highly dependent
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on the presence of microorganisms within the GI tract. In this context, germ free (GF)
mice and microbiota-depleted mice exhibit resistance to the onset of EAE [24,166], while
monocolonization with, e.g., segmented filamentous bacteria (SFB)—capable of inducing
Th17 polarization—can effectively restore disease susceptibility [24]. Preclinical studies
have also provided insights into the potential mechanisms underlying the involvement
of the gut microbiota in MS. One of the key components is bacterial metabolites. Com-
mensal bacteria-derived metabolites, originating in the gut, can cross the BBB to alter
neuroimmunology in the CNS [167]. Cytokines produced in the CNS act in combination
with these metabolites to activate anti-inflammatory pathways in CNS-resident glial cells
(astrocytes and microglia) to modulate CNS inflammatory mediators and their interaction
with neurons and oligodendrocytes [167]. Importantly, such gut–brain communication is
highly relevant to disease progression in acute and chronic stages of autoimmune CNS
inflammation, as seen in MS patients [168]. These key findings strongly suggest the funda-
mental role of the gut microbiota in influencing physiological functions and pathological
processes in the CNS. In conclusion, it is suggested that the altered microbiota of MS
patients promotes pathogenic T cell activation. However, bacteria can be both foes and
friends in the context of neuroinflammation [169]. Given the importance of the gut micro-
biota in MS pathogenesis, interventions that target the gut microbiota may be a promising
therapeutic approach for this disease. Strategies such as probiotics, prebiotics, and fecal
microbiota transplantation have shown promise in preclinical studies and are currently
being investigated in clinical trials [170,171]. For example, Lavasani et al. showed that
supplementation of probiotic bacterial species (Lactobacillus) can ameliorate disease through
immunomodulation on T lymphocytes [172]. Similarly, oral administration of the probiotic
strain Escherichia coli (E. coli) Nissle 1917 reduces susceptibility to neuroinflammation by
improving intestinal barrier function in mice [173]. Moreover, administration of Prevotella
histicola can suppress disease severity in mice with EAE by modulating Tregs [174]. In
line with this, MS patients have a decreased abundance of Prevotella and Sutterella, widely
prevalent commensals with mild pro-inflammatory capacity. Of particular note, after treat-
ment with disease-modifying therapies, the abundance of Prevotella and Sutterella could be
enhanced in MS patients [147,175]. In contrast to MS, a higher abundance of Prevotella spp.
was associated with different inflammatory diseases, such as rheumatoid arthritis [176].
This highlights the complex and variable interplay between bacterial species and various
diseases. Understanding the complex interplay between gut microbiota and MS pathology
is an important area of research that may ultimately lead to the development of novel
treatments for this debilitating disease.

