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Abstract: As the first europium(II) hydride oxide iodide, dark red single crystals of Eu5H2O2I4 could
be synthesized from oxygen-contaminated mixtures of EuH2 and EuI2. Its orthorhombic crystal
structure (a = 1636.97(9) pm, b = 1369.54(8) pm, c = 604.36(4) pm, Z = 4) was determined via single-
crystal X-ray diffraction in the space group Cmcm. Anion-centred tetrahedra [HEu4]7+ and [OEu4]6+

serve as central building blocks interconnected via common edges to infinite ribbons parallel to the c
axis. These ribbons consist of four trans-edge connected (Eu2+)4 tetrahedra as repetition unit, two
H−-centred ones in the inner part, and two O2−-centred ones representing the outer sides. They are

positively charged, according to
1
∞{[Eu5H2O2]4+}, to become interconnected and charge-balanced by

iodide anions. Upon excitation with UV light, the compound shows blue–green luminescence with
the shortest Eu2+ emission wavelength ever observed for a hydride derivative, peaking at 463 nm.
The magnetic susceptibility of Eu5H2O2I4 follows the Curie-Weiss law down to 100 K, and exhibits a
ferromagnetic ordering transition at about 10 K.

Keywords: europium; hydrides; oxides; iodides; Eu2+ luminescence; crystal structures

1. Introduction

The simultaneous coexistence of hydride and oxide anions in one and the same
compound, often misleadingly referred to as “oxyhydrides”, seems to be astonishing at
first sight. However, the hydride oxides LnHO for Ln = La, Ce and Pr, which might be
misinterpreted as “hydroxides” in their chemical formula when written as LnOH, were first
described in the early 1960s, already [1] in a cubic unit cell. Far later, neutron diffraction
studies on LaHO resulted in the determination of a revised crystal structure model based
on a superstructure of the fluorite type. Ionic conductivity measurements were carried out
successively [2,3]. Recently, the isotypic neodymium hydride oxide NdHO [4] as well as
the analogues for samarium and the lanthanoids from gadolinium to erbium with anion-
disordered fluorite-type structures [5,6] were found. Next to these ternary lanthanoid(III)
compounds, quaternary lithium-bearing hydride oxides with the composition LiLn2HO3
(Ln = La − Nd) have also been found [7]. Very recently, the hydride oxide LiLa2HO3
was reinvestigated concerning its crystal structure, with a different ordering of anions and
hydride-ion conductivity in solid solutions with LiSr2H3O [8–11]. In general, mixed anionic
compounds like hydride oxides have garnered a lot of attention as promising new materials
with regard to their optical properties like luminescence, anion conductivity, and catalytic
activity, and their applicability as 2D electronic structures [12,13]. Lately, with LiEu2HOCl2,
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the first lanthanoid(II) hydride oxide could be prepared as a chloride derivative, and
its luminescence properties were determined [14] after several mixed anionic hydride
halides with Eu2+ as luminescence-active cations had been investigated. Compounds like
the hydride fluorides EuHxF2−x [15], KMgHF2:Eu2+ and SrH0.5F1.5:Eu2+ [16] should be
mentioned here, as well as the hydride halides EuHCl [17], EuHBr [18], Eu2H3Cl [18] and
the Eu2+-doped alkaline-earth metal hydride chlorides AE7H12Cl2 (AE = Ca and Sr) [19].
Moreover, the Tb3+-luminescence of a trivalent rare-earth metal cation in a doped hydride
oxide (GdHO) was first observed [20]. Rare earth metal cation-doped materials are a widely
reported class of materials. Because of their luminescence properties, they find applications
as phosphors in phosphor-converted white light-emitting diodes [21–23]. An advantage of
mixed anion hydride materials as phosphors is the tuning of the emission wavelength by
varying the hydride content, as was shown for the mixed hydride fluorides EuHxF2−x [17]
as well as for RbMgHxF3−x and KMgHxF3−x [24], recently. Such systems can be used
as local probes for hydrogen content. Other possible applications for rare earth metal
cation-doped substances are upconversion materials and temperature sensors [25–30]. We
report the successful synthesis of a further europium (II) hydride oxide halide with the
composition Eu5H2O2I4, nicely reflecting the analogy between europium and the heavy
alkaline earth metals, since the barium analogue Ba5H2O2I4 is already known [31].

