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Abstract: Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal
degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene
encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins
ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and
there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus
(AAV) vectors. However, late-phase trials have failed to show significant functional improvements
and have raised safety concerns about inflammatory events potentially caused by the use of viruses.
Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region
(S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a
GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two
choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish,
using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess
the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector
expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors
generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of
prenylation function by 75%, indicating correction of the underlying biochemical defect associated
with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected
with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival,
prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors
show promise as a potential gene-augmentation strategy without the use of immunogenic viral
components, which could be applicable to many inherited retinal disease genes.

Keywords: choroideremia; inherited retinal disease; non-viral gene therapy; S/MAR

1. Introduction

Inherited retinal diseases (IRDs) encompass a large group of clinically and genetically
heterogeneous diseases that collectively cause progressive retinal degeneration with resul-
tant sight loss [1,2]. They affect approximately 1 in 3000 people, representing an important
cause of severe visual loss in the human population. In the United Kingdom, they are
the commonest cause of severe sight impairment (blindness) certification in working-age
adults, yet for the vast majority of cases, there is no approved treatment. To date, over
400 IRD causative genes have been identified [3,4].

Choroideremia is an X-linked chorioretinal dystrophy (prevalence: 1 in 50,000–100,000)
involving progressive degeneration of the photoreceptors, RPE, and choroid [5–7]. Affected
male patients typically develop night blindness in childhood, followed by restriction of
the peripheral visual field, and finally, a decrease in central visual acuity, often leading to
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complete blindness later in life. Although female carriers often remain asymptomatic, it has
been found that they show a spectrum of disease severity, with the more severe cases showing
widespread chorioretinal atrophy similar to that observed in males [8,9]. Choroideremia
is caused by mutations in the CHM gene, which encodes Rab escort protein 1 (REP1), a
ubiquitously expressed 653-amino acid protein that forms an essential component of the
catalytic Rab geranyl-geranyl transferase (RGGTase) II complex [10,11]. REP1 is involved in
the intracellular trafficking and secretion of proteins and organelles by performing a post-
translation lipid modification (prenylation) to Rab proteins, which are small GTP-binding
proteins that act as key regulators of intracellular trafficking [10,11].

Gene-augmentation therapy is currently one of those most promising treatment op-
tions for choroideremia and other IRDs; this method conventionally involves the use of
viral particles to package and deliver wild-type cDNA to the retina via intra-ocular injection,
restoring expression of the defective gene [12,13]. One adeno-associated virus (AAV)-based
gene therapy known as voretigene neparvovec already has approval by the Food and Drug
Administration (FDA) and European Medicines Agency (EMA) for treating patients with
biallelic RPE65-retinopathy [14,15]. Choroideremia is a good candidate for gene augmen-
tation as it is a monogenic disease caused by loss-of-function mutations, with no known
dominant negative effect or genotype–phenotype correlation. In addition, CHM cDNA is
relatively short, 1.9 kb in length, and so can be accommodated by AAV vectors. However,
among several clinical trials for CHM AAV therapy, a phase I/II trial (NCT02341807) did
not report differences in visual acuity between injected and un-injected eyes at 2 years
post-surgery, and a phase III multicentre study (NCT03496012) failed to meet the primary
endpoints and key secondary endpoints after 12 months post-treatment [5,16]. Furthermore,
intraocular inflammation was reported in two CHM patients [17,18], which has also been
noted in AAV studies for other IRD genes, including RPE65 [19] and CNGB3 [20]. More
recently, voretigene neparvovec has been reported to cause RPE atrophy with consequent
photoreceptor loss in and outside of the bleb area, raising concern for viral-based retinal
gene therapy [21].