Interestingly, neurodegenerative and neuroinflammatory disorders display similar
microbial alterations. A lower abundance of the genera Roseburia, Fusicatenibacter, Blau-
tia, Anaerostipes (Lachnospiraceae family), and Faecalibacterium (Ruminococcaceae family)
was not only detected in samples derived from MS patients but also noted in PD pa-
tients or patients with neuromyelitis optica spectrum disorder [162,177,178]. A higher
abundance of Akkermansia was also detectable in PD patients and not only in patients
with MS [23,147,152,178,179]. Moreover, an enriched abundance of the genera Lactobacil-
lus and Bifidobacterium linked with a decreased abundance of Faecalibacterium spp. has
been reported for PD patients as well as for patients with IBD [178–180]. Surprisingly,
Bifidobacterium and Lactobacillus are commonly considered to be beneficial probiotic bacteria.
Indeed, several clinical studies demonstrated an improvement of constipation and motor
function in PD patients after administration of probiotics (e.g., Bifidobacterium and Lacto-
bacillus) [181,182]. Of particular note, the abundance of Bifidobacterium and Lactobacillus can
be modulated via PD medication [143,183,184] and is correlated with clinical inflammatory
indicators, such as the percentages of neutrophils and monocytes [185], and associated
with active IBD [186]. Moreover, there is evidence that gut dysbiosis can contribute to the
accumulation of misfolded α-synuclein protein in the gut, which can then travel to the brain
and contribute to the pathology of PD. A recent study demonstrated that immunization
with specific α-synuclein epitopes in a mouse expressing a human leukocyte antigen linked
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to autoimmunity triggers intestinal inflammation and promotes neurodegeneration [187].
At a mechanistic level, it has been proposed that the dysbiotic microbiota may contribute
to neurodegeneration in the first step by impacting the integrity of the gut barrier. This
disruption in barrier function could lead to increased permeability, creating an environment
prone to inflammation and oxidative stress, which in turn may promote the accumulation
of α-synuclein in the ENS. Through a prion-like mechanism, this process could potentially
propagate across the vagal nerve to the CNS [188]. Recent studies using animal models
of neurodegeneration have provided experimental support for this hypothesis [78,189].
Understanding the pathophysiology of the CNS has provided functional evidence of how
the gut microbiota influences immune responses, not only within the gut itself but also
in the CNS, mediated by microbial-derived metabolites like SCFAs. A preclinical study
using α-synuclein-overexpressing mice demonstrated that animals treated with SCFAs
through gavage exhibited significantly impaired performance in several motor tasks, and
α-synuclein aggregation was more pronounced in their brains compared to untreated mice.
These effects may be attributed to the promotion of microglial morphology to a more active
state within affected brain regions [190]. However, fecal microbiota transplantation from
PD patients has been found to exacerbate disease progression, indicating the presence
of specific disease-promoting microbes [190]. Supporting this notion, Li et al. confirmed
that PD patients exhibit alterations in the microbiota that correlate with disease progres-
sion, including a continuous decrease in fiber-degrading bacterial strains and an increase
in pathobionts. These changes likely result in reduced SCFA production and increased
production of endotoxins and neurotoxins [191]. Notably, growing evidence indicates
that fecal microbiota transplantation from healthy donors, as well as administration of
butyrate in animal models of PD, improves motor impairment and alleviates dopamine
deficiency [192–196]. Another recent investigation demonstrated the significant impact
of the intestinal microbiota in a genetic mouse model that mimics PD pathology. While
pathogenic variants in PTEN-induced kinase 1 (PINK1) and parkin (PARK2) genes in PD
patients are associated with disease progression, Pink1-knockout mice do not develop
PD-like symptoms [197]. However, when these mice were infected with a Gram-negative
bacterium (Citrobacter rodentium) causing mild colitis during early life, PD-like symptoms
were triggered later in life [198]. Overall, gut microbiota is an emerging area of research in
the field of PD and has the potential to provide new insights into disease pathogenesis and
novel therapeutic strategies.

In contrast to PD, a decrease in certain beneficial bacterial species, such as
Bifidobacterium and Lactobacillus, was described for AD patients. Moreover, AD is as-
sociated with a higher abundance of Bacteroidetes and pro-inflammatory Escherichia and
Shigella [48,49,199,200]. Exploring the mechanisms through which the intestinal micro-
biota influences AD progression could uncover a valuable therapeutic target capable of
controlling multiple disease mechanisms. Initial studies highlighted the profound im-
pact of microbial alterations on AD-related pathology [201–203]. In preclinical mouse
models of amyloidosis, administration of antibiotics (abx) [201,202,204–206] or GF condi-
tions [36,203,207] leads to reduced amyloidosis and microglial activation. Additionally,
abx treatment also enhanced the presence of anti-inflammatory regulatory T cells in the
brain and blood [202]. Moreover, microbial alterations are associated with modulated
permeability of the BBB and neuroinflammation linked to AD pathogenesis. Enhanced
permeability of the gut and BBB allows large amounts of amyloids and LPS to circulate
within the cardiovascular system and CNS and to modulate various signaling pathways,
including the production of pro-inflammatory cytokines associated with AD [51,208]. Fur-
thermore, gut dysbiosis-induced peripheral immune responses can propagate bacterial and
pro-inflammatory signals to the brain [198,209]. Moreover, a recent pilot study conducted
with a small sample size and randomized, double-blind design in AD patients suggested
that a modified Mediterranean ketogenic diet could potentially alleviate AD symptoms by
modulating SCFAs. Specifically, the associated reduced levels of fecal lactate and acetate
and increased concentration of propionate and butyrate might induce or be linked with the
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improvements in AD biomarkers in the cerebral spinal fluid [210]. Zhang et al. conducted
an animal study using APP/PS1 (amyloid precursor protein/presenilin 1) transgenic AD
mice, which revealed lower concentrations of butyric acid in both feces and the brain, along
with a decrease in the abundance of Butyricicoccus pullicaecorum, a butyrate-producing
bacterium. These changes may contribute to cognitive decline in AD [211].