2. Results and Discussion
2.1. Crystal Structure

The europium(II) hydride oxide iodide Eu5H2O2I4 (Figure 1) crystallises isotypically
to the analogous barium compound in the orthorhombic space group Cmcm (Table 1). Since
the crystal structure showed disordered iodide anions at room temperature, a single-crystal
X-ray measurement at 100 K was carried out. The disorder could not be “frozen out” into a
completely ordered variant, but there were only two instead of three partially occupied
positions for iodide anions needed for the description of the low-temperature disorder
(Table 2). Furthermore, it was possible to refine the disordered iodide anions anisotropically,
while this was not possible for the room-temperature structure. In addition, we attempted
to solve the crystal structure in suitable subgroups of Cmcm, but the iodine disorder
always remained. The presence of a merohedral twin can be excluded due to symmetry
considerations, however. The dark red colour of Eu5H2O2I4 does not surprise much, since
it can be observed for pure hydride halides with heavy halogens (e.g., EuHBr [18,32] and
Eu2H3X (X = Br [18,33] and I [18,34]) as well.
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Figure 1. Photograph of an inhomogeneous product sample (left); Eu5H2O2I4: dark red, Eu2OI2:
orange, Eu4OI6: yellow, NaI: white) and one single crystal of Eu5H2O2I4 (top right), as well as
selected crystals under UV light (bottom right).
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Table 1. Crystallographic data and their determination for the crystal structure of Eu5H2O2I4 at 100
and 293 K.

Chemical formula Eu5H2O2I4
Molar mass, M/g·mol−1 1301.41

Crystal system orthorhombic
Space group Cmcm (no. 63)

Measuring temperature, T/K 100 (2) 293 (2)
a/pm 1636.97 (9) 1642.51 (9)
b/pm 1369.54 (8) 1374.23 (8)
c/pm 604.36 (4) 606.58 (4)

Molar volume, Vm/cm3·mol−1 203.98 (2) 206.15 (2)
Number of formula units, Z 4

Number of measured reflections 2931 1618
Number of independent reflections 1645 921

wR2 0.092 0.106
R1 0.042 0.041

Goodness of Fit 1.090 1.068
CSD number 434116 434115

Table 2. Fractional atomic coordinates and site occupation factors (s. o. f.) for Eu5H2O2I4, top: 100 K,
bottom: 293 K.

Atom Site s. o. f. x/a y/b z/c

Eu1 4c 1 0 0.90892 (4) 1/4
Eu2 8g 1 0.18814 (2) 0.08380 (3) 1/4
Eu3 8g 1 0.15203 (2) 0.40322 (3) 1/4
H 8e 1 0.090 (7) 0 0
O 8e 1 0.2762 (3) 0 0
I1 4c 1 0 0.21783 (6) 1/4
I2 4c 0.232 (15) 0 0.5589 (4) 1/4
I3 8f 0.377 (9) 0 0.5436 (4) 0.1192 (15)
I4 8g 1 0.32809 (3) 0.26778 (4) 1/4

Eu1 4c 1 0 0.90947 (6) 1/4
Eu2 8g 1 0.18819 (4) 0.08329 (4) 1/4
Eu3 8g 1 0.15234 (4) 0.40378 (4) 1/4
H 8e 1 0.089 (9) 0 0
O 8e 1 0.2766 (5) 0 0
I1 4c 1 0 0.21795 (9) 1/4
I2 4c 0.284 (11) 0 0.5601 (5) 1/4

I3A 8f 0.212 (8) 0 0.5503 (4) 0.1422 (11)
I3B 8f 0.150 (7) 0 0.5234 (7) 0.0577 (16)
I4 8g 1 0.32802 (5) 0.26771 (7) 1/4

A and B: I3A and I3B represent split positions in the room-temperature measurement (bottom), which coincide
into I3 in the low-temperature case (top).