Considering the drawbacks associated with viral gene therapy, non-viral alternatives
are of great interest for IRDs, with one potential strategy being the use of plasmid vectors
with extensive cloning capacity that incorporate a DNA motif known as the scaffold/matrix
attachment region (S/MAR). S/MARs are genomic sequences at which the chromatin
anchors to the nuclear matrix proteins during interphase, a function thought to be involved
in gene regulation [22,23]. When incorporated into plasmids, they promote episomal
maintenance (preventing genome integration), mitotic stability, and protection against
epigenetic silencing, producing persistent gene expression both in vitro and in vivo [24,25].
pS/MAR are indeed replicated and equally segregated during mitosis. The mechanism
of mitotic stability of pS/MARs is not fully understood. It has been reported that mitotic
stability is supported by a specific interaction of this vector with components of the nuclear
matrix, such as hnRNP-U/SAF-A, Topoisomerase II, Lamin B1, SATB1, or Histone H1 [26].
In previous studies, subretinal injection of S/MAR-containing plasmids complexed into
nanoparticles has produced long-term transgene expression and improved the retinal
phenotype in mouse models of RPE65- and ABCA4-related retinal disease [27–29].

In the present study, we have assessed the use of non-viral S/MAR vectors carrying
the human CHM coding sequence to produce functional human REP1 expression in CHM
patient-derived cells and chm mutant zebrafish (chmru848), demonstrating the therapeutic
potential of S/MAR vectors as non-viral alternatives for retinal gene therapy.

2. Results
2.1. Generation of CHM S/MAR Vectors and Rescue of Patient Fibroblasts

We generated a CHM S/MAR plasmid toolbox by cloning the full-length human CHM
coding sequence (1.9 kb) into plasmids containing a downstream S/MAR sequence and
one of five promoters (CMV, CAG, EF1a, hPGK, and hCHMp) (see Figure 1). The vectors
also contained the green fluorescent protein (GFP) coding sequence from the copepod
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species Pontellina plumata (also known as copGFP). After validating the vectors via Sanger
sequencing, we transfected HEK-293 cells with each vector to demonstrate their ability to
drive overexpression of REP1 protein. The CMV and CAG ubiquitous promoters produced
the highest expression at 48 h post-transfection (Figure 1C), and the CAG vector was used
for subsequent experiments in fibroblasts.
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Figure 1. Generation of pS/MAR-CHM vectors. (A) pS/MAR-CHM vectors were generated by
inserting the human CHM coding sequence (CDS) into the S/MAR plasmid backbone with 1 of
5 promoters: CMV (V1), CAG (V2), hPGK (V3), EF1α (V4), or CHMp (V5). The plasmids also
contained a GFP sequence. (B) All 5 vectors produced GFP expression in transfected HEK-293 cells,
which was observed at varying levels at 48 h post-transfection. (C) REP1 protein expression was
examined by Western blot in the non-transfected (NT) and transfected HEK-293 cells, with the CMV
(V1) and CAG (V2) promoter versions driving the highest expression levels.

CHM patient dermal fibroblasts harboring the c.126C>G, p.(Y42*) nonsense mutation
were transfected with pS/MAR-CAG-CHM, showing restoration of REP1 protein expres-
sion at 11 days following GFP-positive FACS sorting to 112.6 ± 32.2% (n = 3) of wild-type
levels (Figure 2A,B), compared to the loss of protein expression in the non-transfected CHM
fibroblasts. REP1 expression was maintained in transfected cells after three passages and
more than 4 weeks (35 days) post-FACS sorting at levels comparable to that of the wild
type (61.9 ± 27.9%, n = 3).

REP1 plays an essential role in lipid modification (prenylation) of Rab proteins and
facilitates their intracellular membrane transport trafficking by binding to the hydrophobic
prenylation motifs at the C termini; when REP1 is absent, a population of unprenylated Rabs
builds up in the cells. By rescuing REP1 expression in CHM fibroblasts, we would expect
the level of unprenylated Rabs to decrease if exogenous REP1 is functional. Therefore,
the prenylation function was investigated by measuring the pool of unprenylated Rabs in
transfected and non-transfected cells using an in vitro assay. At 7 days post-electroporation,
it was found that transfected CHM fibroblasts showed a 75 ± 11.7% (p < 0.05) decrease
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in unprenylated Rabs compared to non-transfected CHM cells (Figure 2C). Unprenylated
Rabs were not detected in the wild-type fibroblasts.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 11 
 

 

electroporation, it was found that transfected CHM fibroblasts showed a 75 ± 11.7% (p < 

0.05) decrease in unprenylated Rabs compared to non-transfected CHM cells (Figure 2C). 