In summary, gut dysbiosis is an emerging area of research in the field of neuroin-
flammation and degeneration, and understanding the complex interplay between gut
microbiota and disease pathology may lead to the development of new therapeutic strate-
gies for this devastating disease.

5. Bacterial Cell Wall Components and Bacterial Extracellular Vesical as Novel Aspect
within the Microbe–Host Interaction

Moreover, it was shown that dysbiosis enhances the permeability of the intestinal
epithelial barrier and exposes the host not only to higher levels of microbial metabolites
but also to an increased amount of cell wall components, such as LPS, different peptidogly-
can (PG), lipoteichoic acids (LTA), and bacterial extracellular vesicles. Bacterial cell wall
components and bacterial vesicles may have a significant impact on the pathogenesis of
neurological diseases.

5.1. LPS as Inducer of Neuroinflammation and Neurodegeneration

The cell wall component which is most abundant in Gram-negative bacteria is LPS.
In dysbiotic microbiota, LPS is more abundant, contributing to the dysfunction of the
mucosal barrier. LPS can also affect other tissues, including the CNS if its plasma levels
experience an increase [212]. Interestingly, LPS can either directly or indirectly interact
with the BBB [213]. Early work by Wispelwey et al. showed that LPS—when entering the
systemic circulation—can disrupt the BBB [214]. In this context, LPS has direct effects on
tight junction regulation, thereby increasing the permeability of the BBB when applied
to monolayers of brain endothelial cells [215]. In addition, LPS can interact with CNS-
resident cells by regulating the production of inflammatory proteins, such as the induction
of reactive oxygen species (ROS), which can mediate microglial activation, among other
effects. ROS have further been reported to be relevant in MS disease pathogenesis, serving
as mediators associated with demyelination and axonal damage. Interestingly, MS patients
show elevated levels of oxidative stress markers (such as ROS), together with a systemic
antioxidant deficiency. Accordingly, the resulting oxidative stress has been associated with
the course of disease, implying that an impaired balance between ROS and antioxidants
may be linked to relapse in patients with MS [212].

In addition to MS, several studies have linked AD neuropathology to the presence
of LPS in the brain. Research has demonstrated the coexistence of LPS and Aβ1–40/42
within amyloid plaques located in both gray and white matter of AD-affected brains [216].
Another study revealed the abundance of LPS in the neocortex and hippocampus of
AD brains, along with a notable binding of LPS to the periphery of cell nuclei within
the AD brain [217]. Furthermore, LPS has been detected in lysates obtained from the
hippocampus and superior temporal lobe neocortex of AD-affected brains [218]. In addition
to these clinical studies, research conducted on animal models has demonstrated that the
inflammation triggered by LPS can mimic certain features of PD. Mechanistic studies have
delineated that LPS promotes the activation of microglia, resulting in the release of various
neurotoxic substances. Additionally, the presence of damaged neurons can trigger reactive
microgliosis, which contributes to the progressive degeneration of dopaminergic neurons
associated with PD. These include significant activation of microglia and the specific
degeneration of dopaminergic neurons in the nigrostriatal system [219–223]. Within the
CNS, it has been observed that systemic administration of LPS leads to an increase in
the expression of the CD14 receptor on certain cell populations, particularly microglia in
the brain [224]. Subsequently, microglia were identified as the primary cells in the brain
that respond to LPS. LPS interacts with TLR4 on microglia, triggering their activation and
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ultimately causing harm to neurons [225,226]. Moreover, several TLRs (TLR1, TLR2, and
TLR4) are expressed by human neurons to detect not only LPS but also further bacterial cell
wall components, such as LTA [227,228]. Neuronal death, which occurs through caspase-
3-dependent apoptosis, is induced by pro-inflammatory cytokines released in response
to PG, LTA, and LPS [229]. Neurons in specific brain regions, such as the hippocampus,
prefrontal cortex, and cerebellum, exhibit high levels of peptidoglycan recognition protein 2
(PGLYRP2) and NOD1, enabling them to recognize and differentiate muropeptides derived
from both Gram-positive and Gram-negative bacteria [230]. PGLYRP2 binds to the bacterial
cell wall to cleave the stem peptide, while NOD1 activation leads to the production of
pro-inflammatory cytokines (IL-1β, TNF, IL-6) [231].