The crystal structure of Eu5H2O2I4 contains three crystallographically different Eu2+

cations. (Eu1)2+ is surrounded by four hydride and four iodide anions, forming a distorted
square antiprism with (Eu1)–H distances of 245 pm and (Eu1)–I contacts between 341 and
349 pm (Figure 2, top, and Table 2, all distances mentioned in the text apply to the measure-
ment 100 K). (Eu2)2+ shows a square antiprismatic coordination sphere as well, but here,
one square of the polyhedron is built up by two cis-oriented hydride (d((Eu2)−H) = 249 pm)
and oxide anions each (Figure 2, top). These bond lengths correspond well with the Eu–H
distances of the also tetrahedrally coordinated hydride anions in the hydride halides EuHCl
(248 pm) [17] and EuHBr (250 pm) [35], as well as Eu2H3I (244–250 pm) [18,34].
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Figure 2. Coordination polyhedra of the Eu2+ cations in the crystal structure of Eu5H2O2I4, (Eu3)2+-
centered polyhedra for 100 K (left) and 293 K (right).

The same applies to the observed Eu–O bond length of 238 pm being very similar
to the corresponding distances in the europium(II) oxide iodides Eu4OI6 (240 pm) [36]
and Eu2OI2 (237 pm) [37]. The surrounding of (Eu3)2+ displays four iodide anions, which
are located on fully occupied sites, and two oxide anions at a distance of 233 pm, which
is astonishingly short for a Eu2+–O2− contact. The coordination sphere is completed by
disordered iodide anions in two partially occupied positions. These are located in a distance
interval of 324–395 pm for each (Eu3)2+ cation (Figure 2, bottom).

The distances between the disordered iodide anions themselves range between 82 and
343 pm, thus being too short to justify a full occupation of the corresponding sites. When
considering the refined site occupation factors (Table 2), a reasonable coordination number
of eight for (Eu3)2+ is obtained as well. The longer I2· · · I3 contacts with 264 and 343 pm
are comparable with the bond length in iodine molecules (d(I–I) = 272 pm in solid iodine
at 100 K [38]). This would even allow the interpretation of incorporated diatomic iodine
(I2) in the compound, which also could explain the observed colour and absorption. The
coordination environment of the disordered iodide anions is shown in Figure 3.
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(grey) in the crystal structure of Eu5H2O2I4 at 293 K (top) and 100 K (bottom); here, the iodide anions
are drawn in an ellipsoid representation at a 95% probability level.

While the (I2)− anions appear relatively spherical, the (I3)− anions are strongly elon-
gated parallel to the bc plane (see Table 3 for their anisotropic displacement parameters
at 100 K), resulting in a banana-shaped displacement ellipsoid. One of these “bananas”
corresponds to approximately one iodide anion in total, which is surrounded by six Eu2+

cations, forming a strongly distorted trigonal prism. The site occupation factors (Table 2)
suggest a higher probability of iodine on the position of the (I3)− anion, which is also sup-
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ported by the four short (Eu3)2+–(I3)− distances of 324 and 342 pm, while the (I2)− anion
has only two short contacts to (Eu3)2+ cations (328 pm) and the four others are significantly
longer (395 pm). The dominating structural feature in the crystal structure of Eu5H2O2I4
are the hydride and oxide anion-centred (Eu2+)4 tetrahedra, [HEu4]7+ und [OEu4]6+, which
are connected via common edges, forming infinite ribbons parallel to [001].

Table 3. Anisotropic and equivalent isotropic displacement parameters (Uij and Ueq
(a) in pm2) for

Eu5H2O2I4, top: 100 K, bottom: 293 K.

Atom U11 U22 U33 U23 U13 U12 Ueq

Eu1 62 (2) 25 (2) 133 (3) 0 0 0 73 (1)
Eu2 43 (2) 8 (2) 98 (2) 0 0 7 (1) 50 (1)
Eu3 31 (2) 31 (2) 14 (1) 0 0 −11 (1) 67 (1)
H – – – – – – 191 (b)

O 67 (22) 38 (22) 125 (26) −7 (20) 0 76 (10) 76 (10)
I1 45 (3) 100 (3) 99 (3) 0 0 0 81 (2)
I2 130 (18) 176 (20) 196 (52) 0 0 0 167 (21)
I3 142 (9) 391 (17) 888 (51) 417 (27) 0 0 474 (21)
I4 49 (2) 58 (2) 120 (2) 0 0 −29 (2) 76 (1)