Unprenylated Rabs were not detected in the wild-type fibroblasts. 

 

Figure 2. Rescue of CHM patient-derived fibroblasts. (A) Human dermal fibroblasts (HDF) from a 

CHM patient with the c.126C>G (p.Y42*) mutation were transfected with pS/MAR-CAG-CHM (V2). 

GFP expression was detected at 48 h post-transfection and was maintained at 120 h post-FACS. (B) 

Using Western blot, REP1 protein was detected in the transfected CHM patient fibroblasts at 11 days 

and 35 days post-FACS. REP1 was detected in wild-type control fibroblasts but was almost com-

pletely absent in non-transfected CHM fibroblasts. (C) As a measure of prenylation function, an in 

vitro prenylation assay was performed to detect the size of the unprenylated Rab protein pool in 

transfected versus non-transfected CHM fibroblasts at 7 days post-transfection. A significant de-

crease in the presence of unprenylated Rabs was observed in the transfected fibroblasts. * p < 0.05. 

(ns = non significant). 

2.2. Expression of Human REP1 in Chmru848 Zebrafish Embryos 

Wild-type (wt) and chmru848 zebrafish embryos were micro-injected at the one-cell 

stage with pS/MAR-CMV-CHM. GFP expression could be detected in the embryos from 

around 6 h post-injection. At 5 dpf, fluorescent imaging showed mosaic expression of GFP 

throughout the body of the wt and chmru848 larvae (Figure 3A–D). chmru848 homozygous 

mutant embryos displayed characteristic systemic defects previously described [20]), in-

cluding pericardial and abdominal edema, shorter body length, an uninflated swim blad-

der, and a persistent yolk sac. The ocular morphological features include microphthalmia, 

irregular eye pigmentation, cataracts, and widespread retinal degeneration. Wholemount 

examination of injected and un-injected chmru848 larvae did not show notable differences 

between the phenotypes. However, analysis of survival showed a mild but significant in-

crease in vector-injected chmru848 zebrafish survival to 7.1 ± 0.7 days compared to 5.9 ± 1.17 

days in un-injected larvae (n = 43 and n = 21 in un-injected and injected larvae, respec-

tively, p < 0.0001) (Figure 3E). Western blotting using a human-specific antibody (2F1) 

detected human REP1 protein expression only in the injected mutant larvae at 5 dpf (Fig-

ure 3F). To assess whether the human REP1 was biochemically functional in vivo, a 

prenylation assay was performed (Figure 3G). Injected chmru848 zebrafish demonstrated a 

59.5 ± 24.3% (p < 0.05) rescue in Rab prenylation levels at 5 dpf.  

Figure 2. Rescue of CHM patient-derived fibroblasts. (A) Human dermal fibroblasts (HDF) from
a CHM patient with the c.126C>G (p.Y42*) mutation were transfected with pS/MAR-CAG-CHM
(V2). GFP expression was detected at 48 h post-transfection and was maintained at 120 h post-FACS.
(B) Using Western blot, REP1 protein was detected in the transfected CHM patient fibroblasts at
11 days and 35 days post-FACS. REP1 was detected in wild-type control fibroblasts but was almost
completely absent in non-transfected CHM fibroblasts. (C) As a measure of prenylation function,
an in vitro prenylation assay was performed to detect the size of the unprenylated Rab protein pool
in transfected versus non-transfected CHM fibroblasts at 7 days post-transfection. A significant
decrease in the presence of unprenylated Rabs was observed in the transfected fibroblasts. * p < 0.05.
(ns = non significant).