5.2. Bacterial Extracellular Vesicles as Promoter of Neurodegenerative Diseases

Interestingly, increasing evidence indicates an alternative horizontal communication
system between bacteria and their host. This system operates alongside direct host-microbe
interaction, involving the release of bacterial-derived functional molecules via bacterial
extracellular vesicles (BEVs), thereby facilitating an indirect form of host-microbe interac-
tion [232]. Like most cells of all domains of life, bacteria release 40–400 nm-sized membrane
vesicles into their extracellular environment during their normal life cycle. These BEVs are
spherical, bilayered proteolipids enriched with proteins, lipids, nucleic acids, metabolites,
and virulence factors and are released by both pathogenic and commensal bacteria. The
content of these vesicles can vary depending on the bacterial species and growth conditions.
They are similar to EVs released by eukaryotic cells but differ in biogenesis and content.
Major forms of host-derived EVs include exosomes and microvesicles, which have been
suggested to play crucial roles in various physiological and pathological processes. BEVs
play an essential role in bacterial communication, adaptation, and virulence, but recent
findings in this field also suggest a pathophysiological role of BEVs in both bacteria–bacteria
as well as bacteria–host interactions [233–236]. BEVs transport cargo such as the biological
material found within the parental bacterium, including nucleic acid, PG, virulence factors,
communication compounds, immune-modulatory compounds, etc., but without replicative
mimics. Depending on the specific biogenesis pathway and origin, several forms of BEVs
can be separated, and each group has specific characteristics and functions. For example,
one type of BEVs produced by Gram-negative bacteria by pinching off the outer membrane
are termed outer membrane vesicles (OMVs) and contain, in contrast to other BEVs, no
nucleic acid (the different types of BEVs are well reviewed in [235]). These cargos play a
crucial role in microbial pathogenesis since they are involved in the invasion of the host
cell membrane, membrane fusion, the production of biofilms, and the transfer of virulence
factors, as well as receptors and antibiotic-resistance proteins [233,235]. Moreover, BEVs
were shown to activate both innate immune cells like macrophages, DCs, and microglia, as
well as adaptive immune cells like T and B cells in distant organs, once BEVs are delivered
to the systemic circulation [237].