Eu1 131 (5) 123 (4) 262 (5) 0 0 0 172 (3)
Eu2 113 (4) 87 (4) 224 (4) 0 0 7 (2) 141 (2)
Eu3 117 (4) 133 (4) 294 (4) 0 0 −32 (2) 181 (3)
H – – – – – – 516 (b)

O 210 (40) 160 (40) 260 (40) −60 (30) 0 0 206 (18)
I1 167 (6) 218 (6) 262 (6) 0 0 0 216 (3)
I2 – – – – – – 394 (25) (c)

I3A – – – – – – 267 (20) (c)

I3B – – – – – – 402 (29) (c)

I4 160 (4) 186 (5) 328 (5) 0 0 −53 (3) 225 (3)
(a) Ueq = 1/3 [U11 + U22 + U33], (b) the isotropic displacement parameter of the hydrogen atom was constrained
to the parameter of the oxygen atom (factor: 2.5), (c) Uiso values; A and B: for I3A and I3B see footnote in Table 2.

Four trans-edge connected tetrahedra, two hydrogen-centred ones in the inner part of
the bands, and two oxygen-centred ones at their outer sides represent the smallest repeating

unit parallel to [100] within these
1
∞{[Eu5H2O2]4+} ribbons (Figure 4).
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∞{[Eu5H2O2]4+} ribbons running along [001] in the crystal structure of Eu5H2O2I4.

These positively charged bands are held together and charge-balanced by the ordered
iodide anions parallel to [010], and by the disordered ones in the [100] direction. Parallel to

the ab plane (001) the
1
∞{[Eu5H2O2]4+} ribbons are arranged like bricks in a wall, and the

iodide anions serve as mortar between them (Figure 5).
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2.2. Microprobe Analyses

To confirm the described Eu:I ratio of 5:4, a single crystal of Eu5H2O2I4 was selected for
a wavelength-dispersive X-ray spectroscopic (WDXS) measurement. The determined ratio
was corrected for the oxidation state of europium, the hydrogen content, which can not
be detected by this method, and the resulting amount of oxygen, which is not determined
directly. The analysed europium, oxygen, and iodine contents along with the corresponding
characteristic emission lines are given in Table 4. Figure 6 shows the (energy-dispersive)
EDX spectrum for Eu5H2O2I4 with the characteristic emission lines added. The observed
C-Kα peak originates from sputtering the sample with carbon to enhance the electrical
conductivity for the measurement. The determined Eu:I ratio of approximately 1:1.25 is
close to the crystallographically calculated ratio of 5:4 with respect to the potential errors,
such as instrumental limitations and sample decomposition due to exposure to air before
and after sputtering with carbon.
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Table 4. Quantitative electron beam microprobe analysis for Eu5H2O2I4.

Ion Emission Line
(Standard) Content/wt.-% Normalized

Content/at.-%

Eu2+ Lα (Eu[PO4]) 39.8 (2) 41.7 (6)
I− Lα (KI) 26.3 (2) 33.1 (4)

O2− – 5.9 (4) 25.2 (2)

2.3. Luminescence

The dark red single crystals of Eu5H2O2I4 show blue–green luminescence under excita-
tion with UV light (Figure 1). The excitation and emission spectra (Figure 7) exhibit maxima
at 370 and 463 nm, respectively, corresponding to a Stokes shift of about 5430 cm−1 (=0.67 eV),
which is typical of Eu2+ coordinated by ligands with a strong nephelauxetic effect.
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Both excitation and emission are characterized by a broad band, which can be assigned
to the [Xe]4f 7–[Xe]4f 65d1 transition of the Eu2+ cation. The unusual shape of the emission
band might be explained by the existence of three crystallographically different Eu2+ cations
in the crystal structure of Eu5H2O2I4, with significantly different coordination surroundings
(Section 2.1). Figure 8 shows a deconvolution of the emission curve at 30 K using three
Gauß functions.