2.2. Expression of Human REP1 in Chmru848 Zebrafish Embryos

Wild-type (wt) and chmru848 zebrafish embryos were micro-injected at the one-cell
stage with pS/MAR-CMV-CHM. GFP expression could be detected in the embryos from
around 6 h post-injection. At 5 dpf, fluorescent imaging showed mosaic expression of
GFP throughout the body of the wt and chmru848 larvae (Figure 3A–D). chmru848 homozy-
gous mutant embryos displayed characteristic systemic defects previously described [20]),
including pericardial and abdominal edema, shorter body length, an uninflated swim blad-
der, and a persistent yolk sac. The ocular morphological features include microphthalmia,
irregular eye pigmentation, cataracts, and widespread retinal degeneration. Wholemount
examination of injected and un-injected chmru848 larvae did not show notable differences
between the phenotypes. However, analysis of survival showed a mild but significant
increase in vector-injected chmru848 zebrafish survival to 7.1 ± 0.7 days compared to
5.9 ± 1.17 days in un-injected larvae (n = 43 and n = 21 in un-injected and injected larvae,
respectively, p < 0.0001) (Figure 3E). Western blotting using a human-specific antibody
(2F1) detected human REP1 protein expression only in the injected mutant larvae at 5 dpf
(Figure 3F). To assess whether the human REP1 was biochemically functional in vivo, a



Int. J. Mol. Sci. 2023, 24, 15225 5 of 11

prenylation assay was performed (Figure 3G). Injected chmru848 zebrafish demonstrated a
59.5 ± 24.3% (p < 0.05) rescue in Rab prenylation levels at 5 dpf.
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Figure 3. Micro-injection of chmru848 zebrafish with pS/MAR-CHM. Wholemount color and flu-
orescent images of (A) wild-type, (B) chmru848, (C) pS/MAR-CMV-CHM-injected wild-type, and
(D) pS/MAR-CMV-CHM-injected chmru848 zebrafish at 5 days post-fertilization. (E) Comparison of
survival in injected and un-injected chmru848 zebrafish larvae. (F) Western blot for human-specific
REP1 protein with the 2F1 antibody in injected and un-injected chmru848 zebrafish larvae. Hu-
man REP1 was detected in the injected zebrafish only. (G) Prenylation assay to detect levels of
un-prenylated Rabs in wild-type, injected, and un-injected chmru848 zebrafish larvae (* = p < 0.05;
*** = p < 0.001).

GFP expression could be detected in the retina of injected zebrafish larvae, predomi-
nantly in the photoreceptor cells. Immunostaining of the five dpf chmru848 retinal sections
for cone and rod-specific markers (using PNA lectin and anti-rhodopsin, respectively) was
performed (Figure 4). In the wild-type retina, a typical expression pattern of cone and rod
outer segments in the outer retinal layers was detected, which was highly disrupted in the
mutant retina, showing loss of photoreceptor cells and abnormal outer segment morpholo-
gies. Co-detection of GFP with the photoreceptor markers in the injected chmru848 retina
confirmed photoreceptor-specific expression of the pS/MAR-CMV-CHM and showed im-
provement in photoreceptor organization and morphology, with individual outer segments
more easily distinguished.
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post-fertilization wild-type, chmru848, and pS/MAR-CMV-CHM-injected chmru848 zebrafish were
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GFP was also detected in the photoreceptors of the injected zebrafish. Scale bar = 10 µm.

3. Discussion

Gene-augmentation therapies are a popular strategy under development for treating
IRDs; however, data from clinical trials, including those aimed at treating choroideremia,
have indicated that AAV vectors may not be a suitable gene-delivery method for some
disorders. In the present study, we have investigated the ability of non-viral episomal
S/MAR vectors to produce functional REP1 protein in models of choroideremia to explore
their utility as a potentially safer gene-augmentation method.