Of particular note, human cell-derived EVs have been reported to be increased in
patients with MS compared to healthy controls. Furthermore, they have been described to
play an important role in MS development, particularly in BBB weakening, activation of
immune cells during relapses, migration through the BBB, and spreading of inflammation in
CNS tissue [238]. Since human cell-derived EVs play an active role in the pathophysiological
development of MS, it is of great interest to determine the impact of BEVs on MS. Although
gut-derived BEVs were shown to enter the systemic circulation, it is currently not known
if they can also pass through the BBB and enter the brain. The restricted permeability
of the BBB limits the passage of molecules and cells from the bloodstream into the CNS
under normal conditions, thus protecting the CNS from potentially harmful substances
and making it an immune-privileged organ. However, a recent study by Bittel et al.
revealed the transfer of gut bacteria-derived BEVs to a wide range of close and distant
host organs, including the brain, in mice [232]. In support of these findings, several other
groups followed and further confirmed that BEVs are able to cross the BBB and deliver
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various molecules to the CNS [232,239,240]. LPS is a major cause of neuroinflammation
and neurodegeneration, but only minor amounts of free LPS are able to cross the BBB [241].
Crossing the BBB by BEVs may represent an explanation for the detection of elevated
levels of LPS in the CNS of patients suffering from neurodegenerative disorders [216]. The
impact of BEVs on CNS function can occur through various mechanisms [242]. While the
presence of LPS on BEVs likely contributes to the observed neuroinflammation after BEV
administration, the extent of neuroinflammation caused by BEVs exceeds the inflammation,
which can be attributed solely to equivalent amounts of LPS [239]. Similar results were also
observed for leukocyte adhesion on the endothelium but also in the context of the systemic
inflammatory response syndrome [243,244]. This implies additional mechanisms mediated
by RNA or protein cargo besides LPS-dependent functions. For example, BEVs derived
from Porphyromonas gingivalis are densely packed with virulence factors and gingipains
(specific bacteria proteinases) [245,246]. These BEVs are connected with tissue destruction
in periodontal diseases but are also assumed to promote BBB damage and AD [242,246,247].
Gingipains displayed neurotoxic effects in vitro as well as in murine in vivo models and
were identified in the brains of patients with neurodegenerative diseases associated with
ubiquitin and tau pathology [248,249]. Furthermore, BBB permeability can be enhanced
by BEVs, potentially facilitating other BEVs or bacterial products to access the CNS and
influence its function [242,250]. For instance, enterohemorrhagic E. coli (EHEC) generates
the hemolysin toxin in both free and BEV-associated forms, with the latter showing superior
activity and stability. Notably, EHEC BEVs seem to operate as targeted transporters for
delivering hemolysin to brain endothelial cells. This transport occurs independently of the
presence of hemolysin toxin, unlike the binding of BEVs to erythrocytes, which requires
hemolysin. Consequently, BEV-associated hemolysin is likely responsible for detrimental
effects on brain microvascular endothelial cells during EHEC infection, in contrast to free
hemolysin. This phenomenon could contribute to the neurological manifestations observed
in cases of hemolytic uremic syndrome caused by EHEC [242,251–253]. These data strongly
indicate several mechanisms of BEVs by which they might contribute to neurodegeneration
and neuroinflammation, including RNA or protein cargo as well as virulence factors.

Once inside the brain, BEVs have the capacity to directly modify neurological function and
trigger pathological changes. Recent studies have demonstrated that BEVs possess the capacity
to induce neuroinflammation and influence neuronal function—highlighting their potential
neurotoxicity in the context of neurodegenerative diseases [240,247,249,254–257]. Activation
of microglia and astrocytes by virulence factors like LPS, PG, and proteins provided by BEVs
elicit the release of inflammatory cytokines and chemokines [240,254–256]. Interestingly, the
metabolic composition of serum BEVs exhibits significant disparities between AD patients
and healthy individuals [258]. In a murine model of AD, the blood BEV profile was found
to correlate with the gut microbiome profile, suggesting that gut microbiome-derived BEVs
from various bacterial species can effectively enter the bloodstream [259]. To demonstrate the
direct involvement of BEVs in AD pathogenesis, Wei et al. isolated BEVs sourced from the gut
microbiome of healthy individuals and AD patients and treated mice via tail vein injection with
these BEVs. Both BEV groups were able to enter the brain, but only BEVs derived from AD
patients weakened the BBB significantly and were able to activate microglia. Mechanistically,
they could show that BEVs induce hippocampal neuroinflammation, increase tau hyperphos-
phorylation via GSK-3B, and induce cognitive deficits in mice [240]—all characteristic features
of AD. Notably, advanced age stands as one of the primary risk factors for AD [41]. Aging
is associated with an increase in the BBB as well as intestinal permeability, which, in turn,
has been linked to elevated blood levels of host and bacterial vesicles [260–263]. When orally
administered to mice, BEVs from Paenalcaligenes hominis (P. hominis)—bacteria that are found at
significantly higher levels in the gut microbiota of elderly individuals—triggered microglia
activation, neuroinflammation, and cognitive impairment [239]. Intriguingly, cognitive impair-
ment, neuroinflammation, and hippocampal BEV accumulation were significantly inhibited by
vagotomy, suggesting that certain P. hominis BEVs transit to the brain and potentially signal
through the vagal nerve [239]. This observation aligns with previous studies, strongly high-
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lighting the vagus nerve as an important player within the gut–brain axis [264]. These findings
collectively establish a connection between age-related alterations in the microbiome and the
increased risk of AD with advancing age while also offering further support for the concept that
BEVs can infiltrate the brain and contribute to neurodegenerative disease pathology. Although
the primary natural role of Aβ remains uncertain, emerging evidence indicates its potential
role as an antimicrobial peptide (AMP) released in response to brain infections [265,266]. It is
assumed that not only bacteria but also BEVs are able to promote the production of AMPs [267].
Indeed, studies using a murine AD model highlighted that the gut microbiome can drive
Aβ production [203]. Moreover, Helicobacter pylori (H. pylori) filtrate, potentially containing
BEVs, prompted Aβ production and cognitive impairments in a murine AD model [268]. Xie
et al. demonstrated that BEVs derived from H. pylori are able to cross the intestinal as well
as the BBB barrier, activating astrocytes, which subsequently leads to neuronal dysfunction
and increased Aβ pathology [254]. Further investigation into the link between BEVs and
AD pathology, as well as further neurological disorders, will be essential for deciphering the
underlying pathomechanisms and revealing future therapeutic strategies.