The (Eu3)2+ cation is only coordinated by weak O2− and I− ligands, which, in addition
to the weak nephelauxetic effect of the O2− anions, may lead to an emission at around
443 nm at 30 K. This corresponds to a common emission wavelength of Eu2+ in binary
halides and oxide halides [39]. With the same coordination number of eight, in the coor-
dination sphere of the (Eu2)2+ cation, two iodides are substituted by two hydride ligands
as compared to the (Eu3)2+-centred coordination sphere. This may cause an emission at
a higher wavelength of about 473 nm at 30 K, which is due to the strong nephelauxetic
effect (covalency between Eu2+ and its ligands) [40,41] of the hydride anion, and a large
ligand-field splitting because of its nature as a strong ligand [42]. The emission band
decreases only slowly with increasing wavelength, because of a further adjacent maxi-
mum resulting from (Eu1)2+. This cation, being coordinated by four hydride and four
iodide anions and thus surrounded by the most hydride anions of all three Eu2+ cations in
Eu5H2O2I4, should provoke the widest red-shifted emission of the different Eu2+ cations in
this compound, with an emission maximum at around 511 nm at 30 K. This is comparable
with the emission wavelengths of the europium(II) hydride halides EuHCl (510 nm) [17],
Eu2H3Cl (503 nm) [18], and EuHBr (493 nm) [18], with similar coordination spheres and
numbers, while EuHI [32] was never again obtained. Hence, its luminescence properties
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could not be determined. The lifetime of the excited state of Eu2+ in Eu5H2O2I4 at 30 K
is 390 ns (Figure S5, ESIy), and thus it falls into the range of typical europium(II)-doped
hydrides [13]. Figure 9 shows the temperature dependence of the photoluminescence
emission of Eu5H2O2I4 excited by a pulsed laser at 370 nm.
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pulsed laser (λ = 370 nm).

It can be seen that with increasing temperature, the distinct emission bands resulting
from the three crystallographically independent sites are not resolved anymore, and
appear as one broad band, which is a normal temperature-dependent behaviour of
emission bands [43–45]. From the decrease in intensities, a quenching temperature (T50%)
of about 110 K can be estimated. This is, however, only a crude estimate, since the
emission bands of Eu2+ from different crystallographic sites overlap. Further analyses
of the three unique emission bands can be found in Figures S2–S4, ESIy. With its
emission maximum at 463 nm at room temperature, Eu5H2O2I4 shows the shortest Eu2+

luminescence emission of all known hydride compounds, which is in contrast to the
stronger red-shifted emission in the pure Eu2+-doped alkaline-earth metal hydrides
AEH2 (emission maxima: 728–764 nm for AE = Ca − Ba [46]) or the hydrogen-rich
hydride chlorides AE7H12Cl2:Eu2+ (emission maxima: 585 nm for AE = Sr and 606 nm
for AE = Ca [19]). This is due to the aforementioned strong nephelauxetic effect of
the hydride anion and a large ligand-field splitting of the 5d levels of Eu2+ in all these
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compounds. Compared with the short emission wavelength for Eu5H2O2I4, the hydride
oxide chloride LiEu2HOCl2 [14] shows a much longer emission wavelength, despite
also having a low hydride content. The Eu2+ surrounding of LiEu2HOCl2 is similar
to that one of (Eu2)2+ in Eu5H2O2I4, but with one additional halide cap increasing the
coordination number to nine, while the H− anions are coordinated octahedrally by four
Eu2+ and two Li+ cations. A reason for these strongly deviating emission wavelengths
might be the different polarisation of the anions by the cations in both compounds, since
in LiEu2HOCl2, there are also monovalent Li+ cations next to the divalent Eu2+ cations.
This could vary the covalent bonding scenario of the europium(II)-ligand bonds and
thus influence the red shift of the emission [39]. Another explanation could be the effect
of the second coordination sphere on the ligand–field splitting and consequently on the
red shift of the Eu2+ emission [47].