Initially, we generated S/MAR-containing plasmid vectors carrying the human CHM
coding sequence with several different promoters, which were transfected into HEK-293
cells and patient-derived dermal fibroblasts. In CHM patient fibroblasts that show loss of
REP1, the pS/MAR-CAG-CHM vector restored protein expression to levels similar to the
wild type. The vector generated persistent expression, which was maintained over several
passages and still detected at 35 days post-cell sorting, indicating their mitotic stability.
Previous studies have demonstrated the mitotic stability of the pS/MAR vectors in vitro
and in vivo [24,25,30]; for instance, stable transgene expression and episomal persistence
were observed up to 170 days in murine and human pluripotent stem cells [24]. In wild-type
conditions, REP1 is involved in the lipid modification of Rab proteins and facilitates their
intracellular membrane transport trafficking by binding to the hydrophobic prenylation
motifs at the C termini [31,32]. It has previously been shown that this biochemical function is
disrupted in patient fibroblast models and chmru848 zebrafish, as evidenced by the detection
of unprenylated Rabs using an in vitro prenylation assay [33]. We found that the pS/MAR-
CAG-CHM vector was able to substantially reduce the percentage of unprenylated Rabs in
both transfected CHM fibroblasts and injected zebrafish mutants, indicating that functional
REP1 is generated by the vector both in vitro and in vivo. Previously, up to a 42% reduction
of unprenylated Rabs was achieved in CHM fibroblasts when treated with translational
readthrough-inducing drugs (TRIDS) [33], compared to 75% using non-viral vectors in
the present study, which highlights the potential efficacy of this form of therapy. For
future investigations, iPSC-derived RPE could be assessed as a more clinically relevant
disease model.

To investigate the pS/MAR-CMV-CHM activity in vivo, the vector was injected into
the CHM mutant zebrafish chmru848. The ocular and systemic phenotypes of these zebrafish
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have been described previously [34,35]. The systemic defects in these mutants are attributed
to a lack of REP2 protein in zebrafish, leading to embryonic lethality [34]. The CMV
promoter was able to produce variable but relatively broad expression in zebrafish tissues,
including the photoreceptors, which persisted up to the latest timepoint examined in
this study at 5 dpf. Partial rescue was evidenced by mildly increased survival in the
injected mutants, and GFP-expressing photoreceptors showed improved morphology
compared to un-injected zebrafish. As mentioned, despite the mosaic expression pattern,
prenylation function was still significantly improved in the injected fish. However, the
overall disease morphology of the mutant fish remained relatively unchanged; this limited
rescue may be attributed to differences in human and zebrafish REP1 proteins and the
patchy cell distribution of vector expression, which may be broadened with zebrafish-
specific promoters.

Although promising, non-viral strategies for gene therapy still do not outperform the
best AAV capsids in terms of transfection efficiency in photoreceptor and RPE cells, and
DNA vectors typically require coupling with molecular vehicles to aid their retinal entry.
Much progress has been made towards improving transfection rates in the past decade,
with the use of plasmids packaged into nanoparticles such as CK30PEG in the Rpe65−/−

mouse model of Leber congenital amaurosis [27,28] or, more recently, the successful re-
peated administrations of ECO nanoparticles in the Abca4−/− mouse model of Stargardt
disease [29]. Nonetheless, further proof-of-concept studies in higher-order animals are
desirable before translating these strategies to patients.

There are several ongoing and completed clinical trials for AAV gene therapy for
choroideremia [5,36]. Thus far, these have yielded some disappointing results, with failures
to produce significant improvements in visual acuity and meet primary endpoints, in
addition to reports of intraocular inflammatory events [5]. On top of the vectors themselves,
the surgical procedures required for subretinal injection can cause retinal stretching, likely
contributing to inflammation and atrophy. Damaging the tissue can trigger inflammation
by releasing intracellular proteins, the extracellular matrix, or non-protein molecules like
ATP [37]. CHM patients are likely more susceptible to these inflammatory processes as
their remaining retina is typically small and friable. Therefore, less-invasive routes of
administration, such as intravitreal or suprachoroidal injection, would be beneficial for
the delivery of non-viral gene therapies. Unlike the single administration used for AAV
therapies, the repeated administration of less-immunogenic non-viral vectors, via a less
invasive route, may be an effective method for safe, long-term treatment.