In addition to their potential neurotoxicity, research has unveiled the protective role
of BEVs in the context of neurodegenerative diseases. Accordingly, multiple studies have
highlighted the capacity of BEVs to represent not only therapeutic targets but also enable
therapy strategies and therapeutical benefits [242,269,270]. In the context of the gut–brain
axis, previous studies have demonstrated that BEVs originating from commensal or pro-
biotic gut bacteria can suppress intestinal inflammation, modulate immune responses,
enhance cognitive function, and mitigate neuroinflammation in preclinical mouse mod-
els [271–276]. These findings suggest the potential therapeutic utility of BEVs. While the
cautious use of BEVs as therapeutics is essential due to their toxic potential, their protective
and immunomodulatory attributes offer novel prospects for disease treatment in the context
of intestinal inflammation as well as neurodegeneration. Notably, specific BEVs derived
from distinct bacterial strains have been shown to enhance neuronal viability and function
in neurodegenerative disease contexts. Specifically, BEVs originating from the probiotic
Lactobacillus plantarum (L. plantarum) were associated with beneficial neurological effects.
L. plantarum BEVs were found to enhance the expression of brain-derived neurotrophic
factor (BDNF). These BEVs also displayed the ability to counteract and reverse the decrease
in hippocampal Bdnf1/4 and neurotrophin 4/5 (Nt4/5) expression caused by restraint stress
in HT22 hippocampal neurons and in the mouse brain, subsequently alleviating neuronal
function and depressive-like behaviors. The antidepressant-like effects observed with
L. plantarum BEVs resembled those induced by the antidepressant imipramine and were
stably maintained [276]. Moreover, these BEVs were able to reduce neuronal death in vitro,
as well as in vivo, in the context of ischemic stroke by targeting apoptosis by specific
miRNA [271]. To achieve a comprehensive understanding of the underlying mechanisms
that define the defensive attributes of BEVs and to explore their therapeutic prospects for
neurodegenerative diseases, further investigation is warranted.

In summary, the gut–brain axis stands as a pivotal avenue for unraveling neuroinflam-
mation and neurodegenerative pathologies. Intestinal microbes influence both the enteric
and central nervous system. Beyond generating microbial metabolites and neurotransmit-
ters, the release of BEVs represents a novel and crucial dimension within host-microbe
communication. Further research is required to fully understand the contribution of micro-
bial metabolites and BEVs in the context of neuroinflammation and neurodegeneration.
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