2.4. Magnetism

At temperatures higher than 100 K, Eu5H2O2I4 reveals a Curie behaviour, showing
the typical linear dependence between the inverse magnetic susceptibility and temperature
(Figure 10).
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A linear fit of the obtained values results in an experimental magnetic moment of
7.88 (1) µB for one europium cation, which is very close to the theoretical value of 7.94 µB
for an isolated Eu2+ cation with 4f 7 configuration, while Eu3+ would show a completely
different behaviour [48]. At lower temperatures, at first, an irregularity at about 70 K
occurs, which is probably due to small impurities of europium(II) oxide, showing its
ferromagnetic transition (TC(EuO) = 69 K [49]). At temperatures below 12 K, the magnetic
susceptibility of Eu5H2O2I4 rises steeply up to a magnetic saturation at 8 K. For the inverse
magnetic susceptibility in Figure 10, this is reflected by the fact that for these values, a
minimum is achieved. The latter observation leads to the assumption that Eu5H2O2I4 has
a ferromagnetic transition at about 10 K, and the results of the hysteresis measurements
(Figure 11) confirm this assumption. While at temperatures of 100 and 25 K, a typical
pa-ramagnetic behaviour of Eu5H2O2I4 is observed, at 2 K, the characteristics of a weak
ferromagnetic material appear. The presented magnetic properties of Eu5H2O2I4 support
the existence of only Eu2+ in the compound; however, small amounts of incorporated Eu3+

can not be completely excluded with this method.
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3. Experimental Procedure
3.1. Motivation

After the successful synthesis and characterisation of matlockite-type EuHCl [17] and
EuHBr [18,35] several years ago, our target was to prepare doubtful EuHI [32] unequivocally
from 1:1-molar mixtures of EuH2 and EuI2. Due to the air- and moisture-sensitivity of
all starting materials and products, they were carefully handled in an argon-filled glove
box (MBraun).

3.2. Synthesis

Up to millimetre-long, dark red single crystals of the europium(II) hydride oxide
iodide Eu5H2O2I4 (Figure 1) were obtained through the reaction of equimolar amounts
of oxygen-contaminated europium(II) hydride (EuH2: self-made by hydrogenation of
europium pieces at 500 ◦C; Eu: ChemPur, 99.9%, H2: Linde, 99.9%) and europium(II)
iodide (EuI2: Sigma Aldrich, 99.9%) in a sodium-iodide flux (NaI: Merck, ultrapure) while
attempting to synthesize single crystals of the europium(II) hydride iodide EuHI described
in the literature [32]. Niobium capsules self-made from niobium tubes (Sigma-Aldrich)
and arc-welded under a helium atmosphere served as the container material. In order
to prevent their oxidation, they were enclosed in evacuated fused silica ampoules. The
reaction mixtures were heated to 900 ◦C within 12 h, kept at this temperature for 24 h, and
cooled down to room temperature within 48 h. The mostly inhomogeneous initial product
mixtures (Figure 1) consisted of dark red Eu5H2O2I4 (main component), alongside Eu2OI2
(orange) and Eu4OI6 (yellow), as well as fluxing NaI (white). Attempts to prepare phase-
pure Eu5H2O2I4 from EuH2, EuO (self-made from europium metal and Eu2O3: ChemPur,
99.9%) and EuI2 never succeeded, so the best results with yields up to 75% Eu5H2O2I4
were always gained by NaI-flux-assisted reactions of self-made oxygen-contaminated eu-
ropium dihydride (EuH2−xO0.5x with various x) with equimolar amounts of commercially
available europium diiodide (EuI2) in a slight excess, as compared to the stoichiometrically
necessary portion.

3.3. X-ray Diffraction

By using a light microscope (Leica) in the inert argon atmosphere of a glove box
(MBraun), suitable single crystals of Eu5H2O2I4 for X-ray diffraction experiments could be
selected and put into Lindemann glass capillaries (Hilgenberg). After a first measurement
at room temperature (293 K), the diffraction intensities were collected again at 100 K,
because the crystal structure showed disordered iodide anions at room temperature, but
their disorder could be reduced at lower temperature (Section 3.1). A κ-CCD diffractometer
(Bruker-Nonius) with graphite-monochromatised Mo-Kα radiation (λ = 71.07 pm) was
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used for the collection of both intensity data sets. After applying an empirical absorption
correction with the program SCALEPACK [50], the structure solution and refinement
(full-matrix least-squares against F2) was carried out with the program package [51,52].
The structure was solved by direct methods with anisotropic displacement factors for
all non-hydrogen atoms. The position of the hydrogen atom could be taken from the
list of the remaining residual electron density maxima and refined by constraining the
isotropic displacement factor to the parameter of the oxygen atom. The corresponding
crystallographic results are summarized in Tables 1–3.