Alternatively to gene augmentation, other therapeutic strategies being pursued to treat
choroideremia include translational readthrough-inducing drugs (TRIDs) and antisense
oligonucleotide (AONs)-based splice correction. For TRIDs, studies using gentamicin,
paromomycin [38], PTC124, or PTC-414 [33] to treat cellular models and zebrafish harbor-
ing CHM nonsense mutations have shown significant recovery of REP1 expression and
prenylation activity. AONs were used to correct the deep-intronic c.315-4587 T>A mutation
in CHM in patient-derived lymphoblast cells [39]. Although promising, therapies such as
TRIDS and AONs do not apply to a large number of IRD patients due to their specificity to
certain mutations; non-viral gene augmentation could address such issues as it has wider
suitability for mutations, with the additional benefit of a large gene size carrying capacity.

In summary, we have shown proof-of-principle that non-viral episomal vectors can
produce functional REP1 proteins in cellular and zebrafish models of choroideremia, show-
ing rescue of the underlying biochemical defect in both. This has shown promise as a
potential gene-augmentation strategy without the use of immunogenic viral components,
which could apply to many IRD genes.

4. Materials and Methods
4.1. S/MAR Vector Generation

The In-Fusion HD Cloning Kit (Takara Bio, San Jose, CA, USA) was used to clone full
human CHM coding sequence into S/MAR plasmid backbones provided by Dr Richard
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Harbottle (DKFZ). The CHM sequence was amplified via PCR using CloneAmp HiFi PCR
Premix (Takara Bio). The primers were designed to introduce 15 bp homologous overhangs
for efficient recombination. First, 1–3 µg of vector backbone was digested with 1–3 units of
XhoI and BmgBI for 1 h at 37 ◦C. For the recombination reaction, 100 ng of the vector and
50 ng of the insert were combined with the In-Fusion mix and incubated at 50 ◦C for 15 min.
Stellar competent cells (Takara Bio) were used for transformation. Sanger sequencing of the
full insert was performed for quality control.

4.2. Cell Culture

Wild-type (WT) and CHMY42X patient-derived human dermal fibroblasts were ob-
tained from skin biopsies, as described in the methods of [40]. The cells were cultured in
DMEM high glucose (Gibco #41966029, Waltham, MA, USA) supplemented with 15% FBS
(Gibco #10500064) and 1% Pen/Strep (Gibco #15140122). After reaching 80% confluency,
the cells were passaged using TrypLE Express Enzyme (Gibco #12605028), and the media
were changed twice a week. HEK-293 cells were cultured in the same conditions but with
the cell culture medium supplemented with 10% FBS. Cells were maintained at 37 ◦C under
5% CO2/95% air atmosphere, 20% oxygen tension, and 80–85% humidity.

Transfection of human dermal fibroblasts and HEK-293 cells was carried out using the
Neon Transfection System 100 µL kit (Neon Electroporation System #MPK10025, Waltham,
MA, USA). Briefly, cells were dissociated using TrypLE Express (Gibco #12605028) and
counted using a Countess II Automated cell counter. For each transfection, 1 million
cells were resuspended in 100 µL buffer R and mixed with 5–10 µg of vector DNA and
electroporated with the following parameters: 1650 V, 10 ms, 3 pulses for human dermal
fibroblasts and 1450 V, 10 ms, and 2 pulses for HEK-293 cells. GFP expression was monitored
via fluorescent microscopy. Media was changed 24 h after electroporation.

4.3. Zebrafish Husbandry and Microinjection

Adult zebrafish (wild-type, AB-strain [wt] and chmru848, (RRID:ZFIN_ZDB-ALT-
040107-2) were bred and maintained at the UCL Bloomsbury campus zebrafish facility.
chmru848 embryos were generated by matings of heterozygous zebrafish and raised at
28.5 ◦C in E3 medium. S/MAR DNA was injected into zebrafish embryos at the one-cell
stage using a Picospritzer III microinjector. Approximately 25 ng of DNA was injected
directly into the cell.

4.4. Western Blot

Cell samples or whole zebrafish larvae (10 per sample) were snap-frozen using dry
ice. Samples were analyzed via Western blot assay, as previously described [21], using
anti-REP1 (2F1 clone, Millipore #MABN52, RRID:AB_10808665, Burlington, MA, USA)
primary antibody diluted 1:1000 followed by secondary anti-mouse IgG HRP conjugate
diluted 1:10,000 (Sigma, St. Louis, MO, USA) in blocking solution (5% dry milk, PBS/0.1%
Tween [PBS-T]). The membrane was stripped and re-probed with 1:5000 anti-β-actin an-
tibody (Sigma-Aldrich #A2228, RRID:AB_476697, St. Louis, MO, USA) or anti-vinculin
(Santa Cruz Biotechnology #sc-25336, RRID:AB_628438) as a loading control. Three in-
dependent experiments were performed to determine the mean protein expression in
fibroblast samples.

4.5. Prenylation Assay

The prenylation assays were carried out on whole zebrafish embryos (pools of 10)
and patient fibroblasts, as previously described [33]. Briefly, cytosolic protein extracts
were obtained from zebrafish and fibroblast samples, which were then subjected to an
in vitro prenylation assay using 5 µM biotin-labeled geranyl pyrophosphate (B-GPP; Jena
Bioscience, Jena, Germany) as a prenyl group donor, 0.5 µM recombinant REP1 (Jena
Bioscience), 0.5 µM recombinant Rab geranylgeranyl transferase (RGGT; Jena Bioscience),
and 20 µM GDP in prenylation/lysis buffer at 37 ◦C for 1 h. The prenylation reaction was
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stopped with 6× SDS loading buffer, boiled at 95 ◦C for 5 min, and biotin incorporation was
analyzed using Western blot with HRP-conjugated streptavidin (1:3000; Jackson ImmunoRe-
search, West Grove, PA, USA) and either anti-β-actin antibody (Sigma-Aldrich #A2228,
RRID:AB_476697) or anti-vinculin (Santa Cruz Biotechnology #sc-25336, RRID:AB_628438,
Dallas, TX, USA) as a loading control. Detection was performed using the ChemiDoc MP
Imaging system (Biorad, Hercules, CA, USA). The number of biotinylated Rab proteins
was then quantified by scanning densitometry using ImageJ and expressed as a function of
the β-actin/vinculin signal. To allow relative comparisons, the biotinylated Rab population
in the non-transfected CHM cell or chmru848 zebrafish samples was set to 100%. Three
independent experiments were performed to determine the mean prenylation function.

4.6. Retinal Immunostaining

Retinal cryosections were prepared from zebrafish larvae that were immunostained,
were stained for rod photoreceptors using anti-rhodopsin 4D2 (1:200; Abcam #ab98887,
RRID:AB_10696805), followed by secondary Alexa Fluor 647 antibody (Thermo Fisher,
Waltham, MA, USA; 1:1000). Rhodamine-labeled peanut agglutinin (PNA) lectin (1:200;
Vector Laboratories #RLK-2200, Newark, CA, USA, RRID:AB_2336701) was also added at
the secondary antibody step for cone cell detection. The slides were imaged using a Leica
LSM 710 upright confocal microscope.

4.7. Statistics

Data are shown as mean values ± standard deviation from n observations. The
Shapiro–Wilk test was used to test for normal distribution. Student’s t-tests or Mann–
Whitney U tests were used for single comparisons. p < 0.05 was accepted to indicate
statistical significance (*). GraphPad Prism software 7.0 was used for statistical analysis.

4.8. Ethics

The study protocol adhered to the tenets of the Declaration of Helsinki and received ap-
proval from the NRES Committee London-Riverside Ethics Committee (REC12/LO/0489).
Written informed consent was obtained from all participants prior to their inclusion in
this study. Zebrafish were maintained according to institutional regulations for the care
and use of laboratory animals under the UK Animals Scientific Procedures Act and UCL
Animal Welfare and Ethical Review Body (Licence no. PPL PC916FDE7). All approved
standard protocols followed the guidelines of the ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research Ethics.
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