3.4. Microprobe

Wavelength-dispersive X-ray spectroscopy (WDXS) and energy-dispersive X-ray spec-
troscopy (EDXS) measurements were carried out using an electron beam microprobe device
SX100 from Cameca (Gennevilliers, France). As a reference for europium, monazite-type
Eu[PO4] (LLIF crystal) was used, while iodine was referenced using a crystal of potassium
iodide KI (LPET crystal).

3.5. Luminescence

For the photoluminescence measurements, single crystals of Eu5H2O2I4 were selected
under a light microscope embedded in the glove box. Due to their air- and moisture-
sensitivity, the single crystals were enclosed into silica ampoules (diameter: 5 mm, length:
35 mm). Excitation and emission spectra were measured with a Horiba FluoroMax-4
fluorescence spectrometer equipped with a xenon discharge lamp at room temperature.
The temperature-dependent luminescence was measured with a tuneable optical parametric
oscillator pumped by a neodymium-YAG laser (Ekspla NT342B-SH with 6 ns pulse lengths)
together with a Jobin-Yvon HR250 monochromator (600 grooves/mm) and a PI-MAX
ICCD camera (Princeton Instruments) for detection [50]. Accumulations were collected per
measurement to increase the signal-to-noise ratio. The samples were placed into a Janis
closed-cycle helium cryostat with a Lakeshore temperature controller, and were fixed to
the cold finger using high-purity silver paint and copper tape. Decay measurements were
recorded with the same set-up. Data were recorded 50 ns after the laser pulse with up to
3 ms delays, with an integration window of 25 ns.

3.6. Magnetism

For measurements of the magnetic properties, polycrystalline samples of Eu5H2O2I4
(as a mixture with the fluxing agent NaI) were placed into gelatine capsules and attached
to the sample holder of a Vibrating Sample Magnetometer (VSM) for measuring the magne-
tizations M(T) and M(H) in a Magnetic Property Measurement System (MPMS3, Quantum
Design, USA). For M(T) measurements, the samples were examined within a temperature
range from 2 to 300 K in a homogeneous magnetic field of 500 Oe; for M(H), data hysteresis
loops (−7 T ≤ H ≥ +7 T) at 100, 25 and 2 K have been recorded.

4. Conclusions

So far, the emission maxima of the Eu2+-centred luminescence in hydride materials
range in the red region of the electromagnetic spectrum for pure dihydrides. Since
EuH2 does not luminesce as bulk, the Eu2+-doped alkaline-earth metal dihydrides
AEH2 (AE = Ca − Ba) with their cotunnite-type structures (C.N.(M2+) = 9) need to serve
as landmarks. Upon switching to the Eu2+-doped hydrogen-rich hydride chlorides
AE7H12Cl2 (AE = Ca and Sr, C.N.(M2+) = 9), a blue-shift to orange occurs, which even
turns to green for the bulk matlockite-type hydride chlorides EuHX (X = Cl and Br,
C.N.(M2+) = 9) and Eu2H3Cl (C.N.(M2+) = 10). In hitherto unsuccessful attempts to
obtain the iodide analogue EuHI, oxygen contamination led to the serendipitous for-
mation of the europium(II) hydride oxide iodide hydride Eu5H2O2I4 (C.N.(M2+) = 8),
which shows a blue-green bulk luminescence at 463 nm (λexc = 370 nm). This represents
the Eu2+ phosphor with the shortest emission wavelength among all europium(II)-
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hydride derivatives. Using photoluminescence spectroscopy, the influence of the
different coordination environments around the crystallographically distinguishable
Eu2+ cations becomes evident, when the shape of the emission spectrum is considered.
Furthermore, temperature-dependent measurements also showed an additional emis-
sion peak at around 443 nm, which seems to arise from the oxygen-rich site (Eu3)2+, as
oxide anions only show a weak nephelauxetic effect. As the 4f 7-configuration of the
Eu2+ cations may also introduce interesting magnetic effects, the magnetic susceptibil-
ity was determined in the range of 2 to 300 K. While the title compound Eu5H2O2I4
shows a paramagnetic behaviour above 10 K, a ferromagnetic transition was observed
towards lower temperatures. Additional magnetic hysteresis measurements confirmed
a weak ferromagnetic ordering when measured at 2 K.
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